Multivariate Statistical Analysis Mid Term
 November 17, 2006

 2 pages, 16 problems, 100 points

 2 pages, 16 problems, 100 points}

1. What is your name in Chinese? (6\%)
2. Verify that $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ is the inverse matrix of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
3. Verify that $\lambda_{1}=9, \lambda_{2}=4$ and $\mathbf{e}_{1}^{\prime}=\left[\begin{array}{ll}2 & 1\end{array}\right], \mathbf{e}_{2}^{\prime}=\left[\begin{array}{ll}-1 & 2\end{array}\right]$ are the eigenvalues and eigenvectors of $\left[\begin{array}{ll}8 & 2 \\ 2 & 5\end{array}\right]$.
4. Expand the quadratic form $(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$, where $\mathbf{x}^{\prime}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right], \boldsymbol{\mu}^{\prime}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$, and $\boldsymbol{\Sigma}=\left[\begin{array}{ll}8 & 2 \\ 2 & 5\end{array}\right] . \quad$ (6\%)
5. Compute the major axes and directions formed by the ellipse $(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=c^{2}$, where c is a real constant and $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ are defined in Problem 4. (6\%)
6. Find the major axes and directions of the solid ellipse which contains 90% of the probability for bivariate normal distribution $N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}, \boldsymbol{\Sigma}$ have been defined in Problem 4. (6\%)
7. Find the major axes and directions of the solid ellipse which contains 90% of the probability for sample mean distribution of a sample of size 100. Assume that the probability density distribution of the bivariate population is unknown except that the population mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ is the vector and matrix given in Problem 4. Assume also that 100 can be treated as a large sample size. (6\%)
8. Set up a null hypothesis $H_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0}$ and an alternative hypothesis $H_{1}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{0}$, with $\boldsymbol{\mu}_{0}^{\prime}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$ for bivariate normal distribution $N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Show that the Hotelling's T^{2} test rejects the null hypothesis at 90% significance level. Suppose that the sample size is 30 , and the sample mean $\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ll}-0.5 & -0.5\end{array}\right]$, the
sample covariance matrix $\mathbf{S}=\left[\begin{array}{ll}8 & 2 \\ 2 & 5\end{array}\right]$.
9. Find the major axes and directions of the Hotelling's $90 \% T^{2}$ confidence region for Problem 8. (6\%)
10. Determine the 90% simultaneous T^{2} confidence intervals for Problem 8. (6\%)
11. Determine the 90% Bonferroni simultaneous confidence intervals for Problem 8. (6\%)
12. Which component of $\boldsymbol{\mu}_{0}$ is not a plausible value of the corresponding component of $\boldsymbol{\mu}$ in Problem 8? (6\%)
13. Determine the lower control limit (LCL) and the 90% upper control limit (LCL) of the T^{2} control chart for future observation which is based on a sample of size $n=30$ from a bivariate normal population. Assume that the sample mean is $\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$ and the sample covariance matrix $\mathbf{S}=\left[\begin{array}{ll}8 & 2 \\ 2 & 5\end{array}\right] \quad(6 \%)$
14. Show that $\mathbf{x}=\left[\begin{array}{ll}-0.5 & -0.5\end{array}\right]$ is under control for the T^{2} control chart constructed in Problem 13. (6\%)
15. Prove that the function $\eta^{b} e^{-\eta / 2}$ has a maximum, with respect to η, of $(2 b)^{b} e^{-b}$, occurring at $\eta=2 b, \quad b>0$. This result appeared in p. 171 of the Textbook. (6\%)
16. Suppose that we want to measure the weight of a diamond ring. Why and when can we estimate the unknown exact weight by the sample mean of the data of measurements repeated under almost-identical conditions? (10\%)
