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Projection on a plane is simplest when the two vectors U and w ldetei[rhmi?éréi Exercises
i ted to perpendicular vectors of unit length. =
t;{le Iﬁazn; 3a§e first comverte peip o \//5.1. (a) Evaluate T2, for testing Hy: u’ = [7, 11], using the data
l esu .. .
1
i i 2 12
Result 5A.3. Given the ellipsoid {z:z’A_lz = ¢’} and tlwo<pezrfecr)lsliﬁiafuulﬁt s o
e 'Alz = ¢ » U
l vectors u; and W, the projection (Or shadOW)’ of {7: ﬁUz—l (U'z) = %} wlllere ' X = 6 9
plane results in the two-dimensional ellipse {(U’z) (U'AU) Y 8 10
\ U= [u | wm)
. (b) Specify the distribution of T for the situation in (a).
i iecti i n the uy, U, plane 18
: Proof. By Result 2A.3, the projection of a vector z 0 L (c) Using (a) and (b), test Hy at the @ = .05 level. What conclusion do you reach?
ujz . 5.2. Using the data in Example 5.1, verify that T2 remains unchanged if each observation
(uflz)ul + (whz)uy = [wg bug] Wz =UU'z x;,j = 1,2,3, isreplaced by Cx;, where
J 2
? — ' 1 -1
‘ L s .2/ Alz < ¢} consists of all UU'z with C =
’ oiection of the ellipsoid {zz'A"z =¢ SISt / : 11
. i ! T,h:ﬂlzjri 2. Consider the two coordinates U’z of the projection U(U z). Le_t zZ b_e
+ fong to the set {z:7A7'z = ¢?} so that UU’z belongs to the shadow of the ellipsoid. Note that the observations
i - By Result 5A.2, )
g ‘ ' ' ' -1 ' - 2 ; . CX] = |:xj1 sz]
“1“ : | (UIZ) (U AU) (U Z) =c le + x]'2
N . | ‘

| o ' [ 2 i oefficient vectors for the yield the ‘data matnx
L so the ellipse {(U'z) (U'AU) (U z) < ¢} contains thec
. Lo ' the ellipsoid. . i
i | | Shadl(jz céa bea Vzctor in the u,, u, plane whose coefficients a belong to the ellipse

: , coef
i ‘ {a’(U’AU)—la = ). Ifwesetz = AU(U'AU) ~a, it follows that

(6-9) (10-6) (8—3)]
(6+9) (10+6) (8+3)

| 4 -~ V/ 5.3. (a) Use expression (5-15) to evaluate T2 for the data in Exercise 5.1.
N U'z=UAUUAU) a=a (b) Use the data in Exercise 5.1 to evaluate A in (5-13). Also, evaluate Wilks’ lambda.
| ‘ ‘ q 4 5.4. Use the sweat data in Table 5.1. (See Example 5.2.)

_ an :

S - . — -~ (a) Determine the axes.of the. 90%.confidence ellipsoid for p. Determine the lengths of
1 Az = 2 (U'AU) U’ AAAU(U'AU) 2 = @/ (U'AU) "a = ¢ these axes. -

- z ‘ (b) Construct O—Q plots for the observations on sweat rate, sodium content, and
| | ) - soid J potassium content, respectively. Construct the three possible scatter plots for pairs
‘\‘ ; Thus, U’z belongs to the coefficient vector e.lhpse, and zf];t.)e.l Ontgi;;gfilse filciﬁsthe of observations. Does the multivariate normal assumption seem justified in this
=i 7' A-lz = 2. Consequently, the ellipse contains only coetlicien ‘

- ; case? Comment. _
L ASL 2 ane. .- _ . . .
B projection of {zz’A"z=c¢ } onto the vy, Wy pl \/ 5.5. The quantities X, S, and 7! are given in Example 5.3 for the transformed microwave-

o radiation data. Conduct a test of the null hypothesis Hy: ' = [.55,.60] at the & = .05 ‘
| s o AL 2 first to the uy, up plane and then to , level of significance. Is your result consisteg‘? with the 905°/ff confgdence e]llipée for p pic-
[ Remark. Projecting the ellipsoid z' A Z = ¢ first 0 q lt, inined by ;. In the ,
| ‘\ the line u, is the same as projecting it directly to the line deter :

tured in Figure 5.1? Explain.
; ; i jve
3 ‘ context of confidence ellipsoids, the shadows of the two-dimensional ellipses &1
!1 . : the single component intervals.

5.6. Verify the Bonferroni inequality in (5-28) for m = 3.
Hint: A Venn diagram for the three events C;, C,, and C3 may help.

. ¢ 1/5.7. Use the sweat data in Table 5.1 (See Example 5.2.) Find simultaneous 95% 72 confi-
| Remark. Results SA2 and 5 A3 remain valid if U= [my, ..+ u,] consists 0O dence intervals for uq, 1y, and w3 using Result 5.3. Construct the 95% Bonferroni inter-
| .
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(5-23), we know that T2 is equal to the 1a;gest squfj{efl univariaIt-;eSiﬁvaiEz
> FIOH'E ucted from the linear combination a'X; with a = ST(X — ,flo).t Sfogrmed
conslr in Example 5.3 and the H, in Exercise 5.5, evaluate a for.t e tran ormes
reisélr;iﬁzve radiation data. Verify that the {2-value computed with this a 1s equa
m .
in Exercise 5.5. ) .
rali Fish and Game department, st
berts, a naturalist for the Alaska ' i
> I;a;g ;i{t% the goal of maintaining 2 healthy population. Measuren‘lents onn = 61 bears
p:ovided the following summary statistics (see also Exercise 8.23):

Girth ~ Head  Head

i Weight Body Neck '
variable (kg) length (cm) (cm) length width
(cm) (cm) (cm)
i?;lﬁlg 95.52 164.38 55.69 93.39 17.98 31.13
Covariance matrix

[3266.46 1343.97 73154 117550 162.68 238.37‘\
1343.97 72191 32425 53735 80.17 117.73
73154 32425 17928 28117 3915 5680
$=1117550 53735 28117 47498 6373 94.85
16268 8017 3915 6373 995 13.88
| 23837 11773 5680 9485 13.88 21.26 |

(a) Obtain the large sample 95% simultaneous confidence intervals for the six popula-
a
tion mean body measurements. . . '
(b) Obtain the large sample 95% simultaneous confidence ellipse for mean weight and
‘mean girth. ' .
(c) Obtain the 95% Bonferroni confidence intervals for the six means in Parﬁ a.
fer to Part b Construct the 95% Bonferroni confidence rectapgle for the (Iinean
@ I\;Zislrﬁ and inealn girth using m = GTCo‘rﬁﬁair'e—this—rectang}e—wrt—h—t»h@-c@nfl ence
elliSse in Part b. .
(e) Obtain the 95% Bonferroni confidence interval for

mean head width — mean head length

usingm =6+ 1= 7 to allow for this statement as well as statements about each

individual mean. | o
5.10. Refer to the bear growth data in Example 1.10 (see Table 1.4). Restrict your attentio
o the measurements of length. ’ . s
(a) Obtain the 95% T?2 simultaneous confidence intervals for the four population mean
for length. ‘ ' )
(b) Refer fo Part a. Obtain the 95% T2 simultaneous confidence intervals for the thre
i i i length.
successive yearly increases in mean ' . o3
(c) Obtain the 95% T2 confidence ellipse for the mean mncrease 1 length from 2
¢ years and the mean increase in length from 4 to 5 years.
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(d) Refer to Parts a and b. Construct the 95% Bonferroni confidence intervals for the
set consisting of four mean lengths and three successive yearly increases in mean

- length.
(e) Refer to Parts c and d. Compare the 95% Bonferroni confidence rectangle for the

mean increase in length from 2 to 3 years and the mean increase in length from 4 to
5 years with the confidence ellipse produced by the T?-procedure.

5.11. A physical anthropologist performed a mineral analysis of nine ancient Peruvian hairs.

The results for the chromium (x,) and strontium (x,) levels, in parts per million (ppm),
were as follows:

x(Cr)| 48 4053 219 55 74 66 93 37 22
xy(St) | 1257 73.68 1113 2003 2029 78 464 43 108

Source: Benfer and others, “Mineral Analysis of Ancient Peruvian Hair,” American
Journal of Physical Anthropology,48,no. 3 (1978),277-282.

It is known that low levels (less than or equal to .100 ppm) of chromium suggest the
presence of diabetes, while strontium is an indication of animal protein intake.

(a) Construct and plot a 90% joint confidence ellipse for the population mean vector
p' = [y, uy), assuming that these nine Peruvian hairs represent a random sample
from individuals belonging to a particular ancient Peruvian culture.

(b)_Obtain the individual simultaneous 90% confidence intervals for u, and u, by “pro-....
jecting” the ellipse constructed in Part a on each coordinate axis. (Alternatively, we
could use Result 5.3.) Does it appear as if this Peruvian culture has a mean strontium

level of 10? That is, are any of the points (u, arbitrary, 10) in the confidence regions?
Is [.30,10]" a plausible value for p? Discuss.

(c) Do these data appear to be bivariate normal? Discuss their status with reference to
0O-Q plots and a scatter diagram. If the data are not bivariate normal, what implica-
tions does this have for the results in Parts a and b?

(d) Repeat the analysis with the obvious “outlying” observation removed. Do the infer-
ences change? Comment.

\/5.12. éiven the data

R _— o

3 6 0
4 4 3
X=_ 8 3
5 —

with missing components, use the prediction—estimation algorithm of Section 5.7 to

estimate g and 2. Determine the initial estimates, and iterate to find the first revised
estimates.

5.13. Determine the approximate distribution of —nIn(| 2 |/| 3, ) for the sweat data in
Table 5.1. (See Result 5.2.)

5.14. Create a table similar to Table 5.4 using the entries (length of one-at-a-time ¢-interval)/

(length of Bonferroni z-interval).
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264 Chapter 5 Inferences about a Mean Vector

Exercises 5.15,5.16,and 5.1 7 refer to the following information:

Frequently, some OT all of the population characteristics of interest are in the form of
attributes. Bach individual in the population may then be described In terms of the
attributes it possesses. For convenience, attributes areé usually numerically coded with re-
spect to their presence or absence. If we let the variable X pertaintoa specific attribute,
then we can distinguish between the presence Or absence of this attribute by defining

X = {1 if attribute present
0 if attribute absent

In this way, we can assign numerical values to qualitative characteristics.

When attributes are numerically coded as 0-1 variables, a random sample from the
population of interest results in statistics that consist of the counts of the number of
sample items that have each distinct set of characteristics. If the sample counts are
large, methods for producing simultaneous confidence statements can be easily adapted
to situations involving proportions.

We consider the situation where an individual with a particular combination of
attributes can be classified into one of ¢ + 1 mutually exclusive and exhaustive
categories. The corresponding probabilities are denoted by p1, P2,--+» Pg> Pg+1- Since
the categories include all possibilities, we take pg+1 = 1-(pptpt T Pg)- An
individual from category k will be assigned the ((g + 1) X 1) vector value {0,...,0,

1,0,...,0]'with 1 in the kth position.

The probability distribution for an observation from the population of individuals in
g + 1 mutually exclusive and-exhaustive categories is known as the multinomial distrib-
ution. It has the following structure:
Category 1 2 k q g+1
1 0 0 0 0
0 1 : 0 0
0 0 0 0 0
Outcome (value) : 1 : :
0 0 :
LO 0 0 0 1 T
Probability g &
(proportion) b1 py - P 0 Pg PeriT 1- 21 bi
i=
Let X;,j=1,2,....7 be a random sample of size 7 from the multinomial "
distribution.
\/ 5.15.

The kth component, X, of X;is 1if the observation (individual) is from category k
and is O otherwise. The random sample Xj,Xo, .- ,X,, can be converted to a samp e
proportion Vvector, which, given the nature of the preceding observations, is 2 sample
mean vector. Thus,

P J41
p=| $x, wih E@)=p=| 7
i=1

P =
f’q+1 Pg+1
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| and
| ; llowing information:
! Exercises 5.15, 5.16, and 5.17 refer to the following
| Frequently, some or all of the population characteristics of interest are in the for;nt}(l)i o o1y Olgel
1 - attributes. iEach individual in the population may then be descn‘t?ed in tzmgs ch e . . e i o i
‘ ; i venience, attributes are usually numerically coded wif Cov($) = ~Cov(X,) = =% == 21 22 2,041
| ' attributes it possesses FOF S0 If ’ let the variable X pertain to a specific attribute P n i " n : : . :
‘ i we let the : »
| spect to their presence oOr absence. - ] : .
i\‘ tﬁen we can distinguish between the presence OT absence of this attribute by defining CLgrt Tagel - Tgeig
i \1\ “ 1 if attribute present ' . o N . N
| = . . For large n, the approximate sampling distribution of p is rovided by the central limit
‘ 0 if attribute absent pp pling pisp y
\ . : theorem. We have
i i i itative characteristics.
‘ ] i assien numerical values to qualitative , A . '
In this Weag]’::tii(l;?tes - f‘e numerically coded as 0-1 variables, a random sample from the% Vn (p — p) isapproximately N(0,%)
‘ opulation of interest results in statistics that consist Qf. .the counts of the number o
A : P le items that have each distinct set of characteristics. If the sample pounts are where the elements of 3 are o = pr(1 — px) and o, = —p;px- The normal approx-
¥ ngf methods for producing simultaneous confidence statements can be easily adapted imation remains valid when o is estimated by 6 = pr(1 — pr) and oy is estimated
- A . S _ana .
i ! to sitilations involving proportions. by Gix = —Dibr, i * k.

3 | We consider the situation where an individual with a particular combination of

. Since each individual must belong to exactly one category, X,i1;=
‘ ‘ ad i exclusive and exhaustive S > Agtlj T
!( g attributes can be classified into one of g + 1 mutually

1§ i . = The corresponding probabilities are denoted by p1, P2,---» Pgs» Pg+1- Since 1— (Xp;+ X5 + ...'+ X;i)s S0 P41 = 1— (P1+ Py + -+ Py), and as a result, %
%i L categories. LhE P D'b'l' . o take I e £ g)- An has rank ¢. The usual inverse of % does not exist, but it is still possible to develop simul-
ﬁr i the categories include all poss: 1b1t1es, W od thg q&; + 1) x 1) vector value [0, 0, taneous 100(1 — &)% confidence intervals for all linear combinations a’p.
{‘ ‘ N individual from category k will ' § assign
‘J\\t . ‘ \ L0, 0]ng%gﬁgfﬁ&gﬁgﬁgﬁ observation from the population of individu.als’in Rgsu}t. Let X.l’ X,,...,X, be a random sample from a g + 1 category multin_omial
&+ \ ' - Theproba 11_y1 ive and exhaustive categories is known as the multinomial distrib- 41str1but10n with P[Xjr = 1] =pr, k =1,2,...,9 + 1,j=1,2,...,n. Approximate
‘i | I cg 1Im§m2‘l£y ?Xﬁ u\ifling structure: simultaneous 100(1 — )% confidence regions for all linear combinations a'p
R ution. It has the follo : L

= qg1p; + azp, + -+ T ag+1Pg+1 ATE given by the Qbserved values of

; T | Cétegory 1 2 k q q '(; 1 3
s A . 0 n a'Xa
TN 17 o 0 X | ap = Vi)
i | 0 1 : 0 n
Sy 0| |0 0 0 0 . .
\ j ‘ Outcome (value) : 1 : : provided that n — g is large. Here p = (1/1) 121 X;,and 2 = {0y }isa(g+1) X (g +1)
" : 0 ? n , matrix with &5z = pr(1 — pi) and Gy = —PiPr, © # k. Also, x5(a) is the upper
: : : + J L J ¥ ) “(100&)th percentile of the chi-square distribution with gdf ' |
0 0 0 0 1
i \ i Probability -1 - i D; In this result, the requirement that n — g is large is interpreted to mean 7 D is
! o (proportion) pn P2 0 Pk 7 Pg Perl “ about 20 or more for each category.
o We have only touched on the possibilities for the analysis of categorical data. Com-
Lo . - - ¢ p y g
“ \ R Tet X:,j=1,2 n. be a random sample of size n from the multinomial v‘ \/ plete discussions of categorical data analysis are available in [1] and [4].
| . ' B j’ = s Lyt :
distribution. . . 5.15. Let X:; and X, be the ith and kth components, respectively, of X ;.
1 h onent, X, of X; is 1 if the observation (individual) is from category k ] " ! I :
bl dThg kihcfﬁfe ’Ihe,ra1]1]<(i,om szimple X, X, X, can be converted to a samp}e (a) Show that w; = E(X;;) = p;and oy; = Var(Xj;) = pi(1 — pi), i = 1,2,....p.
o othe . N . : ; i . .
| ‘\ . ;?oplcs)rtion vector, which, given the nature of the preceding observations, 18 a sampie : (b) Sh(?w that o = ?COV(X ii»Xjk) = —DiPx, I # k. Why must this covariance neces-
‘\ S mean vector. Thus, ' sarily be negative:
" N 2 5.16. As part of a larger marketing research project, a consultant for the Bank of Shorewood
L ‘ ‘ E 1 " P ! wants to know the proportion of savers that uses the bank’s facilities as their primary ve-
: p=1- P2 - 1 X; with E(p)=p= : hicle for saving. The consultant would also like to know the proportions of savers who
o : n =1 ' use the three major competitors: Bank B, Bank C, and Bank D. Each individual contact- -
j \‘ Dg+1 Dg-+1 ed in a survey responded to the following question:
Pl
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Which bank is your primary savings bank?

No
Savings

Another
Bank

Bank of

Shorewood Bank D

Response: Bank B | Bank C

A sample of n = 355 people with savings accounts produced the following counts
when asked to indicate their primary savings banks (the people with no savings will be
ignored in the comparison of savers, so there are five categories):

Bank (category) | Bank of Shorewood Bank B Bank C Bank D - Another bank

Observed ' Total
number 105 : 119 . 56 25. 50
n = 355
Population 2 2 ps ps  ps=1-
proportion (p1+ P2t P3t p4)

Observed sample
roportion N 0 A 2 5 5
Prop Plz—;—S%=-30 Py=33 py=.16 py=.07 ps=.14

Let the population‘proportions be

p1 = proportion of savers at Bank of Shorewood
p» = proportion of savers at Bank B
ps = proportion of savers at Bank C

ps4 = proportion of savers at Bank D

~(a) Construct simultaneous 95% confidence intervals for p1, p2,--- P5-
(b) Construct a simultaneous 95% confidence interval that allows a comparison of the
Bank of Shorewood with its major competitor, Bank B. Interpret this interval.

4 5.17. In order to assess the prevalence of a drug problem among high school students in 2
particular city, a random sample of 200 students from the city’s five high schools
were surveyed. One of the survey questions and the corresponding responses are
as follows:

What is your typical weekly marijuana usage?

r Category

None Moderate Heavy
(1-3 joints) | (4 ormore joints)

Number of
responses 117 62 21

Tabl

IIlOd
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Which bank is your primary savings bank?

No
Savings

Another
Bank

Bank of
Shorewood

Bank B | Bank C | Bank D

Response:

\ A sample of n = 355 people with savings accounts produced.the follovying cqﬁxﬁz
] when asked to indicate their primary savings banlf;s (the people .w1th 1o savings wi
\ \ ignored in the comparison of savers, s there are five categories):

' - Another bank
“ Bank (category) \ Bank of Shorewood Bank B Bank C Bank D n

‘ Total
| f O bt \ 105 1o 36 2 ¥ ln=sss
‘: ‘\‘ . 3 ps = 1-
| | Popugggi)t?on \ " " ’ " (pr+ P2t P Pa)
. i pr
\ | j Observed sample .
; ‘ proportion Py=33 py=16 pp=07 ps= 14

‘[‘ : | “‘ Let the population proportions be

p; = proportion of savers at Bank of Shorewood

|

‘i “ D2 = proportion of savers at Bank B
\ p3 = proportion of savers at Bank C
!

p, = proportion of savers at Bank D

1—(p+p+ps+ ps) = proportion of savers at other banks

-(a) Construct simultaneous 95% confidence intervals for py, p2,---» P5-

. . .
(b) Construct a simultaneous 95% confidence interval that allows a co'm‘pa;]flso;1 of th
Lo ‘ Bank of Shorewood with its major competitor, Bank B. Interpret this interval.

il A

| i tsina

‘\““ 4 5.17. In order to assess the prevalence of a drug problem among hlgh :scl?)ol iltiljrctl;egclsn éols
| o articular city, a random sample of 200 students from the city’s 1ive g oo
B \Pjvere surveyeci. One of the survey questions and the corresponding respons

as follows:

What is your typical weekly marjjuana usage?

| ! | r Category
| None Moderate Heavy
3 (1-3 joints) | (4 ormore joints)
“‘ ‘ |
iy Number of
i | responses 117 62 21
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Construct 95% simultaneous confidence intervals for the three proportions p;, p,, and \
ps=1-=(p1 + p2)-

The following exercises may require a computer.

5.18. Use the college test data in Table 5.2. (See Example 5.5.)

_(a) Test the null hypothesis Hy: u’ = [500, 50, 30] versus Hy: u" # [500, 50, 30] at the
a = .05 level of significance. Suppose [500,50,30]" represent average scores for
~ thousands of college students over the last 10 years. Is there reason to believe that the

group of students represented by the scores in Table 5.2 is scoring differently?
Explain.

(b) Determine the lengths and directions for the axes of the 95% confidence ellipsoid for .

(c) Construct Q-0 plots from the marginal distributions of social science and history,
verbal, and science scores. Also, construct the three possible scatter diagrams from

the pairs of observations on different variables. Do these data appear to be normally
distributed? Discuss.

5.19. Measurements of x; = stiffness and x, = bending strength for a sample of » = 30 pieces

of a particular grade of lumber are given in Table 5.11. The units are pounds/(inches)?.
Using the data in the table,

Table 5.11 Lumber Data
i X L | - Xr
(Stiffness: | (Stiffness: e

modulus of elas - modulus of elasticity)  (Bending strength) |

1232 1712 7749

1115 1932 6818

2205 1820 9307

1897 1900 6457

1932 2426 10,102

1612 1558 7414

1598 1470 7556

T804 T 1858 T 7833

1752 1587 8309

2067 2208 9559

2365 1487 6255

1646 2206 10,723

1579 2332 5430

1880 2540 12,090

1773 2322 10,072
Source: Data courtesy of U.S. Forest Products Laboratory.

p1 = E(X;) and py = E(X3).

(b) Suppose 1o = 2000 and w, = 10,000 represent “typical” values for stiffness and
bending strength, respectively. Given the result in (a), are the data in Table 5.11 con-
-sistent with these values? Explain. :

(a) Construct and sketch a 95% confidence ellipse for the pair [ug,u,]’, Where
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l 5.25. Refer to Exercise 524. Using the data on the holdover and COA overtime hours, con- ri
‘ struct a quality ellipse and a T2-chart. Does the process represented by the bivariate M
b observations appear to be in control? (That is, is it stable?) Comment. Do you learn Index
‘ \ something from the multivariate control charts that was Dot apparent in the individual
'\ X -charts? % -
\ l 5.26. Construct a T2-chart using the data on X1 = legal appearances overtime hours, 3 -
. Xy = extraordinary event overtime hours, and x3 = holdover overtime hours from 4 -
\ \ g Table 5.8. Compare this chart with the chart in Figure 5.8 of Example 5.10. Does plotting 5 -
\ | \ T2 with an additional characteristic change your conclusion about process stability? 6 -
. 7 ]
\ Explain. g
5.27. Using the data on X3 = holdover hours and x4 = COA hours from Table 5.8, construct 9
a prediction ellipse for a future observation ' = (x3,%4)- Remember, a prediction 10
ellipse should be calculated from a stable process. Interpret the result. %
V 5.28 As part of a study of its sheet metal assembly process,a major automobile manufacturer | 13
uses sensors that record the deviation from the nominal thickness (millimeters) at six lo- 14
cations on a car. The first four are measured when the car body is complete and the last '}2
] two are measured on the underbody at an earlier stage of assembly. Data on 50 cars are 17
b given in Table 5.14. 18
i (a) The process seems stable for the first 30 cases. Use these cases to estimate S and x. 19
o Then construct a T2 chart using all of the variables. Include all 50 cases. i 20
\‘ ( (b) Which individual locations seem to show a cause for concern? %
| :
\ | \f/ 5.29 Refer to the car body data in Exercise 5.28. These are all measured as deviations from i 23
\‘ _ | target value so it is appropriate to test the null hypothesis that the mean vector is zero. | 24
| Using the first 30 cases, test Hpp=0ata= 05 ¢ 25
Pk £ 26
| \ 5.30 Refer to the data on energy consumption in Exercise 3.18. B %ZS
L ‘ (a) Obtain the large sample 95% Bonferroni confidence intervals for the mean con- 29
Koo \ sumption of each of the four types, the total of the four, and the difference, petrole- 30
“ b \ um minus natural gas. 31
i » L v (b) Obtain the large sample 95 % simultaneous 72 intervals for the mean consumption 32
. . of-each—ef—t—h&ﬁouriyp.@&.th@..EQ‘L_aln of the four, and the difference, petroleum minus i %Z}t
i b natural gas. Compare with your results for Part a. S o
”\ “‘ 5.3] Refer to the data on snow storms in Exercise 3.20. ! gg
‘\\‘ (a) Find a 95% confidence region for the mean vector after taking an appropriate trans” ' 33
. formation. 39
(b) On the same scale, find the 95% Bonferroni confidence intervals for the two compo- i?

nent means.




