## Multivariate Statistical Analysis Final Exam <br> January 12, 2008 <br> 2 pages, 10 problems, 100 points

1. Let components of $\mathbf{X}$ denote the responses to 3 kinds of treatments in a repeated measure. Assume that $\mathbf{X}$ is with a multivariate normal population of mean $\boldsymbol{\mu}$. From a certain experiment of 30 independent observations, we found that the sample average and the sample covariance matrix are $\overline{\mathbf{x}}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]$ ' and $\mathbf{S}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 8 & 2 \\ 0 & 2 & 5\end{array}\right]$, respectively. Suppose that the contrast matrix is $\mathbf{C}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right]$, test the hypothesis $H_{0}: \mathbf{C} \boldsymbol{\mu}=0$ at $10 \%$ significance level. (10\%)
2. Two samples were taken from an experiment where two characteristics $\mathbf{X}_{1}$ and $\mathbf{X}_{2}$ were measured. Assume that samples 1 and 2 are taken from $N_{2}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)$ and $N_{2}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)$, respectively. The sample covariance matrices and sample sizes of the two samples are $\mathbf{S}_{1}=\left[\begin{array}{ll}6 & 1 \\ 1 & 4\end{array}\right], \quad n_{1}=16$ and $\mathbf{S}_{2}=\left[\begin{array}{cc}10 & 3 \\ 3 & 6\end{array}\right], \quad n_{2}=16$, respectively. Use Box's test to Test the hypothesis $H_{0}: \boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}$. versus $H_{1}: \boldsymbol{\Sigma}_{1} \neq \boldsymbol{\Sigma}_{2}$ at $10 \%$ significance level. (10\%)
3. Four subjects rate the performances of three voice synthesis systems, A, B, and C, in a 1 to 10 scale. The results are given as the following table

| Subject System | A | B | C |
| :--- | :--- | :--- | :--- |
| 1 | 5 | 3 | 2 |
| 2 | 5 | 6 | 3 |
| 3 | 4 | 5 | 5 |
| 4 | 6 | 6 | 6 |

Test the hypothesis that all three systems are with equal performance at $5 \%$ significance level. (10\%)
4. Consider the following independent samples. Population 1 : $\left[\begin{array}{l}6 \\ 2\end{array}\right],\left[\begin{array}{l}5 \\ 4\end{array}\right],\left[\begin{array}{l}7 \\ 3\end{array}\right]$; Population 2: $\left[\begin{array}{l}8 \\ 3\end{array}\right],\left[\begin{array}{l}7 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3\end{array}\right]$; Population 3: $\left[\begin{array}{l}4 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Assume that all three
samples are from multivariate normal distributions with identical population covariance matrices. Are the mean vectors of those three populations the same at $10 \%$ significance level? (10\%)
5. Calculate the least square estimates $\hat{\boldsymbol{\beta}}_{(1)}, \hat{\boldsymbol{\beta}}_{(2)}$ the residuals $\hat{\boldsymbol{\varepsilon}}_{(1)}, \hat{\boldsymbol{\varepsilon}}_{(2)}$ and the residual sum of squares for two straight line model $Y_{1}=\beta_{01}+\beta_{11} z$, $Y_{2}=\beta_{02}+\beta_{12} z$ fit to the data given in the table below. (10\%)

| $z$ | -2 | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| $y_{1}$ | 2 | 1 | 3 | 4 |
| $y_{2}$ | 8 | 6 | 5 | 2 |

6. Use the results of Problem 5 to construct a $90 \%$ confidence region for $E\left(\left[Y_{1}, Y_{2}\right] \mid z=-0.5\right)$ and a $90 \%$ prediction region for a new observation $\left[Y_{1}, Y_{2}\right]$ when $z=-0.5$. (10\%)
7. Establish the equation (7-50) in p. 404 of the text book. (See the hint for Exercise 7.5 in p. 420 of the textbook). (10\%)
8. Suppose 200 observations of random variables $X_{1}, X_{2}, X_{3}$.are with the sample covariance matrix $\mathbf{S}=\left[\begin{array}{ccc}12 & 6 & 0 \\ 6 & 7 & 0 \\ 0 & 0 & 5\end{array}\right]$. Find the first sample principal component $Y_{1}$, its proportion of total variance, and the $95 \%$ confidence interval for the first eigenvalue. (10\%)
9. Assume an $m=1$ orthogonal factor model. Estimate the loading matrix $\tilde{\mathbf{L}}$ and matrix of specific variance $\tilde{\boldsymbol{\Psi}}$ for the covariance matrix of Problem 8 using the principal component solution method. Compute also the residual matrix as well as the factor score at a sample $\mathbf{x}=\left[\begin{array}{ccc}2 & 3 & 1\end{array}\right]$ '. using the unweighted least square procedure with sample mean $\overline{\mathbf{x}}=\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{\prime} . \quad(10 \%)$
10. Which part of this course is the most useful/interesting to you? Why? Give your suggestions to improve this course. (10\%)
