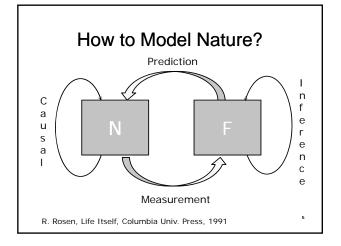
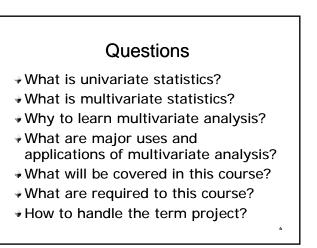
Multivariate Statistical Analysis

Shyh-Kang Jeng

Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking and Multimedia

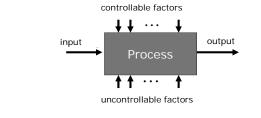
Outline

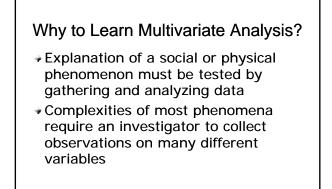

- Introduction
- Organization of Data
- Data Displays and Pictorial Representations
- Distances
- Reading Assignments


Outline

- Introduction
- Organization of Data
- Data Displays and Pictorial Representations
- Distances
- Reading Assignments

Questions


- What is a model?
- +How to model Nature?
- What is statistics?



What Is Multivariate Analysis?

 Statistical methodology to analyze data with measurements on many variables

Major Uses of Multivariate Analysis

- Data reduction or structural simplification
- Sorting and grouping
- Investigation of the dependence among variables
- Prediction
- Hypothesis construction and testing

Application Examples

- + Is one product better than the other?
- Which factor is the most important to determine the performance of a system?
- How to classify the results into clusters?
- What are the relationships between variables?

Course Outline

Introduction

- Matrix Algebra and Random Vectors
- Sample Geometry and Random Samples
- Multivariate Normal Distribution
- Inference about a Mean Vector
- Comparison of Several Multivariate Means
- Multivariate Linear Regression Models

Course Outline

- Principal Components
- Factor Analysis and Inference for Structured Covariance Matrices
- Canonical Correlation Analysis*
- Discrimination and Classification*
- Clustering, Distance Methods, and Ordination*

2

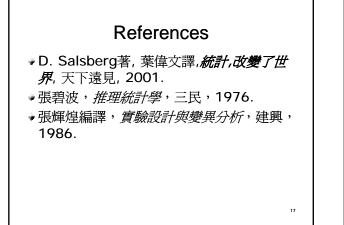
Major Multivariate Techniques Not Included

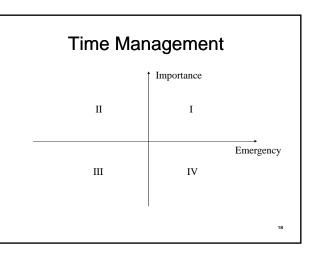
- Structural Equation Models
- Multidimensional Scaling

Feature of This Course

 Uses matrix algebra to introduce theories and practices of multivariate statistical analysis

Text Book and Website


13


15

- R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th ed., Pearson Education, 2007. (雙葉)
- http://cc.ee.ntu.edu.tw/~skjeng/ MultivariateAnalysis2010.htm

References

- •林震岩,多變量分析-SPSS的操作與應用, 智勝, 2007
- J. F. Hair, Jr., B. Black, B. Babin, R. E. Anderson, and R. L. Tatham, Multivariate Data Analysis, 6th ed., Prentice Hall, 2006. (華泰)
- ◆D. C. Montgomery, Design and Analysis of Experiments, 6th ed., John Wiley, 2005. (歐亞)

Some Important Laws

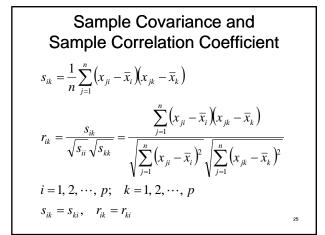
- First things first
- ≠80 20 Law
- Fast prototyping and evolution
- 物有本末,事有始终,知所先後,則近道 矣。

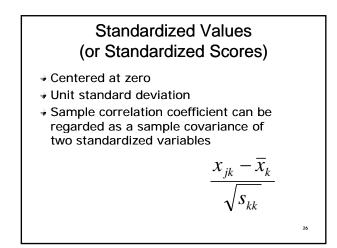
Outline

- Introduction
- Organization of Data
- Data Displays and Pictorial Representations
- Distances
- Reading Assignments

Questions + How to represent the measurement data for multivariate analysis? + How to summarize the measurement data? + How to determine if two variables are related?

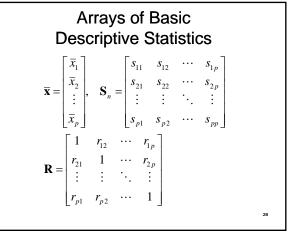
19

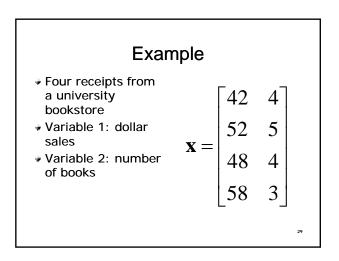

21

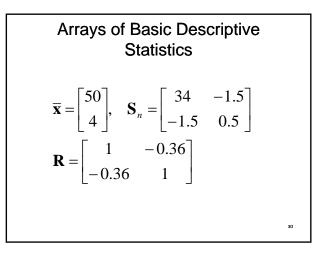

$\mathbf{x} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1k} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2k} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{j1} & x_{j2} & \cdots & x_{jk} & \cdots & x_{jp} \\ \vdots & \vdots & & & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} & \cdots & x_{np} \end{bmatrix}$

Descriptive Statistics Summary numbers to assess the information contained in data Basic descriptive statistics – Sample mean – Sample variance – Sample standard deviation – Sample covariance – Sample correlation coefficient

23

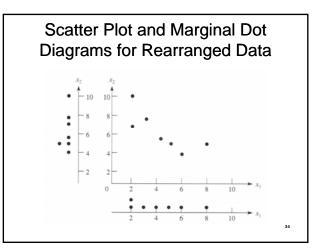

Sample Mean and
Sample Variance
$$\overline{x}_{k} = \frac{1}{n} \sum_{j=1}^{n} x_{jk}$$
$$s_{k}^{2} = s_{kk} = \frac{1}{n} \sum_{j=1}^{n} (x_{jk} - \overline{x}_{k})^{2}$$
$$k = 1, 2, \cdots, p$$

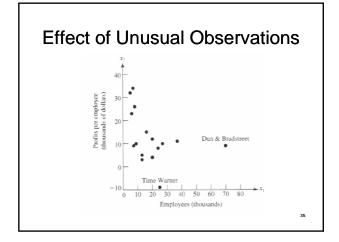


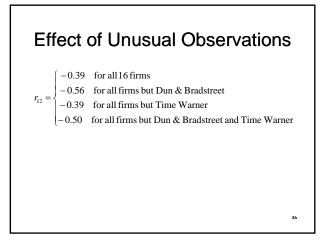


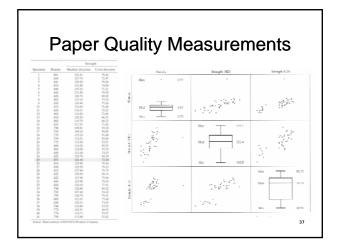
- Value is between -1 and 1
- Magnitude measure the strength of the linear association
- Sign indicates the direction of the association
- Value remains unchanged if all x_{ji}'s and x_{jk}'s are changed to y_{ji} = a x_{ji} + b and y_{jk} = c x_{jk} + d, respectively, provided that the constants a and c have the same sign

Outline

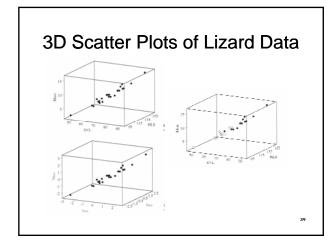

- Introduction
- Organization of Data
- Data Displays and Pictorial Representations
- Distances
- Reading Assignments

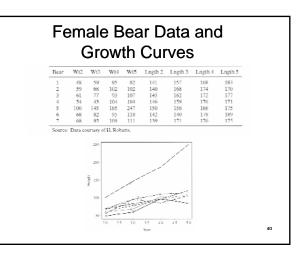

Questions How to visually represent multivariate data? What are the advantages of data

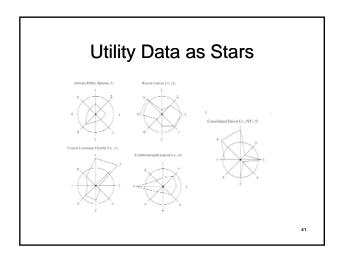

plots?

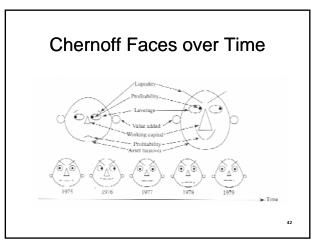

31

Scatter Plot and Marginal Dot Diagrams

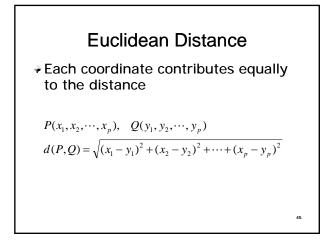


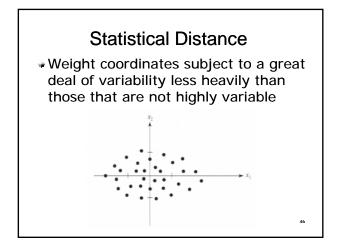


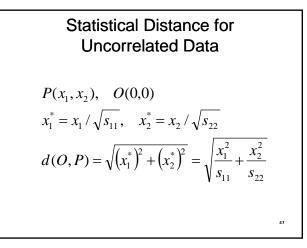


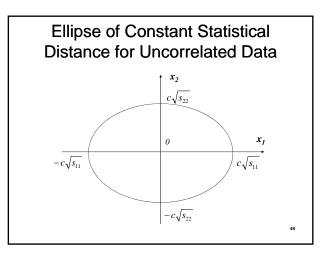


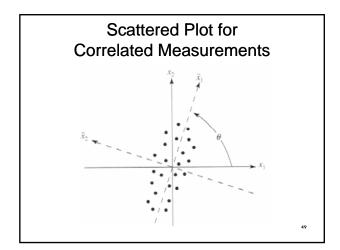
Lizard	Mass	SVL	HLS	Lizard	Mass	SVL	HLS
1	5.526	59.0	113.5	14	10.067	73.0	136.5
2	10.401	75.0	142.0	15	10.091	73.0	135.5
2 3	9.213	69.0	124.0	16	10.888	77.0	139.0
4	8.953	67.5	125.0	17	7.610	61.5	118.0
5	7.063	62.0	129.5	18	7.733	66.5	133.5
6	6.610	62.0	123.0	19	12.015	79.5	150.0
7	11.273	74.0	140.0	20	10.049	74.0	137.0
8	2.447	47.0	97.0	21	5.149	59.5	116.0
9	15.493	86.5	162.0	22	9.158	68.0	123.0
10	9.004	69.0	126.5	23	12.132	75.0	141.0
11	8.199	70.5	136.0	24	6.978	66.5	117.0
12	6.601	64.5	116.0	25	6.890	63.0	117.0
13	7.622	67.5	135.0				


Outline

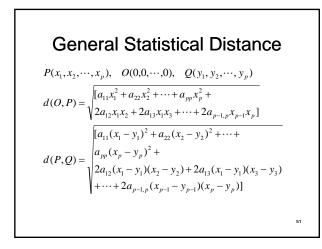

43

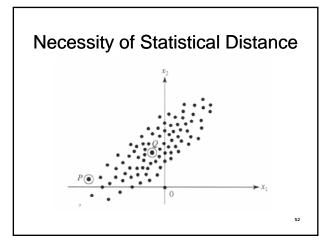

- Introduction
- Organization of Data
- Data Displays and Pictorial Representations
- Distances
- Reading Assignments

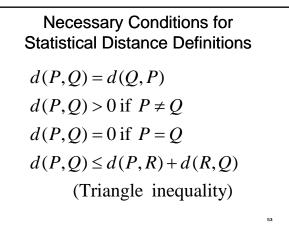

Questions

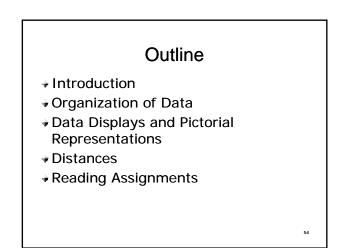

- How to determine if two multivariate data are close?
- How to deal with the case that two variables are correlated?

Statistical Distance under Rotated
Coordinate System


$$O(0,0), P(\tilde{x}_1, \tilde{x}_2)$$


$$d(O, P) = \sqrt{\frac{\tilde{x}_1^2}{\tilde{x}_{11}} + \frac{\tilde{x}_2^2}{\tilde{x}_{22}}}$$


$$\tilde{x}_1 = x_1 \cos \theta + x_2 \sin \theta$$


$$\tilde{x}_2 = -x_1 \sin \theta + x_2 \cos \theta$$

$$d(O, P) = \sqrt{a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2}$$

Reading Assignments

55

-pp. 49-59 (Sections 2.1~2.2) -pp. 82-96 (Supplement 2A)