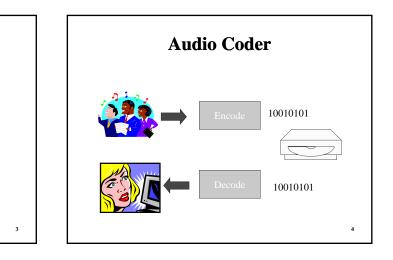
Audio Signal Processing I

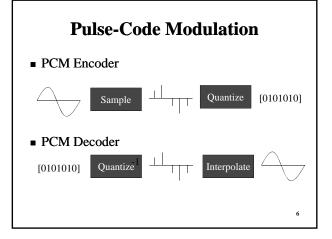
Shyh-Kang Jeng Department of Electrical Engineering/ Graduate Institute of Communication Engineering

*Reference: Marina Bosi, Perceptual Audio Coding-Lecture Note of Music 422/EE367C, CCRMA, Stanford University, Spring 1999


Reference

 M. Bosi and R. E. Goldberg, Introduction to Digital Audio Coding and Standards, Kluwer Academic Publishers, 2003.

2



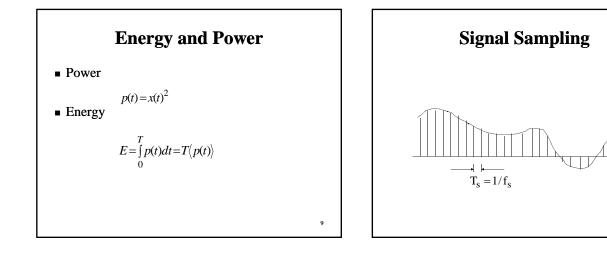
- Introduction
- Quantization
- Time to Frequency Mapping
- Psychoacoustics
- Bit Allocation
- Perceptual Audio Coders
- MPEG-1 Audio

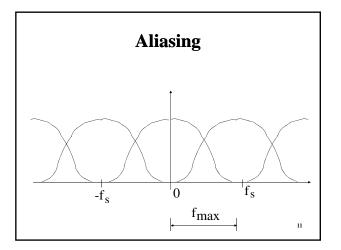
Coding Goals

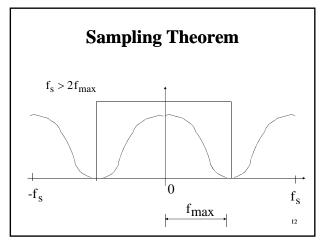
- Maximize the perceived quality of the sound
- Minimize the data rates and complexity
- Related parameters
 - Delay
 - Error robustness
 - Scalability
 - etc.

PCM Example: CD Format

- Sampling frequency: Fs = 44.1 KHz (i.e. one sample every ~0.023 ms)
- Number of bits per sample: R = 16 (i.e. up to $2^{16} = 65536$ levels)
- Bit rate: I = Fs*R = 706.5 kb/s per channel
- Total bit rate: I_{stereo} = 1.413 Mb/s
- Signal to noise ratio: SNR ~ 90 dB

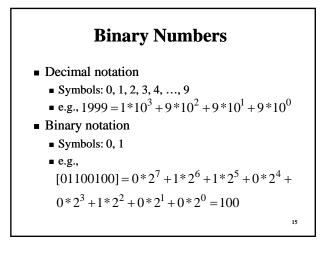

Fourier Transform


Fourier transform


$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

Inverse Fourier transform

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df$$



Eliminating Aliasing

- If your application requires a sample rate below the highest frequencies in the signal, you will need to low pass filter the signal before sampling
- Example: The telephone sample rate is 8 KHz and a 4 KHz low pass filter is employed. (speech: ~100 Hz to ~7 KHz, you really do sound different on the phone)

Coder Implications

- We can only hear up to ~20 KHz so we should filter out higher frequencies and sample at ~40 KHz to get high quality reproductions of broadband sound
- For example, CDs sample at 44.1 KHz and provide much greater sound quality than telephone system

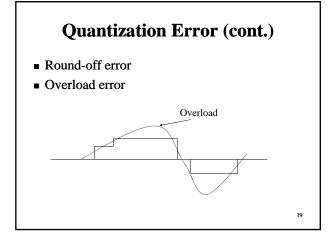
Negative Numbers

- Folded binary
 - Use the highest order bit as an indicator of sign
- Two's complement
 Follows the highest positive number with the lowest negative
 e.g., 3 bits, 3 ≡ [011], -4 ≡ [100] = 2⁴ 4
- We use folded binary notation when we need to represent negative numbers

Two Quantization Methods

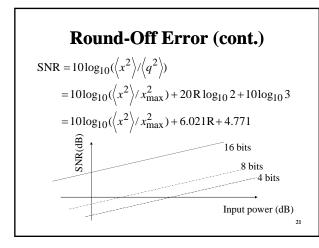
- Uniform quantization
 - \blacksquare Constant limit on absolute round-off error $\Delta/2$
 - Poor performance on SNR at low input power
- Floating point quantization
 - Some bits for an exponent
 - the rest for an mantissa
 - SNR is determined by the number of mantissa bits and remain roughly constant
 - Gives up accuracy for high signals but gains much greater accuracy for low signals

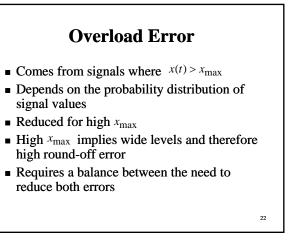
17


13

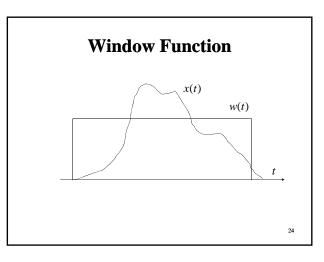
Quantization Error

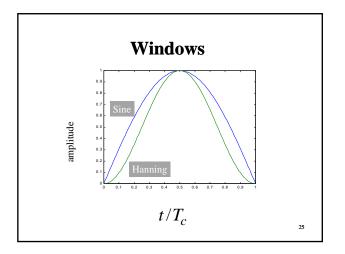
- Main source of coder error
- Characterized by $\langle q^2 \rangle$
- A better measure SNR = $10\log_{10}(\langle x^2 \rangle / \langle q^2 \rangle)$
- Does not reflect auditory perception
- Can not describe how perceivable the errors are
- Satisfactory objective error measure that reflects auditory perception does not exist

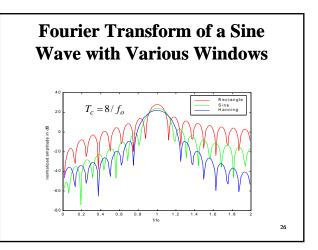

18

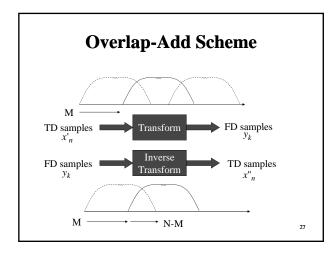

14

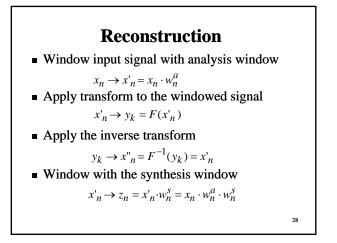
Round-Off Error

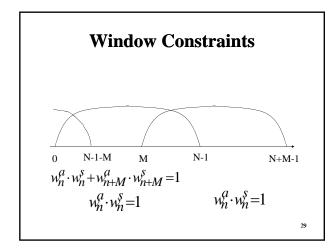

- Comes from mapping ranges of input amplitudes onto single codes
- Worse when the range of input amplitude onto a code is wider
- Assume that the error follows a uniform distribution
- Average error power $\langle q^2 \rangle = \int_{-\Delta/2}^{\Delta/2} q^2 \frac{1}{\Delta} dq = \Delta^2/12$
- For a uniform quantizer $\langle q^2 \rangle = x_{\text{max}}^2 / (3*2^{2R})$

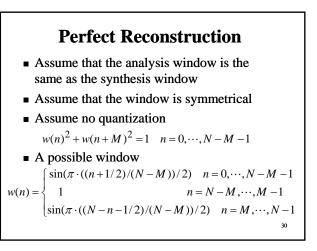


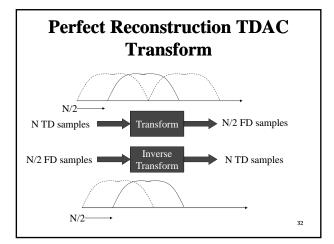


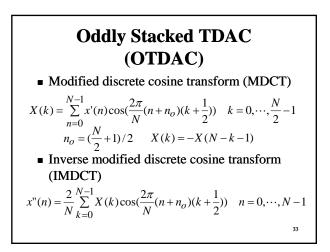

Frequency Domain Coding


- Subdivide the input signal into a number of frequency components and quantize these components separately
- Subdivision into frequency components removes redundancy in the input signal
- Number of bits to encode each frequency component can be variable, so that encoding accuracy can be placed in frequencies where is most needed





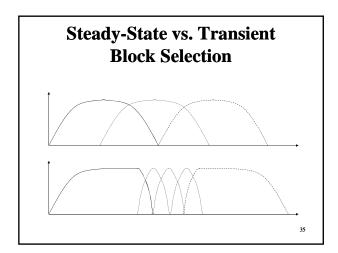




Overlapping and Required System Rate

- Overlap N-M samples
 - Slide the window by M samples
 - Perform an N-point transform to obtain N frequency samples
 - Transmit N frequency samples every M time samples
 - If there is no overlap, we need only to transmit N frequency samples every N time samples
 - Thus the required system rate is higher than that of the no-overlapping case, because M<N

31


Perfect Reconstruction TDAC Transform

- Symmetric analysis and synthesis windows
- Identical analysis and synthesis windows

 $[w(n)]^{2} + [w(N/2+n)]^{2} = 1$ $n = 0, \dots, N/2-1$

Sine window

$$w(n) = \sin(\pi * ((n+1/2)/(N/2))/2)$$
 $n = 0, \dots, N/2-1$

