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ces for a foreign compact with age L6

r lists the following used-car pri
thousands of dollars:

VAR A morning newspape
and selling price X2 measured in

X1 measured in years
1 2 3 3 4 5
14.00 12.95 894 749 600 3.99

6 8 9 11

18.95 19.00 17.95 15.54

(a) Construct 2 scatter plot of the data and marginal dot diagrams. Table
(b) Infer the sign of the sample covariance §12 from the scatter plot.
(c) Compute the sample rpeans %, and X2 and the sample yariances: $11 and s,,. Com- wind
pute the sample covariance 12 and the sample correlation coefficient r12- Interpret
these quantities. : ' §
(d) Display the sample mean array %, the sample yarjance-covariance array S,, and the é
sample correlation array R using (1-8)- 10
1.3. The following are five measurements o1 the variables x1, X2, and X3! E
X 9 2 6 5 8 E
2
X3 3 4 0 2 1 {
4
Find the arrays %, Sus and R. 1'
1
1.4. The world’s 10 largest companies yield the following data: 1
|
The World’s 10 Largest Companies” |
x, = sales Xy = profits x5 = assets
Company (billions) (billions) (billions) |
Citigroup 10828 17.05 1,484.10 |
General Electric 152.36 16.59 750.33
American Intl Group 95.04 1091 766.42
Bank of America 65.45 14.14 1,110.46
HSBC Group 62.97 9.52 1,031.29
b ExxonMobil 263.99 25.33 195.26
i Royal Dutch/Shell 265.19 18.54 193.83
o BP 285.06 15.73 191.11
A ING Group 92.01 8.10 1,175.16
\‘ | Toyota Motor 165.68 11.13 211.15
“‘ Ifrom www.Forbes.com partially based on Forbes The Forbes Global 2000,
April 18,2005,
(a) Plot the scatter diagram and marginal dot diagrams for variables x; and X3 Com-
ment on the appearance of the diagrams.
(b) Compute %1, X0, 511> 5225 5125 and ry,. Interpret 12
1.5. Use the data in Exercise 1.4.
(a) Plot the scatter diagrams and dot diagrams for (%2, %3) and (x1, X3)- Comment O

the patterns.

(b) Compute the X, S,, and R arrays for (%1, X2, x3)-
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‘ 4
‘ = 7 variables:

1.7. You are given the following n = 3 observations on. p

Variable 1. x11 = 2 X1 = 3 X3y

Variable 2. X127 1 X920 & 2 X372 = 4

ations in the two-dimensional «yariable space.” That is, con-

ot of the data.

=4

5

(a) Plot the pairs of observ
| struct a two-dimensional scatter p -
B - ' (b) Plot the data as two points in the three-dimensional “jtem space.”

1.8. Evaluate the distance of the point P = (-1, 1) to the point Q = (1,0) using the Eu-
3 clidean distance formula in (1-12) with p = 2 and using the statistical distance in (1-20)
i with ayq = 1/3, 622 = 4/27, and a2 = 1/9. Sketch the locus of points that are a con-
g stant squared statistical distance 1 from the point Q.

owing eight pairs of measurements O

x | -6 3 2 1 2 5 6 8
x, | -2 -3 1 -1 2 1 53

5225 and §12-

1.9. Consider the foll n two variables X1 and X!

as a scatter diagram, and compute S11,
nding measurements oL variables %1 and ¥z, as-

(a) Plot the data
are rotated through an angle of 8 = 26°

(b) Using (1-18), calculate the correspo

suming that the original coordinate axes
[given cos (26°) = 899 and sin (26°) = A438].
(c) Using the %, and Ty measurements from (b), compute the sample variances T
and $2- :
of measurements (X1, x,) = (4, —2). Transform these to

e e (@) Consider the new pair
measurements on X and %, using (1-18),and calculate the distance d(0, P) of the
new point P = (%1, %) from the origin 0 = (0, 0) using (1-17)-
Note: You will need F,1 and o from (c).
(e) Calculate the distance from P = (4, —2) to the origin O = (0, 0) using (1-19) and
the expressions for a11, 322> and a, , in footnote 2.

Note: You will need s11, S22, and 512 from (a).
with the distance calculated using the %, and X,

Compare the distance calculated here
values in (d). (Within rounding error, the numbers should be the same.)

1.10. Are the following distance functions valid for distance from

(a) x7 + 4x3 + x1X7 = (distance)”
(b) x3 — 2x3 = (distance)2

the origin? Explain.

=1,and a2 = —1 satisfies the

ot 1.11. Verify that distance defined by (1-20) with @13 = 4, a5
difficult to verify.)

e first three conditions in (1-25). (The triangle inequality is more

Ly 1.12. Define the distance from the point P = (x4, Xp) to the origin 0 = (0, 0) as

g a(0, Py = max(|xil, | x2)
SR (2) Compute the distance from P = (—3,4) tothe origin.

g : . (b) Plot the locus of points whose squared distance from the origin is 1.

L ‘ (©) Generalize the foregoing distance expression to points in p dimensions.

(/ 1.13. A large city has major roads laid out in a grid patte
gram. Streets 1 through 5 run north-south (NS), an
(EW). Suppose there are retail stores 1qcated at intersections (4, 2), (E,3)

,and (G,

1m, as indicated in the following diz-
d streets A through E run east-west

¥

v 114,

1.15.

e
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iven the following 7 = 3 observations on p = 2'variables:

1.7. Youareg
Varable 1: x31 =2 X217 3 x31=4

Variable 2: x1, =1 X225 2 x3,=4

(a) Plot the pairs of observations in the two-dimensional “variable space.” That is, con-

struct a two-dimensional scatter plot of the data.

(b) Plot the data as two points in the three-dimensional “item space.”

1.8. Evaluate the distance of the point P = (1, —1) to the point @ = (1, 0) using the Eu-
clidean distance formula in (1-12) with p = 2 and using the statistical distance i (1-20)
with a1 = 1/3, @22 = 4/27, and a1z = 1/9. Sketch the locus of points that are a con-
stant squared statistical distance 1 from the point Q.

1.9. Consider the following eight pairs of measurements on two variables x; and x»:

x | -6 -3 2 1 2 5 6 8
x, | -2 -3 1 -1 2 1 5 3

(2) Plot the data as a scatter diagram, and compute $11, 522> and s12-

(b) Using (1-18), calculate the corresponding meast
suming that the original coordinate axes are 10
= .899 and sin (26°) = 438].

[given cos (26°)
(c) Using the %, and %, measurements from (b), compute the sample variances $11
and ?22. .
Transform these to

(@ Consider the new pair of measurements (X1, x) = (4, —2)-

~ measurements on %;-and Xp-usin: d calcul
new point P = (%1, %,) from the origin O = (0,0) using (1-17). —

Note: You will need §11 and ¥, from (¢).

(e) Calculate the distance from P = (4, —2) to the origin o
the expressions for aj1, @22, and a;, in footnote 2.

Note: You will need s11, 5225 and s , from ().
distance calculated using the %, and X,

Compare the distance calculated here with the
values in (d). (Within rounding error, the numbers should be the same.)

1.10. Are the following distance functions valid for distance from. the origin? Explain.

(a) x7 + 4% + x1%2 = (distance)”
(b) x§ — 2%7 = (distance)’
= 4, azy = 1, and aiy

I.11. Verify that distance defined by (1-20) with a11
first three conditions in (1-25). (The triangle inequality is more difficult to verify.)

1.12. Define the distance from the point P = (X1 x,) to the origin 0 = (0,0) as

d(0, P) = max(|x1 ], [%21)

= (—3,4) tothe origin.

quared distance from the origin is 1.

p diménsions.

(a) Compute the distance from P

(b) Plot the Jocus of points whose s
(c) Generalize the foregoing distance expression to points in

g/ 1.13. A large city has major roads laid
gram. Streets 1 through 5 run nort
(EW). Suppose there are retail stores located at intersections

out in a grid pattern, as 1

rements on variables %, and %», as-
tated through an angle of @ = 26°

g (1-18), and cals ulate the distance d(O, P) of the

= (0,0) using (1-19) and

il e it i

= -1 satisﬁes the

ndicated in the following dia-

h—south (NS), and streets A through E run east—west
(A,2), (E,3), and (C, 5).

Exercises 41

Assume the di

rectioneis 1eucﬁistt a]rjlceeﬁilo?f a street between two intersections in either the NS or EW di
to be the “city block” c?’ t e distance between any two intersections (points) onrth di-
and (C,2), which we1S a'n(if. [For example, the distance between intersections eDgrid
= d((D,1),(D,2)) + dlgl(llg) tz)caélcdz(g),_li,icl, 2)), is given by d((D,1) ((c =2)§
d((D,1), (C.1)) +d((C,1),(C,2)) =1+ 1 = 2—] 2. Also, d((D,1),(C,2))=

( ) i i
.

The followin, ] j
g exercises contain fairly extensi '
) ensiv
AR S 'y e data sets. A computer may be necessary for

‘ .

sclerosis data on the web at
www.prenhall.com/statisti - .
S1 and V.p om/statistics.) Tw i
j(ects 31 tgi)sggduced respouses in both the left eye (L) )an q tohglrfife}rlfnt visual stimuli
(total response gf%ggqp: Th? values recorded in the table include xéf (ssgje eét}?s) aof §Ub-
yes to stimulus S1, that i . ge); Xz
responses of eyes to stimulus S1, |S1L — § 11§t|)ls ’afl}iLsoEoftlhR)) % (difference between

S1 ]. S T 1 2
m]]lt]p e-sclerosis Uroup Comment on the appearance Of the d]agram
4

(b) Compute the X, S,, and
- 2 ’ R a -
sclerosis groups Se}’;arately. ~arrays for the non-multiple-sclerosis and multiple-

I.15. Some of the ibed ;
o radigtherzlg) }%Zizuéir?hents described in Section 1.2 are listed in Table 1.7 (See al
e e e web at www.prenhall.com/statistics.) The data cénsistefa v
rage raings over the ¢ )lclrs(emolfn tgeatrr%ent for patients undergoing radiotherapy:. OV:r‘iI-
PSR 1 er of symptoms, such as sore throat 2): %,
ity, on a 1-5 scale); x5 (amount of sleep, on a 1-5 scale)'?cz I(l:;'sslellr)l’t X%
; 0

food consumed, on a 1-3 ; i
I , scale); x5 (appetite, on a 1-5 scale); and x4 (skin reaction, on a

(El) C:H‘Stl uct the two 1M er I 2 3 g
1 . - R ! 2
al!

(b) Com X
) pute the X, S,,, and R arrays. Interpret the pairwise correlations

L16. Atthest
. art of a study to determi
bone o ot a ermine whether exercise or dietar
: ) ] suppleme:
photon absoratis Irn Zx;om;/}l, an investigator measured the mir?erai) Iéonte:rrll’;c So‘;V%Uld e oy
P pabsorptor sjd?; anzasure?ents were recorded for three bones on the d(?IIIllierSl b}’;
are shown in Table 1 i ats
e e lS.
Igo\:fb ?t vilww,prenhaﬂ_com/statistics) (See also the mineral-content data
ute the X .
p X, S,,, and R arrays. Interpret the pairwise correlations.
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Subject
pumber

Subject
~‘number ) X

Source

Source: Data courtesy of Dr. G. G. Celesia.

I17.

Table 1.7 Radiotherapy Data
| e Xs X6,

| T T »
‘1\ \“‘ xl : ) e Xy X4 ‘
\ Symptoms. Activity e “Sleep . - ‘Eat Appetite Skin reaction
1.555 2222 1.945 1.000

d x3 less than 1.0 are due to errors

Source: Data courtesy of Mrs. Annette Tealey, R.N. Values of x; an
less than 1.0 may be omitted-

in the data-collection process. Rows containing values of x, and x3




Matrix Algebra and Random Vectors

{04 Chapter 2

\/ 2.17. Prove

2.7. Let A be as given in Exercise 2.6.
(a) Determine the eigenvalues and eigenvectors of A. | Hint:
(b) Write the spectral decomposition of A. 3 e 501
(c) Find A7 \/ 2-18. Consi
(d) Find the eigenvalues and eigenvec;torsvobf A'l_i
v 2.8. Given the matrix for 2
A = [1 2] stant
2 - COomu
find the eigenvalues A and Az and the associated normalized eigenvectors e; and e;. 2.19. Let A
Determine the spectral decomposition (2-16) of A. (»
. ) the ei
Vv 2.9. Let Abeasin Exercise 2.3. (152_?1;
(a) Find AL ,
. . -1 2.20. Deter
(b) Compute the eigenvalues and eigenvectors of A7 mine
(c) Write the spectral décomposition of A7, and compar® it with that of A from 2.2
Exercise 2.8. : i 21. (See]
2.10. Consider the matrices
4 4001 4 4001
A [4.001 4.002] and B [4.001 4.002001}
: a) C
These matrices are ijdentical except for a small difference in the (2,2) position. Eb)) C
 Moreover, the columns of A (and B) are nearly linearly dependent. Show that .
Al=(-3 B~L. Consequently; small changes—perhaps caused by rounding—can give 3 °
substantially different inverses. 4 (©) C
2.11. Show that the determinant of the p X P diagonal matrix A = {a;} with a;j = 0,i#) & 2.22. (See]
is given by the product of the diagonal elements; thus, \A\ = aqy1492° " Gpp- |
Hint: By Definition 2A24, |A| = a1 A1l T 0 + --- + 0. Repeat for the submatrix
Aqg obtained by deleting the first ToW and first column of A.
2.12. Show that the determinant of a square symmetric p X p matrix A can be expressed as (a) C
) the product of its eigenvalues Ay, Az, - Ap; that s, |A| = T2 A : () ¢
b Hint: From (2-16) and (220), A = PAP' with P'P = 1. From Result 2A11(e), 4 e
b |A|=|PAP’ =\PHAP'\=\P\\A\\P'\=\A\\I\,smcem=\r'1)\=\P'\\P\. Appl | © ¢
‘ y Exercise 2.11. : 2.23. Verit
[ 2.13. Show that Q1= +or—1ifQisap X P orthogonal matrix. ] p X!
v ‘ Hint: 1QQ'| = |1]. Also, from Result 2A.11, 1QllQ'| = | Q |*. Thus, \Q\Z = |I|. Now 2 relat
b use Exercise 2.11. | [Equ
‘ ‘\ v/ 2.14. Show that Q A Q and A _have the same eigenvalues if Qis orthogonal. 2.24. Let!
D (p%p)(PxP)(PXP) (p%p)
L Hint: Let A be an eigenvalue of A.Then 0 = |A — A|. By Exercise 2.13 and Resul
L T 2A11(e), we canwrite 0 = [Q'[|A ~ M||Ql = |Q'AQ — AL, since Q'Q = L
is positive definite

e positive definite if the matrix A

Lo \/2.1 5. A quadratic form s'Axissaidtob
2 _ 2x,x, positive definite?

Lo Is the quadratic form 3x% + 3x3

/' 2.16. Consider an arbitrary n X P matrix A. Then A'Ailsa symmetric p X p matr
that A’A is necessarily nonnegative definite.
Hint: Sety = Axsothaty'y = x' A'AX.

ix. Sho
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2.7. Let A be as given in Exercise 2.6.
e eigenvalues an

(a) Determine th
(b) Write the spectral decomposition of A.

d eigenvectors of A.

(c) Find A
(d) Find the eigenvalues and eigenvectors of AT
_\} 2.8. Given the matrix
1 2

ted normalized eigenvectors €1 and €;.

find the eigenvalues A and Ap and the associa
Determine the spectral decomposition (2-16) of A.

V 2.9. Let Abeasin Exercise 2.8.
(a) Find A
(b) Compute the eigenvalues
(c) Write the spectral decomposition O
Exercise 2.3.

and eigenvectors of AL

¢ AL, and compare it with that of A from

2.10. Consider the matrices
4 4.001 4 4.001
A= [ ] and B = {4.001 4.002001]

4,001 4.002
orence in the (2 2) position.

for a small diff
B) are pearly linearly dependent. Show that

These matrices are identical except
anges—perhaps caused by rounding—can give

___Moreover, the columns of A (and
Al = (-3)B 7 Consequently;small-ch
substantially different inverses.

the determinant of the p X p diago

is given by the product of the diagonal elements; thus, \A\ = gq1022° " %pp

Hint: By Definition 2A24, |A| = a11A11 +Q+---+ 0. Repeat for the submatrix

A, obtained by deleting the first row and first column of A.

at the determinant of a square sy metricp X P matrix A can be

m
of its eigenvalues AoAzseo A

nal matrix A = {aij} witha;; = 0,1 7 i,

" 2.11. Show that

expressed as

2.12. Show th
o> that is,|A| = T2 A

_1 From Result 2A.11(e),

the product

Hint: From (2-16) and (220), A = PAP’ with P'P =
\A\=\PAP’\=\PHAP’\=\PHA\\P’\=\A\\I\,Smce\1\=\P’P\:\P’HP\- Apply
Exercise 2.11.

= +lor—1ifQisap X P orthogonal matrix.

2.13. Show that | Q|
Result 2411, 1Q11Q'| = QP

Hint: 1QQ'| = |X|. Also, from
use Bxercise 2.11.
2.14. Show that Q A Q and
(p%p)(PXP)(PXP) (p%p)
Hint: Let A be an eigenvalue of A.Then 0 = |A — AL|. By Exercise 2.
1},since Q'Q = I

2A.11(e), we can write 0 = |Q'||A — AMQl = |Q'AQ — A
\/Z.l 5. A quadratic form x' A x is said tobe positive definite if the matrix A is positive defi
2 4 3x3 — 2x1%, positive definite?

Is the quadratic form 3x7

/'2.16. Consider an arbitrary n X P matrix A. Then
that A’ A is necessarily nonnegative definite.

Hint: Sety = AXSs0 thaty'y = X A'AX.

A have the same eigenvalues if Qis orthogonal.

\4

_Thus, | Q[ = |1]. Now

13 and Result
nite. ‘

A’A is a symmetric p X p matrix. Show §

Exercises 105

\/

HZI’L . O de e d . - . p y y

\/
S f ( ? 2)

for ¢? = 1 and for ¢?
or ¢ = 4. Determi i
stant distances and thei termine the major and minor a
% -
comment on their he'zl'r associated lengths. Sketch the ellipses efs O elhpses of con-
positions. What will happen as 2 increals)e s of constant distances and
s7

2.]9- Le / - E \/_L i > - - i i

mxXm) =

h elgerlvalues aIld asso . p

2.20. Determine the
¢ 1 square-root matrix A2, usi P
; < . .
T N Ty Tl Xl"sll/%i %%e iniltrlx A in Exercise 2.3. Also, deter-

2.2]. (See Result 2A.15) Using the matrix

11
A=|2 =2
2 2

(a) Calcula ! in i
) te A’A and obtain its eigenvalues and eigenvectors

(b) Calculate AA’ :
g and obtain its eige
nvalu i :
eigenvalues are the same as thosce in paretsaand eigenvectors. Check that the nonzero

(c) Obtain the singular-value decomposition of A

2.22. (See Result 2A.15) Using the matrix

A=|:48 8
3 6 —9

(a) Calculate AA’
a s
nd obtain its eigenvalues and eigenvectors

(b) Calculate A’A
: and obtain its eige
nvalue i
eigenvalues are the same as thosge i partsaand eigenvectors. Check that the nonzero

. (c) Obtain the singular-value decomposition of A
.23, Verify t : . : »
px L‘é phc?p;iatlit:)%nzg;ps V2PV =% and p = (VI TE(VI2)T
ariance matrix [Equation (2-32)], @ is the p >z p, wherle > is the
’ population cor-

T1X =

2.2
4. Let X have covariance matrix

4 0 0

=109 0

Find 0 01
(a) 371

( ) Th 1 1) .
b € e gellvalues aIld eigenvectors Of 2
( ) i 1 i
C Ih-e elgCIlV alues and elgenVeCtOIS Of 2 .
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2.25. Let X have covariance matrix

25 —2 4
| s=|-2 41
4 19

‘“ (a) Determine (0 and vz,
(b) Multiply your imatrices to check the relation vi/2 le/ 2=13.
\/ 2.26. Use = as given in Exercise 2.25.
(a) Find p13-
(b) Find the correlation between X

'\Q 2.27. Derive expressions for the mean and
terms of the means and covariances of

() X1 — 2%z

(b) -X, +3X,

() X1+ X2 X3
(&) Xy + 2%, — X5

1 and%Xz + '12‘X3

variances of the following
the random variables X1,

linear combinations in
Xz, and X 3.

L r

(f) 3X1 — 4X,if X, and X, are independent random variables.

y/ 2.28. Show that
e C1po,Cz1X1 FepXpF ot c2pXp) = ¢13xC2

., Cip) and ¢, = [€21, €225+ > Capl- This verifies the off-diagonal

- —where ¢} = [€11, €125 -
elements C2xC' in (2-45) or diagonal"elementsrif ¢ = €.

o Hint: BY (2-43),Z1 ~ E(Z,) = (X1 — i) oo T c1p(Xp ~ Pp) and

‘ Z,— E(Z2) = (X — B) T + cpp(Xp — pp)- SO Cov(Zy,22) =
El(Z.1— E(Z)(Z2 — E(Z)] = El(c11(X1 — p)

s e p(Xp T Mp))(cm(Xl - py) t (X2 ~ po) T T cap(Xp — wp)) -

The product
i (c11(X1 — wy) + ca(X2 ~ pe) o
i + ¢ p(Xp ~ wp)) (cr1( Xy — pi) t (X2

e (G eutxe o) (3 )

£=1 m=

iofbsiiitins ettt il s

Cov (Clle + 012X2 +

- IJ'Z) + -t C2p(Xp - /J“p))

e p 2
- I = ez—l 21 C1€CZm(Xe - Hle) (Xm - lu’Tﬂ)

o has expected value
L p 2
I > > cucamTom = [C11,---,Clp]2[621,---7Czp] .
t=1 m=1
b
i ‘ Verify the last ste by the definition of matrix multi lication. The same steps hold for
. P P
elements.

2.29. Constde
ro=

where

Tet 3t
covarias
and an ¢
2.30. You ai
px = [

Partitio

Let

and cof
(a) EC
(b) E(
(©) Co
(d) Co
(e) E(
f) E
(®C
(h) C
@ ¢
G) C
31. Repe:
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., Xs) with mean vector

m vector X' = (Xq, X255+

iven. the rando
e—covariance matrix

v 2.32. You ar¢ g
pkx =12, 4,-1,3, 0] and yarianc

-1
3
1
-1
o -1 0 2

|

IS

|3}
tel
|
_- O\ NI
|
[BEY

|
O N DI

| Partition X as

Let
1 -1 11 1
A—{l 1] and B_[l 1 _2]

and consider the linear combinations AX® and BX®. Find

(a) E(X™)
) E(AX®)

(c) Cov (xM)

(d) Cov (AX™)

(e) E(X®)

(€) EBX®)

(g) Cov (x®)

(h) Cov (BX®)

(@) Cov (x®,x?)

G) Cov (Ax<1>,Bx(2>)

2.33. Repeat Exercise 2.32,but with X partitioned as

and with A and B replaced by
2 -1 0 1 2
a=2 7 {E .k 2

[-1,3, -2, 1].Verifythe Cauchy

534, Consider theveetorsb’ = [2: 7%, 4,0]andd’ =
inequality (b'd)” = (b’b)(d’d).

—Schwafi.

—

\/ 2.35. Using th
inequali

2.36. Find the
all point

2.37. With A
\/ 2.38. Find the

!

x' =[x

o/ 2.39. Show th

Hint: B

Vv 2.40. Verify (
Hint: X
by aun
E(X) -
by the

which i
\/ 24l You 3
Pﬂk:

Let

(a) F
(b) B
() W

é




2.33. Repeat Exercise 2.32, but with X p
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| ' with mean vector
en the random vector X' [Xl,.XZ,...,X5]
V 2 a[rg 4g1V1 3,0] and variance—covariance matrix
px = 1
4 -1 3 73
-1 3 1 -1
L -1
EX = 2 1 6 1
-1 -1 1 0
2
0 0 -1 2
Partition X as
X1
Rl B Sat
X=1%17|x®
X4
Xs

Let L -1 11 1 1]
Az[l' 1] and B=1, 7 2

i 1 (), Find
and consider:the linear combinations AX® and BX

(@) E(X")

(b) E(AX™)

(&) Cov(XM) S e
(d) Cov (AX™)

(e) EX®)

() E(BX®)

(g) Cov (X))

(h) Cov (BX(2 )

(@) Cov(X1,X®)

G) Cov(AX(l),BX(Z))

artitioned as

and with A and B replaced by 2
1
2 -19 and B = [ _ ]
A= [1 1 3] 1 -1
’ —2,1]. Verify the Cauchy—SchWafZ

=12, -1,4,0]andd’ = [-1,3,72
2.34. Consider the vectgrsb b[)z(d 3) ]
inequality (b’ )’ = (b’

‘Exercises 109

,3] arid d’ = [1, 1], verify the extended Cauchy—Schwarz
(d'B™d) if

e

\/ 2.36. Find the maximum and minimum values of the quadratic form 4x? + 4x% + 6x;x, for
all points X' = [xq, x,] such thatx'x = 1.

\/ 2.35. Using the vectors b’ = [~4,3
inequality (b’ d) = (b’'Bb)

2.37. With A as given in Exercise 2.6, find the maximum value of x’A x for x'x = 1.

Vv 2-38. Find the maximum and minimum values of the ratio x’ A x/x'x for any nonzero vectors
x' = [xl, X2, X3] if

13 -4 2
A=|-4 13 -2
2 -2 10

/' 2.39. Show that
N t
A B C has(i,j)thentry E > aibercy;
i=1i=1

(rXxs)(sXr)(tXv)

t
Hint: BC has (¢, j)thentry >, bercrj = de;. So A(BC) has (i, j)th element
k=1

N

t N t
apndi; + apdy; + o+ g dg; = Y, aw(E bekckj) = > > aubecy;
=1 s s |

£=1

i/ 2.40. Verify (2-24): E(X + Y) E(X) + E(Y) and E(AXB) = AE(X)B.
Hint: X + Y has X;; jasits (7, j)th element. Now, E(X;; + Y;;) = E(X;;) + E(Yy;)
by a univariate property of expectation, and this last quantlty is the (i, j)th element of

E(X) + E(Y). Next (see Exercise 2.39), AXB has (i, j)th entry E E a;e X epbyj, and
by the additive property of expectation,

E<§€: > aieXekbkj) = ; ; aieE (Xor) by
P
which is the (7, j)th element of AE(X)B.

\/ 2.4l. You are given the random vector X’ = [X1, X5, X5, X;] with mean vector
ukx = [3,2, —2, 0] and variance-covariance matrix

3000
0300
EX_0030
000 3
Let
1 -1 0 o0
A=|1 -2 0
1 1 -3

(a) Find E (AX), the mean of AX.
(b) Find Cov (AX), the variances and covariances of AX.
(c) Which pairs of linear combinations have zero covariances?




