Multivariate Statistical Analysis Final Exam January 14, 2010 2 pages, 10 problems, 100 points

1. Bars of soap are manufactured in each of two ways. The characteristics X_1 = lather and X_2 = mildness are measured. The summary statistics for 61 and 62 bars produced by methods 1 and 2, respectively, are $\bar{\mathbf{x}}_1 = \begin{bmatrix} 8 & 4 \end{bmatrix}$, $\bar{\mathbf{x}}_2 = \begin{bmatrix} 10 & 3 \end{bmatrix}$,

 $\mathbf{S}_1 = \begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix}$, $\mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Test the hypothesis that the population means $\boldsymbol{\mu}_1 =$

 μ_2 at 10% significance level, using the spooled covariance matrix to estimate the population covariance matrix Σ and assuming that both populations are with multivariate normal distribution. (10%)

- 2. Use Box's test to Test the hypothesis $H_0: \Sigma_1 = \Sigma_2$ versus $H_1: \Sigma_1 \neq \Sigma_2$ at 10% significance level for Problem 1. (10%)
- Four subjects rate the performances of three types of cell phones, A, B, and C, in a 1 to 10 scale. The results are given as the following table

Subject\System	А	В	С
1	7	6	5
2	5	4	5
3	6	4	5
4	4	5	6

Test the hypothesis that all three systems are with equal performance at 5% significance level, using ANOVA for repeated measures. (10%)

- 4. Consider the following independent samples. Population 1: $\begin{bmatrix} 5\\3 \end{bmatrix}, \begin{bmatrix} 6\\4 \end{bmatrix}, \begin{bmatrix} 4\\2 \end{bmatrix}$; Population 2: $\begin{bmatrix} 7\\3 \end{bmatrix}, \begin{bmatrix} 8\\3 \end{bmatrix}, \begin{bmatrix} 6\\3 \end{bmatrix};$ Population 3: $\begin{bmatrix} 7\\3 \end{bmatrix}, \begin{bmatrix} 6\\2 \end{bmatrix}, \begin{bmatrix} 5\\4 \end{bmatrix}$. Assume that all three samples are from multivariate normal distributions with identical population covariance matrices. Are the mean vectors of those three populations the same at 10% significance level? (10%)
- 5. Calculate the least square estimates $\hat{\beta}_{(1)}$, $\hat{\beta}_{(2)}$ the residuals $\hat{\epsilon}_{(1)}$, $\hat{\epsilon}_{(2)}$ and the residual sum of squares for two straight line model $Y_1 = \beta_{01} + \beta_{11}z$, $Y_2 = \beta_{02} + \beta_{12}z$ fit to the data given in the table below. (10%)

Z	-2	-1	0	1
<i>y</i> 1	4	2	3	1
<i>y</i> ₂	3	5	7	8

- 6. Use the results of Problem 5 to construct a 90% confidence region for $E([Y_1, Y_2] | z = 0.5)$ and a 90% prediction region for a new observation $[Y_1, Y_2]$ when z = 0.5. (10%)
- 7. Suppose all the variables Y, Z_1, Z_2, \dots, Z_r are random and have a joint distribution, not necessarily normal, with a $(r+1) \times 1$ mean vector $\boldsymbol{\mu}$ and a $(r+1) \times (r+1)$ covariance matrix $\boldsymbol{\Sigma}$. Partition $\boldsymbol{\mu}' = \begin{bmatrix} \mu_Y & | & \boldsymbol{\mu}_Z \end{bmatrix}$ and $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{YY} & | & \sigma_{ZY} \\ -- & + & -- \\ \sigma_{ZY} & | & \boldsymbol{\Sigma}_{ZZ} \end{bmatrix}$ with $\boldsymbol{\sigma}_{ZY} = \begin{bmatrix} \sigma_{YZ_1} & \sigma_{YZ_2} & \cdots & \sigma_{YZ_r} \end{bmatrix}$. Consider the problem

of predicting Y using the linear predictor $b_0 + b_1 Z_1 + \dots + b_r Z = b_0 + \mathbf{b'Z}$. Find b_0 and **b** to minimize the mean square error $E(Y - b_0 - \mathbf{b'Z})^2$. (10%)

8. Suppose 200 observations of random variables X_1, X_2, X_3 are with the sample

covariance matrix $\mathbf{S} = \begin{bmatrix} 13 & 0 & 5 \\ 0 & 7 & 0 \\ 5 & 0 & 13 \end{bmatrix}$. Find the first sample principal

component Y_1 , its proportion of total variance, and the 95% confidence interval for the first eigenvalue. (10%)

- 9. Assume an m = 1 orthogonal factor model. Estimate the loading matrix \tilde{L} and matrix of specific variance $\tilde{\Psi}$ for the covariance matrix of Problem 8 using the principal component solution method. Compute also the residual matrix.. (10%)
- 10. Which part of this course is the most useful/interesting to you? Why? Give your suggestions to improve this course. (10%)