Multivariate Statistical Analysis Mid Term
 November 10, 2008

 2 pages, 17 problems, 100 points

 2 pages, 17 problems, 100 points}

1. A study of a patent medicine, MagicPill, for basketball players has been conducted. This medicine is claimed to enable Taiwanese basketball players to jump higher. A sample of 16 collegiate players had taken MagicPill for 2 weeks, and can jump an average height of 56 cm , with a sample standard deviation 15 cm . Find the 95% confidence interval of the population mean for all collegiate basketball players in Taiwan if they take MagicPill. (6\%)
2. Explain the meaning of the 95% confidence interval obtained in Problem 1. (6\%)
3. Following Problem 1, assume that population data gathered by university coaches across Taiwan show a normal jump height would be 50 cm , with a standard deviation 15 cm . How large a sample will we need to have a 90% power of detecting the Problem 1 distance of jump heights, using $\alpha=0.05$ as a critical value. In this problem, we may assume that the jump height is with a normal distribution. (6\%)
4. Explain the geometrical meaning of sample correlation coefficient $r_{i k}=\frac{s_{i k}}{\sqrt{s_{i i}} \sqrt{s_{k k}}}$ for an $n \times p$ data array $\left.\mathbf{X}=\begin{array}{llll}\mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{p}\end{array}\right]$ (6\%)
5. Explain the geometrical meaning of the generalized sample variance $|\mathbf{S}|$ for an $n \times p$ data array $\mathbf{X}=\left[\begin{array}{llll}\mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{p}\end{array}\right] .(6 \%)$
6. Show that the ellipse equation $(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=c^{2}$ can be reduced to $\frac{y_{1}^{2}}{c^{2} \lambda_{1}}+\frac{y_{2}^{2}}{c^{2} \lambda_{2}}=1, \quad \mathbf{y}=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{\prime}=\left[\begin{array}{l}\mathbf{e}_{1}^{\prime} \\ \mathbf{e}_{2}^{\prime}\end{array}\right](\mathbf{x}-\boldsymbol{\mu})$, where $\mathbf{x}, \boldsymbol{\mu}$ are two-dimensional vectors, $\lambda_{1} . \lambda_{2}$ and $\mathbf{e}_{1}, \mathbf{e}_{2}$ are the eigenvalues and corresponding eigenvectors of the 2×2 matrix $\boldsymbol{\Sigma}$, respectively. (6\%)
7. Verify that $\lambda_{1}=16, \lambda_{2}=3$ and $\mathbf{e}_{1}^{\prime}=\frac{1}{\sqrt{13}}\left[\begin{array}{ll}3 & 2\end{array}\right], \mathbf{e}_{2}^{\prime}=\frac{1}{\sqrt{13}}\left[\begin{array}{ll}-2 & 3\end{array}\right]$ are the eigenvalues and corresponding eigenvectors of $\left[\begin{array}{cc}12 & 6 \\ 6 & 7\end{array}\right]$, respectively.
8. Set up a null hypothesis $H_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0}$ and an alternative hypothesis $H_{1}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{0}$, with $\boldsymbol{\mu}_{0}^{\prime}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$ for bivariate normal distribution $N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Show that the

Hotelling's T^{2} test can not reject the null hypothesis at level of significance $\alpha=0.10$. Suppose that the sample size is 30 , and the sample mean $\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ll}-0.5 & 0.5\end{array}\right]$, the sample covariance matrix $\mathbf{S}=\left[\begin{array}{cc}12 & 6 \\ 6 & 7\end{array}\right]$.
9. Find the semi-major and semi-minor axes and directions of the Hotelling's 90% T^{2} confidence region for Problem 8. (6\%)
10. Explain the meaning of the $90 \% T^{2}$ confidence region in Problem 9. (6\%)
11. Determine the 90% simultaneous T^{2} confidence intervals for Problem 8. (6\%)
12. Explain the meaning of the 90% simultaneous T^{2} confidence intervals in Problem 11. (6\%)
13. Determine the 90% Bonferroni simultaneous confidence intervals for Problem 8. (6\%)
14. Assume that $x_{1}, x_{2}, \cdots, x_{n}$ are independent samples drawn from a univariare normal population. For these samples, starting from the definition of likelihood, prove that the maximum likelihood estimates of the population mean $\hat{\mu}=\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}$, variance $\hat{\sigma}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}$, and the corresponding maximum likelihood $\max _{\mu, \sigma^{2}} L\left(\mu, \sigma^{2}\right)=\frac{1}{(2 \pi)^{n / 2} \hat{\sigma}^{n}} e^{-n / 2}$. Don't get the answer directly from the multivariate results given in the textbook. (6\%)
15. Consider a null hypothesis $H_{0}: \mu=\mu_{0}$ and its alternative hypothesis $H_{1}: \mu \neq \mu_{0}$. Let samples $x_{1}, x_{2}, \cdots, x_{n}$ be those in Problem 14. Starting from the definition of likelihood, prove that the maximum likelihood estimate of the population variance under H_{0} is $\hat{\sigma}_{0}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\mu_{0}\right)^{2}$ and the corresponding maximum likelihood under H_{0} is $\max _{\sigma^{2}} L\left(\sigma^{2}\right)=\frac{1}{(2 \pi)^{n / 2} \hat{\sigma}_{0}^{n}} e^{-n / 2}$. Don't get the answer directly from the multivariate results given in the textbook. (6\%)
16. Define the ratio of $\max _{\sigma^{2}} L\left(\sigma^{2}\right)$ in Problem 15 to $\max _{\mu, \sigma^{2}} L\left(\mu, \sigma^{2}\right)$ in Problem 14 as the likelihood ratio Λ. Using the results of Problems 14 and 15, prove that $\Lambda^{2 / n}=\left(1+\frac{t^{2}}{n-1}\right)^{-1}, \quad t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} ., \quad s^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2} . \quad$ Don't get the answer directly from the multivariate results given in the textbook. (6\%)
17. If the null hypothesis H_{0} in Problem 15 is to be rejected at significance level α. What value must be set as the critical value for the Λ in Problem 16? Don't get the answer directly from the multivariate results given in the textbook. (6\%)

