Multivariate Statistical Analysis Mid Term November 17, 2006 2 pages, 16 problems, 100 points

- 1. What is your name in Chinese? (6%)
- 2. Verify that $\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ is the inverse matrix of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. (6%)
- 3. Verify that $\lambda_1 = 9$, $\lambda_2 = 4$ and $\mathbf{e}_1 = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} -1 & 2 \end{bmatrix}$ are the eigenvalues and eigenvectors of $\begin{bmatrix} 8 & 2 \\ 2 & 5 \end{bmatrix}$. (6%)
- 4. Expand the quadratic form $(\mathbf{x} \mathbf{\mu})' \Sigma^{-1} (\mathbf{x} \mathbf{\mu})$, where $\mathbf{x}' = \begin{bmatrix} x_1 & x_2 \end{bmatrix}, \mathbf{\mu}' = \begin{bmatrix} -1 & 1 \end{bmatrix}$, and $\Sigma = \begin{bmatrix} 8 & 2 \\ 2 & 5 \end{bmatrix}$. (6%)
- 5. Compute the major axes and directions formed by the ellipse $(\mathbf{x} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu}) = c^2$, where *c* is a real constant and $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ are defined in Problem 4. (6%)
- Find the major axes and directions of the solid ellipse which contains 90% of the probability for bivariate normal distribution N₂(μ,Σ), where μ, Σ have been defined in Problem 4. (6%)
- 7. Find the major axes and directions of the solid ellipse which contains 90% of the probability for sample mean distribution of a sample of size 100. Assume that the probability density distribution of the bivariate population is unknown except that the population mean vector μ and covariance matrix Σ is the vector and matrix given in Problem 4. Assume also that 100 can be treated as a large sample size. (6%)
- 8. Set up a null hypothesis $H_0: \mu = \mu_0$ and an alternative hypothesis $H_1: \mu \neq \mu_0$, with $\mu_0 = \begin{bmatrix} -1 & 1 \end{bmatrix}$ for bivariate normal distribution $N_2(\mu, \Sigma)$. Show that the Hotelling's T^2 test rejects the null hypothesis at 90% significance level. Suppose that the sample size is 30, and the sample mean $\overline{\mathbf{x}} = \begin{bmatrix} -0.5 & -0.5 \end{bmatrix}$, the

sample covariance matrix $\mathbf{S} = \begin{bmatrix} 8 & 2 \\ 2 & 5 \end{bmatrix}$. (6%)

- 9. Find the major axes and directions of the Hotelling's 90% T^2 confidence region for Problem 8. (6%)
- 10. Determine the 90% simultaneous T^2 confidence intervals for Problem 8. (6%)
- 11. Determine the 90% Bonferroni simultaneous confidence intervals for Problem 8.(6%)
- 12. Which component of μ_0 is not a plausible value of the corresponding component of μ in Problem 8? (6%)
- 13. Determine the lower control limit (LCL) and the 90% upper control limit (LCL) of the T^2 control chart for future observation which is based on a sample of size n = 30 from a bivariate normal population. Assume that the sample mean is $\overline{\mathbf{x}}' = \begin{bmatrix} -1 & 1 \end{bmatrix}$ and the sample covariance matrix $\mathbf{S} = \begin{bmatrix} 8 & 2 \\ 2 & 5 \end{bmatrix}$ (6%)
- 14. Show that $\mathbf{x} = \begin{bmatrix} -0.5 & -0.5 \end{bmatrix}$ is under control for the T^2 control chart constructed in Problem 13. (6%)
- 15. Prove that the function $\eta^{b} e^{-\eta/2}$ has a maximum, with respect to η , of $(2b)^{b} e^{-b}$, occurring at $\eta = 2b$, b > 0. This result appeared in p. 171 of the Textbook. (6%)
- 16. Suppose that we want to measure the weight of a diamond ring. Why and when can we estimate the unknown exact weight by the sample mean of the data of measurements repeated under almost-identical conditions? (10%)