Audio Signal Processing II

Shyh-Kang Jeng Department of Electrical Engineering/ Graduate Institute of Communication Engineering

35

37

Overview

- Psychoacoustics
 - Study the correlation between the physics of acoustical stimuli and hearing sensations
 - Experiments data and models are useful for audio codec
- Modeling human hearing mechanisms
 - Allows to reduce the data rate while keeping distortion from being audible

36

Sound Pressure Levels

Definitions

 $SPL = 20 \log_{10}(p / p_o) \text{ in } dB \quad p_o = 20 \ \mu Pa$

 $10^{-5} Pa$

 $\text{SPL} = 10\log_{10}(I/I_o) \text{ in } dB \quad I_o = 10^{-12} W/m^2$

Example: TDAC Transform • Sampling frequency $F_s = 48 \text{ KHz}$ • Window length 1024 • Bit rate 128 kb/s/ch • Average bits per sample $\langle R_k \rangle = 128/48 = 2.6667$ • Number of bits for each new block of data $\sum_{k=0}^{N-1} R_k = \langle R_k \rangle * 512 = 1365 b / Block$

Floating Point Quantization • Effect of the scale factor • Scale x_{max} to the order of the signal so that the error in terms of the number of mantissa bits $\langle q^2 \rangle = \frac{\langle x^2 \rangle}{3 \cdot 2^{2R}}$ • Get coding gain if R_k can reduce the error $\langle q^2 \rangle = \frac{1}{N} \sum_{k=0}^{N-1} \left(\frac{X_k^2}{3 \cdot 2^{2R_k}} \right)$

Application to Perceptual Coding

- Not to minimize the average error power
- To get the quantization noise below the masking curve
- To maximize SNR-SMR for signals above the masking curve

SNR~
$$\log(x^2/q^2)$$
 SMR~ $\log(x^2/M^2)$
SNR - SMR ~ $-\log(q^2/M^2)$

57

A Caveat...

- The above algorithm sometimes gives negative *R_k* when *X_k/M_k* is much below its geometric mean
 - Rounds those R_k to zero
 - Take bits away from other parts of the spectrum
 - Use approximate solution allocating bits one by one locally

59

History (cont.)

- MPEG-4
 - First proposed in 1991
 - Approved in July 1993
 - Targets audiovisual coding at very low bit rates
 - Scalability, 3-D, etc.
 - ISO/IEC FDIS in 1999 (ISO/IEC 14496)
- MPEG-7
 - Started in the Fall of 1996
 - Standardize the description of multimedia contents of multimedia data base search
 - Scheduled to become ISO/IEC standard in 2001

61

History

- Moving Picture Expert Group (MPEG)
 - Established in 1988
 - Joint Technical Committee (JTC1): ISO, IEC
 - Develop standards for coded representation of moving pictures and associated audio
- Original work items
 - MPEG-1, up to 1.5 Mb/s (ISO/IEC 11172)
 - MPEG-2, up to 10 Mb/s (ISO/IEC 13818)
 - MPEG-3, up to 40 Mb/s
- MPEG-3 was dropped in July '92

60

MPEG-1 Audio Layers

- Layer I
 - Simplest configuration, 32 to 224 kb/s/ch
 - Best for data rates above 128 kb/s/ch
 - Used in Philips's DCC at 192 kb/s/ch
- Layer II
 - Intermediate complexity, 32 to 384 kb/s/ch
 - Best for data rates of 128 kb/s/ch
 - Used in DAB, CD-Interactive, etc.
- Layer III
 - Highest quality and complexity, 32 to 160 kb/s/ch
 - Best for data rates below 128 kb/s/ch
 - Used for transmission over ISDN, Internet, etc. 62

- Single-chip, real-time decoders exist for all three layers
- Layers II and III
 - Perceptually lossless at 128 kb/s/ch (compression ratio of 6:1, 16 bits per sample, 48 KHz sampling rate)

63

Selected by ITU-R TG 10/2 for broadcast applications

