Multivariate Statistical Analysis Final Exam
 January 19, 2007
 2 pages, 10 problems, 100 points

1. Let $\mathbf{X}_{1 j}$.and $\mathbf{X}_{2 j}$ denote the responses to treatments 1 and 2, respectively, with $j=1,2, \cdots, n$ in a paired comparison experiment. Assume that the n independent observed differences $\mathbf{D}_{j}=\mathbf{X}_{1 j}-\mathbf{X}_{2 j}$ can be regarded as a random sample from a multivariate normal population. From a certain experiment of 30 observations, we found that the sample average and the sample covariance matrix of the observed differences are $\overline{\mathbf{d}}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\mathbf{S}_{d}=\left[\begin{array}{ll}8 & 2 \\ 2 & 5\end{array}\right]$, respectively. Test the hypothesis that there is no treatment difference at 90% significance level and compute the 90% Bonferroni simultaneous confidence interval for the individual mean difference. (10\%)
2. Two samples were taken from an experiment where two characteristics X_{1} and X_{2} were measured. Assume that samples 1 and 2 are taken from $N_{2}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}\right)$ and $N_{2}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}\right)$, respectively. The summary statistics of the two samples for the observations are $\overline{\mathbf{x}}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right], \mathbf{S}_{1}=\left[\begin{array}{ll}6 & 1 \\ 1 & 4\end{array}\right], n_{1}=16$ and $\overline{\mathbf{x}}_{2}=\left[\begin{array}{l}2 \\ 2\end{array}\right], \mathbf{S}_{2}=\left[\begin{array}{cc}10 & 3 \\ 3 & 6\end{array}\right]$, $n_{2}=16$, respectively. Test the hypothesis $H_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$. versus $H_{1}: \boldsymbol{\mu}_{1} \neq \boldsymbol{\mu}_{2}$ at 90% significance level and find the 90% Bonferroni simultaneous confidence interval for the individual mean difference. (10%)
3. Consider the following independent samples. Population 1: $\left[\begin{array}{l}9 \\ 3\end{array}\right],\left[\begin{array}{l}5 \\ 1\end{array}\right]$; Population 2: $\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 0\end{array}\right] ;$ Population 3: $\left[\begin{array}{l}3 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 6\end{array}\right]\left[\begin{array}{l}2 \\ 7\end{array}\right]$. Assume that all three samples are from multivariate normal distributions with identical population covariance matrices. Are the mean vectors of those three populations the same at 90% significance level? (10\%)
4. Calculate the least square estimates $\hat{\boldsymbol{\beta}}$, the residuals $\hat{\varepsilon}$, and the residual sum of squares for a straight line model $Y=\beta_{0}+\beta_{1} z$ fit to the data

z	0	1	2	3
y	2	1	3	4

(10\%)
5. Use the results of Problem 4 to construct a 90% confidence interval for $E(Y \mid z=1.5)$ and a 90% prediction interval for a new observation Y when $z=1.5$. (10\%)
6. Suppose the random variables X_{1}, X_{2}, X_{3}.have the covariance matrix $\boldsymbol{\Sigma}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 8 & 2 \\ 0 & 2 & 5\end{array}\right]$. Find the first principal component Y_{1} and its proportion of total population variance. (10\%)
7. Assume an $m=1$ orthogonal factor model. Calculate the loading matrix \mathbf{L} and matrix of specific variance $\boldsymbol{\Psi}$ for the covariance matrix of Problem 6 using the principal component solution method. Compute also the residual matrix. (10\%)
8. Establish the inequality (9-19) in p. 486 of the text book. (See the hint for Exercise 9.5 in p. 533 of the textbook). (10%)
9. The (2×1).random vectors $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ have the joint covariance matrix $\operatorname{Cov}\left(\left[\begin{array}{l}X_{1}^{(1)} \\ X_{2}^{(1)} \\ -- \\ X_{1}^{(2)} \\ X_{2}^{(2)}\end{array}\right]\right)=\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}64 & 0 & \mid & 0 & 0 \\ 0 & 1 & \mid & 0.6 & 0 \\ -- & -- & + & -- & -- \\ 0 & 0.6 & \mid & 1 & 0 \\ 0 & 0 & \mid & 0 & 64\end{array}\right] . \quad$ Calculate the first canonical correlation ρ_{1}^{*} and the canonical variate pair $\left(U_{1}, V_{1}\right)$. Note that if $\mathbf{A}=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right], \quad \mathbf{A}^{1 / 2}=\left[\begin{array}{cc}\sqrt{\lambda_{1}} & 0 \\ 0 & \sqrt{\lambda_{2}}\end{array}\right]$ and $\mathbf{A}^{-1}=\left[\begin{array}{cc}1 / \lambda_{1} & 0 \\ 0 & 1 / \lambda_{2}\end{array}\right](10 \%)$
10. Which part of this course could be most useful/interesting to you? Why? Give your suggestions to improve this course. (10\%)

