Topic II SoC Design Overview

系統晶片驗證 SoC Verification

Sep, 2004

SoC = System on a Chip

SoC Verification

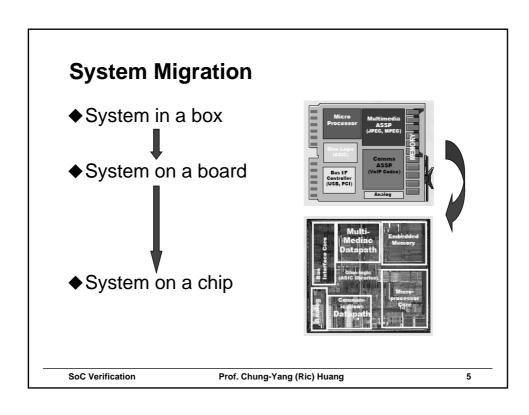
Prof. Chung-Yang (Ric) Huang

What is a System?

- ◆ A <u>self-contained</u> functional unit that can complete a task or serve some people in certain applications
 - Telecommunications, networking
 - ATM switches, Ethernet switches, bridges, routers
 - Portable consumer products
 - Cell phones, organizers
 - Multimedia
 - Digital cameras, game consoles, digital video
 - Embedded control
 - Automotive, printers, smart cards, disk drives

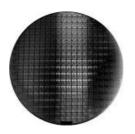
SoC Verification

Prof. Chung-Yang (Ric) Huang


,

A system should (may) contain...

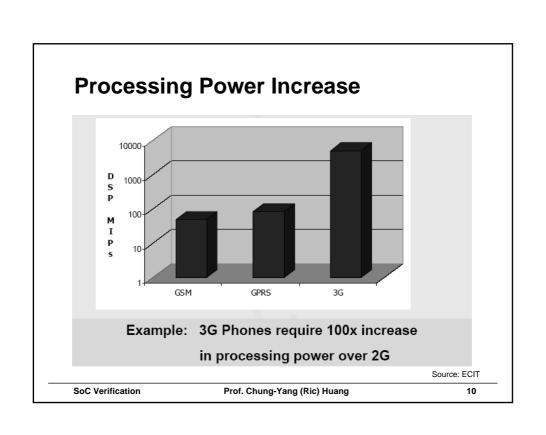
- ◆ I/O interface (Bus, RF, display driver, etc)
- Processor (General purposed, DSP, graphic, etc)
- Analog/Mixed signal units (ADC, DAC, PLL, etc)
- ◆ Network controller
- ◆ Embedded memory (RAM)
- ◆ Embedded software (ROM)
- ◆ Built-in self test (BIST)

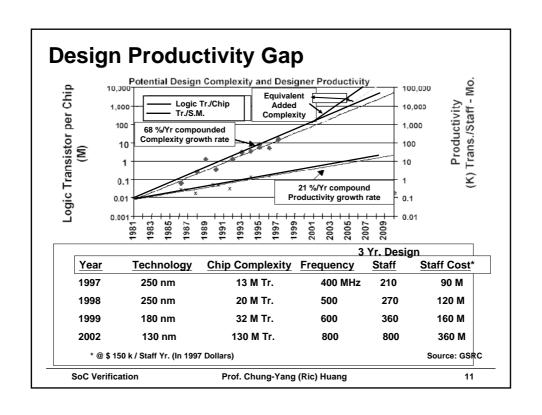

SoC Verification

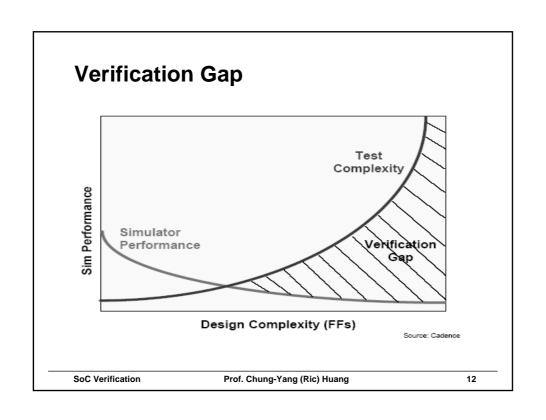
Prof. Chung-Yang (Ric) Huang

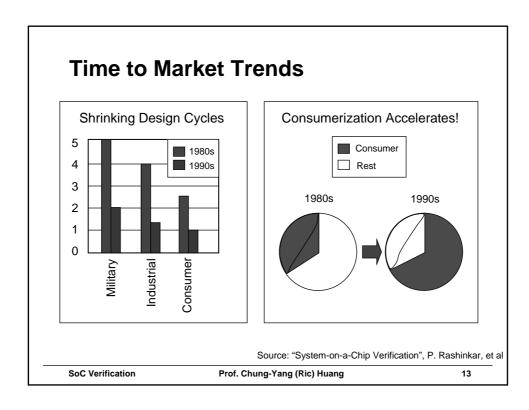
Why System-on-a-Chip?

- **♦**Cost reduction
 - More products per wafer
- ◆Higher performance
 - External vs internal bus
- ◆Lower power consumption
 - Portable applications (battery life)
- ◆Shorter market cycle
 - Design (core) reuse


SoC Verification


Prof. Chung-Yang (Ric) Huang


Sounds great, but the reality nowadays is...


SoC Verification Prof. Chung-Yang (Ric) Huang

	s in Intel's CPUs	
	Year of Introduction	Transistors
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
386™ processor	1985	275,000
486 [™] DX processor Pentium® processor	1989 1993	1,180,000 3,100,000
Pentium III processor	1999	24,000,000
Pentium 4 processor	2000	42,000,000
Itanium® processor	2002	220,000,000
Itanium II processor	2003	410,000,000
SoC Verification	Prof. Chung-Yang (Ric) Huang	9

Period from Plan to Mass-Production ◆ Color TV: 12 Years ◆ Computer: 5 Years ◆ Mobile Phone: 3 Years ◆ PS-1: 10 Months ◆ PS-2: 3 Months ◆ Throwing in more engineers? Satoshi Goto, VLSI/CAD 2004 Soc Verification Prof. Chung-Yang (Ric) Huang 14

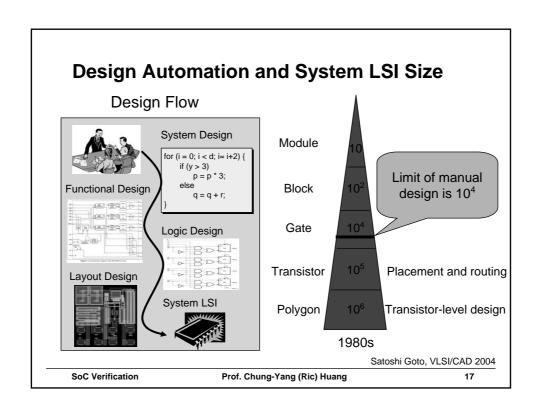
Change!!

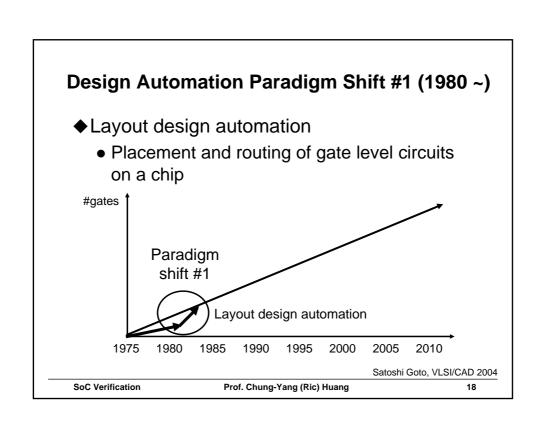
Something gotta be changed...

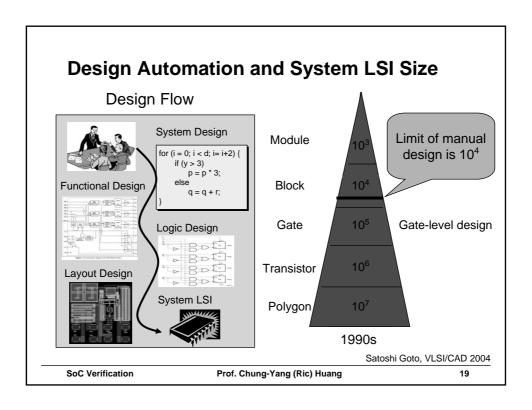
SoC Verification

Prof. Chung-Yang (Ric) Huang

15


Paradigm Shifts of SoC Design


- What paradigm shifts have happened in SoC?
 - Paradigm shift #1 (1980 ~)
 - Paradigm shift #2 (1990 ~)
 - Paradigm shift #3 (2000 ~)

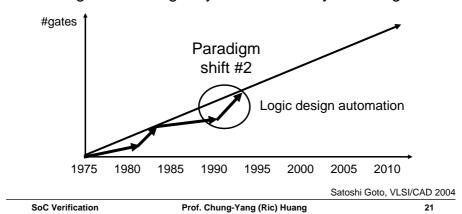

Satoshi Goto, VLSI/CAD 2004

SoC Verification

Prof. Chung-Yang (Ric) Huang

Design Automation Paradigm Shift #2 (1990 ~)

- ◆ Logic Synthesis
 - Generate gate level circuits from RT level description by circuit structure optimization
- ◆ Formal Logic Verification
 - Verify a circuit validaty by mathematical way, but not by simulation
 - 500 times faster and guarantee 100% validity
- ◆ Integration of Logic Synthesis and Layout Design
 - Signal net delay or clock timing is considered at logic synthesis


Satoshi Goto, VLSI/CAD 2004

SoC Verification

Prof. Chung-Yang (Ric) Huang

Design Automation Paradigm Shift #2 (1990 ~)

- ◆ Logic Synthesis
- ◆ Formal Logic Verification
- ◆ Integration of Logic Synthesis and Layout Design

Design Automation Paradigm Shift #3 (2000 ~)

Ultra Large Scale and Ultra Fine Process System LSI

- 1. Scalability: Ultra Large Scale Circuits
 - → Almost impossible to design within a reasonable time
- 2. Reliability: High Complex Circuits
 - → Almost impossible to design with error free
- 3. Performance: Signal Integrity
 - → Almost impossibility to achieve high TAT

Satoshi Goto, VLSI/CAD 2004

SoC Verification

Prof. Chung-Yang (Ric) Huang

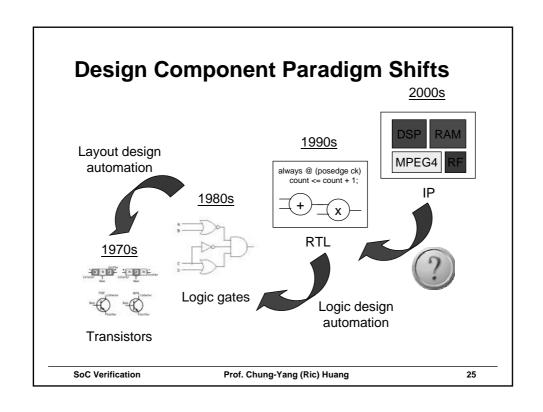
Design Automation Paradigm Shift #3 (2000 ~)

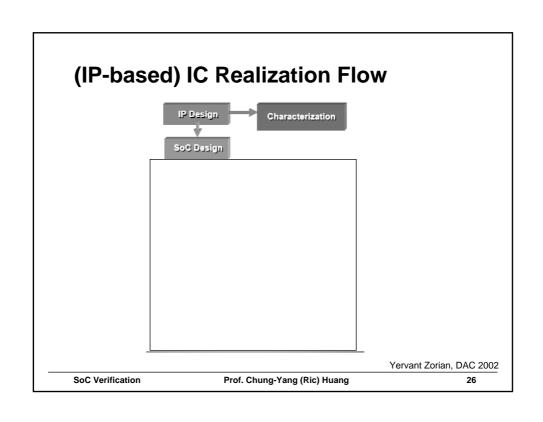
- 1. Scalability: Ultra Large Scale Circuits
 - > Reduce the circuit (design) size
 - High level design: Functional synthesis
 - Hierarchical design: Partitioning & floor planning
 - Design-less
 - Exploitation of design results
 - → IP (Intellectual Property)

Satoshi Goto, VLSI/CAD 2004

SoC Verification

Prof. Chung-Yang (Ric) Huang


23


IP --- The SoC Design Enabler

- ◆IP = Intellectual Property
 - Also called embedded core, virtual component, megacell, system-level macro
- ◆A well defined, pre-designed, pre-verified, and pre-characterized functional block that can be used across different system chips
 - e.g. ARM core, MPEG decoder, PCI, DMA controller, etc.

SoC Verification

Prof. Chung-Yang (Ric) Huang

Types of IPs

- ◆ Soft IP
 - A verified synthesizable HDL (usually RTL) description
- ◆Firm IP
 - A synthesized gate-level netlist that meets some basic assessments (e.g. timing)
- ◆Hard IP
 - A complete design that contains layout and detailed timing, power, etc information

27

SoC Verification Prof. Chung-Yang (Ric) Huang

(IP-based) IC Realization Flow

Characterization

Soc Design

Yervant Zorian, DAC 2002

Soc Verification

Prof. Chung-Yang (Ric) Huang

28

IP (Core, component)-based SoC Design

- ◆ In the "architecture mapping" step of "system-level design"
 - Design is partitioned into different hardware and software blocks, each of which is mapped into certain pre-designed IP(s) from an IP library
- ◆Advantage
 - By reusing previous designs, implementation efforts can be greatly reduced
 - Performance can be earlier analyzed based on the IP characteristics

SoC Verification

Prof. Chung-Yang (Ric) Huang

29

But remember, a system should (may) contain...

- ◆ I/O interface (Bus, RF, display driver, etc)
- Processor (General purposed, DSP, graphic, etc)
- Analog/Mixed signal units (ADC, DAC, PLL, etc)
- ◆ Network controller
- ◆ Embedded memory (RAM)
- ◆ Embedded software (ROM)
- ◆ Built-in self test (BIST)

SoC Verification

Prof. Chung-Yang (Ric) Huang

IP (Core, component)-based SoC Design

- ◆ In the "architecture mapping" step of "system-level design"
 - Design is partitioned into different hardware and software blocks, each of which is mapped into certain pre-designed IP(s) from an IP library
- Advantage
 - By reusing previous designs, implementation efforts can be greatly reduced
 - Performance can be earlier analyzed based on the IP characteristics
- ◆ Challenges:
 - Integration / interface of IPs
 - IP qualification / characterization

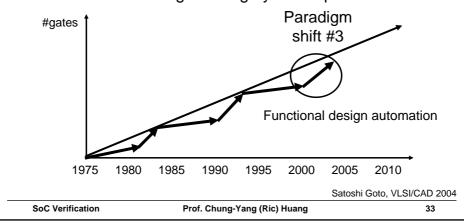
SoC Verification

Prof. Chung-Yang (Ric) Huang

31

Design Automation Paradigm Shift #3 (2000 ~)

- Scalability: Ultra Large Scale Circuits
 - > Reduce the circuit (design) size
 - > Design-less
- 2. Reliability: High Complex Circuits
 - Verification on high level circuit
 - High level verification: System level verification
 - Pseudo execution: System level emulation
- Performance: Signal Integrity on Chip
 - Early stage evaluation of signal delay time
 - Global layout at early design stage
 - → Cooperative design of functional synthesis and floor plan

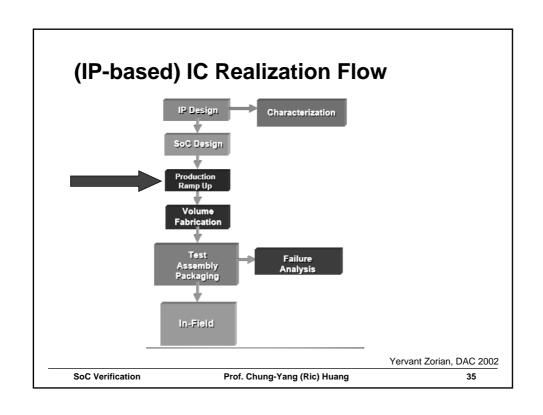

Satoshi Goto, VLSI/CAD 2004

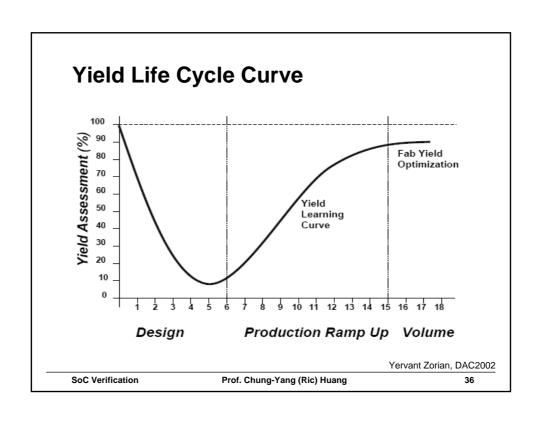
SoC Verification

Prof. Chung-Yang (Ric) Huang

Design Automation Paradigm Shift #3 (2000 ~)

- 1. Scalability: Ultra Large Scale Circuits
- 2. Reliability: High Complex Circuits
- 3. Performance: Signal Integrity on Chip

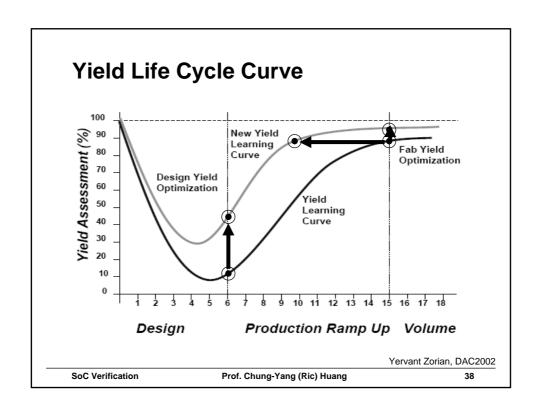



SoC Design Challenge Summary

- Design complexity
 - Human intelligence limitations
 - EDA tool limitations
 - New verification/testing methodologies
 - → Heterogeneous architectures, mixed signals, etc.
- 2. Yield & reliability
 - Manufacturability: Deep Sub-Micron (DSM) physical effects
 - Testability (test volume and time)
 - Yield learning (Design for Manufacturability) (DfM)
 - Yield optimization (Infrastructure IP; I²P)

SoC Verification

Prof. Chung-Yang (Ric) Huang



Traditional Testing Infrastructure

- ◆External (of the Chip)
- ◆As the device geometry becomes smaller, and design gets more complex,
 - Testing
 - Manufacture monitoring
 - Timing parameter measurement
 - Diagnosis
 - Defect repair
 - Fault tolerance
 - → becomes much more difficult and expensive

SoC Verification

Prof. Chung-Yang (Ric) Huang

Functional vs. Infrastructure IP

- ◆Functional IP: the IPs we mentioned earlier
 - e.g. ARM core, MPEG decoder, PCI, DMA controller, etc.
- ◆Infrastructure IP (I²P):
 - Similar to that of a building's infrastructure elements, such as wiring networks or plumbing, which are independent from the actual function of the building
 - → Promote the testability, manufacturability, diagnosability, and error correctability

SoC Verification

Prof. Chung-Yang (Ric) Huang

39

Examples of IIPs

- ◆ Built-In Self-Test (BIST) for logic and memories
- ◆ Built-In Repair Analysis (BIRA)
- ◆ Built-In Self-Repair (BISR)
- Error-Correcting Codes (ECC) for embedded memories
- ◆ Embedded core test logic for SOCs
- Embedded timing analyzers to measure timing specifications
- ◆ Embedded fuse technology for on-chip repair

Yervant Zorian et al, Evaluation Engineering 2004

SoC Verification

Prof. Chung-Yang (Ric) Huang

SoC Design Challenge Summary

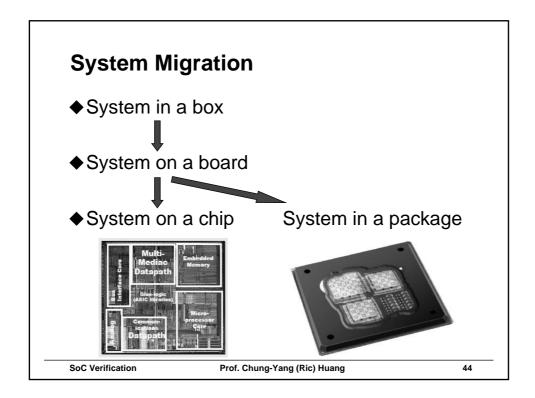
- 3. Performance requirement
 - Timing closure
 - → In DSM (< .25 um), interconnection delay dominates
 - → Difficult to estimate delay up front
 - Power consumption
 - → Dynamic power (source) management; Heat dissipation
- 4. Time to market (volume) pressure
 - \$\$\$
- 5. Reusability, extendibility vs. specialized AP
 - Gain / investment
 - Gross profit

SoC Verification

Prof. Chung-Yang (Ric) Huang

41

SoC Design Tradeoffs


- ◆Soft vs. hard IP
 - Flexibility vs. design reuse
- ◆Programmable IP?
 - Flexibility vs. performance
- ◆ Hardware vs. software
 - Needs performance analysis
- ♦On-chip or off-chip
 - e.g. RF, memory
- ◆In-house or out-sourcing IP
 - Time and money concerns; copy right

SoC Verification

Prof. Chung-Yang (Ric) Huang

So, is SoC a viable solution?

SoC Verification Prof. Chung-Yang (Ric) Huang

What is SiP (System in a Package)?

- ◆ An IC package containing multiple die?
- A fully integrated system or sub-system:
 - One or more semiconductor chips *plus*:
 - Passive components that would otherwise be integrated on the mother board
 - Surface mount discrete passives
 - Embedded or patterned into substrate
 - Integrated passive components
 - Other subsystem components:
 - EMI shield, SAW filters, packaged ICs, connectors, antennas, mechanical housings, etc.
- A fully integrated functional block bridging the gap between SoC and SoB (system on board)
- ◆ Technologies:
 - Stacked die, microboard substrate, embedded passives

Source: Amkor Technology

SoC Verification

Prof. Chung-Yang (Ric) Huang

45

When can SoC not work?

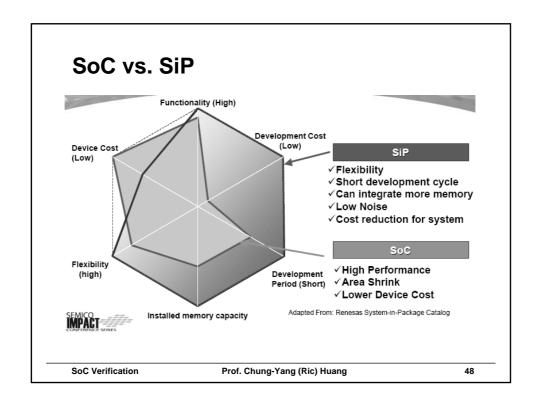
- The lack of component upgrade flexibility
 - e.g. Upgrade periods:

Processor → 2 years

Memory → 6 months

ASIC/ASSP → when bus standard evolves

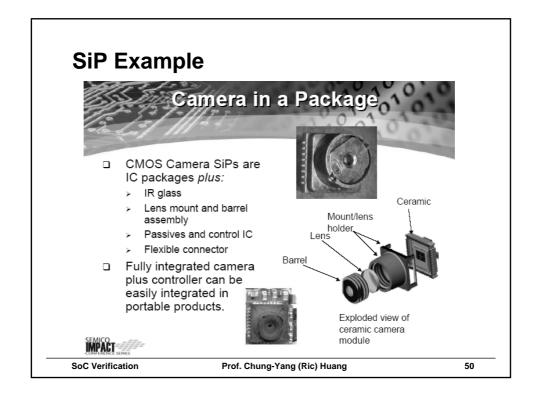
- Addition of unnecessary levels of complexity that increase component cost, design time, and test time
 - e.g. Wafer process: diffs in logic and memory
 - e.g. Design rules: diffs in digital and analog
- Increased restrictions on PCB layout, performance and power dissipation


SoC Verification

Prof. Chung-Yang (Ric) Huang

Why SiP?

- ◆ Performance of high-speed digital devices
 - Limited by inadequate packaging solutions rather than by internal delays
- ◆ Power consumption of RF components
 - Poor quality factors of too many passive components spread all over the board
- **◆**Consumer products
 - Packaging is becoming the most important cost factor


SoC Verification Prof. Chung-Yang (Ric) Huang

In comparison with SoC,
SiP has strong competitiveness in
design and test cycles,
production complexity,
and time-to-market
without sacrificing performance

SoC Verification

Prof. Chung-Yang (Ric) Huang

Paradigm Shift #3+ What will happen in 2010??

- ♦ HW design ≈ SW design
 - HW designer's definition will have to be changed
 - Population on design has to be increased
 - Design system LSI by using free SW (MPEG, Cipher)
- ◆ User input will be specification description language
 - · Protection of know-how for a set maker
 - Has to change a business model for foundry (license business)
 - Big business for 3rd party (IP, customization)
- From functional spec to FPGA
 - Execute programming code by FPGA
- ◆ Full automatic design for highly complex circuits
 - Standardization for easy-to-design

Satoshi Goto, VLSI/CAD 2004

SoC Verification

Prof. Chung-Yang (Ric) Huang

51

What we have covered in this topic...

- Definition of a system
- ◆ Why system on a chip?
- ◆ Time-to-market pressure today
- Design paradigm shifts
 - Physical design automation (1980 ~)
 - Logic design automation (1990 ~)
 - Functional design automation (2000 ~)
- ◆ IP-based design
- ◆ SoC design challenge summary
- ◆ Infrastructure IP (IIP)
- ◆ System in a package (SiP)
- ◆ Design paradigm shift #3+ (~ 2010)

SoC Verification

Prof. Chung-Yang (Ric) Huang