Comparison of Several Multivariate Means

Shyh-Kang Jeng Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking and Multimedia

Outline

- Comparing Several Multivariate
 Population Means (One-Way Manova)
- Simultaneous Confidence Intervals for Treatment Effects
- Testing for Equality of Covariance Matrices
- ✤Two-Way ANOVA
- Two-Way Multivariate Analysis of Variance

3

Outline

- +Introduction
- Comparison of Univariate Mean
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

Outline

- ✦ANOVA for Repeated Measures
- Repeated Measures Designs and Growth Curves
- Perspectives and Strategy for Analyzing Multivariate Models

Outline

- + Introduction
- Comparison of Univariate Mean
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

Outline

- Introduction
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

Introduction Extend previous ideas to handle problems involving the comparison of

several mean vectors

Questions

- What is the paired comparison?
- How to design experiments for paired comparison?
- How to test if the population means of paired groups are different?
- How to compute the confidence interval for the difference of population means of paired groups?

Questions

- How to compare population means of two populations without paired experiments?
- In such a case, how to estimate the common variance?

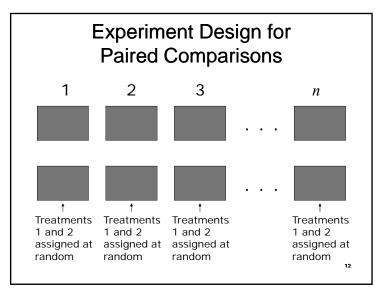
Paired Comparisons

- Measurements are recorded under different sets of conditions
- See if the responses differ significantly over these sets
- Two or more treatments can be administered to the same or similar experimental units
- Compare responses to assess the effects of the treatments

11

Scenarios To test if the differences are significant between Teaching using Power Point vs. using chalks and blackboard only Drug vs. placebos Processing speed of MP3 player model I of brand A vs. model G of brand B

 Performance of students going to cram schools vs. those not



Single Response (Univariate) Case

$$D_{j} = X_{j1} - X_{j2}, j = 1, 2, \dots, n$$

$$D_{j} : N(\delta, \sigma_{d}^{2})$$

$$t = \frac{\overline{D} - \delta}{s_{d} / \sqrt{n}} : t_{n-1}$$
Reject $H_{0} : \delta = 0$ in favor of $H_{1} : \delta \neq 0$ if $|t| > t_{n-1}(\alpha/2)$

$$100(1 - \alpha)\%$$
 confidence interval for δ

$$\overline{d} - t_{n-1}(\alpha/2) \frac{s_{d}}{\sqrt{n}} \le \delta \le \overline{d} + t_{n-1}(\alpha/2) \frac{s_{d}}{\sqrt{n}}$$

Assumptions Concerning the Structure of Data

 $X_{11}, X_{12}, \dots, X_{1n_1} : \text{random sample from univariate}$ population with mean μ_1 and variance σ_1^2 $X_{21}, X_{22}, \dots, X_{2n_2} : \text{random sample from univariate}$ population with mean μ_2 and variance σ_2^2 $X_{11}, X_{12}, \dots, X_{1n_1}$ are independent of $X_{21}, X_{22}, \dots, X_{2n_2}$ Further assumptions when n_1 and n_2 small : Both populations are univariate normal $\sigma_1^2 = \sigma_2^2$

$$\frac{\text{Pooled Estimate of}}{\text{Population Variance}}$$

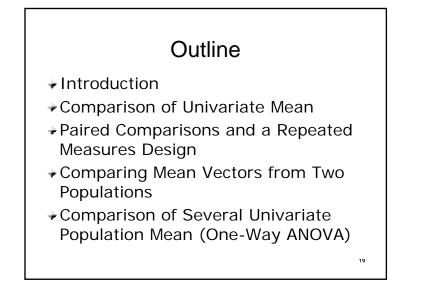
$$\sum_{j=1}^{n_1} (x_{j1} - \overline{x}_1)(x_{j1} - \overline{x}_1) \approx (n_1 - 1)\sigma^2$$

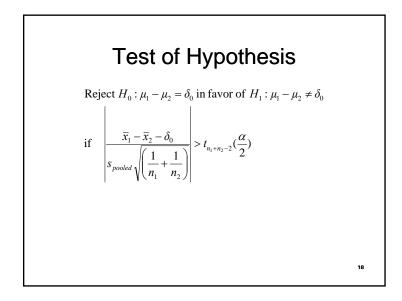
$$\sum_{j=1}^{n_2} (x_{j2} - \overline{x}_2)(x_{j2} - \overline{x}_2) \approx (n_2 - 1)\sigma^2$$

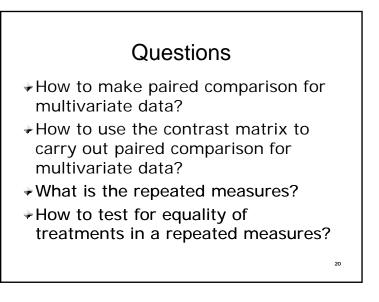
$$s_{pooled}^2 = \frac{\sum_{j=1}^{n_1} (x_{j1} - \overline{x}_1)(x_{j1} - \overline{x}_1) + \sum_{j=1}^{n_2} (x_{j2} - \overline{x}_2)(x_{j2} - \overline{x}_2)}{n_1 + n_2 - 2}$$

$$= \frac{n_1 - 1}{n_1 + n_2 - 2} s_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} s_2^2$$

$\begin{aligned} & \textbf{t-Statistics for Comparing} \\ & X_{11}, X_{12}, \cdots, X_{1n_1} : N(\mu_1, \sigma^2) \\ & X_{21}, X_{22}, \cdots, X_{2n_2} : N(\mu_2, \sigma^2) \\ & \overline{X}_1 - \overline{X}_2 = \frac{1}{n_1} X_{11} + \cdots + \frac{1}{n_1} X_{1n_1} - \frac{1}{n_2} X_{21} + \cdots - \frac{1}{n_2} X_{2n_2} \\ & : N(\mu_1 - \mu_2, \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \sigma^2) \\ & \Rightarrow t = \left(\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)\right) / \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} s_{pooled}^2 \end{aligned}$

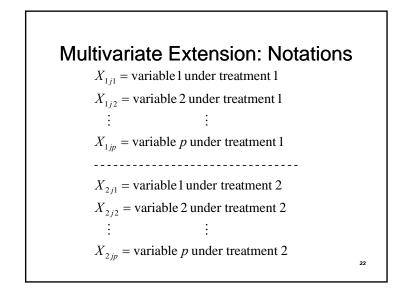






Effluent Data from Two Labs					
	Commer	CO CONTRACTOR CONTRACTOR	State lab of hygiene		
Sample j	$x_{1/1}$ (BOD)	$x_{1j2}(SS)$	x_{2j1} (BOD)	x_{2j2} (SS)	
1	6	27	25	15	
2	6	23	28	13	
3	18	64	36	22	
4	8	44	35	29	
5	11	30	15	31	
6	34	75	44	64	
7	28	26	42	30	
8	71	124	54	64	
9	43	54	34	56	
10	33	30	29	20	
11	20	14	39	21	

Result 6.1	
$D_{j1} = X_{1j1} - X_{2j1}$	
$D_{j2} = X_{1j2} - X_{2j2}$	
: :	
$D_{jp} = X_{1jp} - X_{2jp}$	
$\mathbf{D}_{j} = \left[D_{j1}, D_{j2}, \cdots, D_{jp} \right]$	
$\mathbf{D}_j: N_p(\boldsymbol{\delta}, \boldsymbol{\Sigma}_d), j = 1, 2, \cdots, n$	
$T^{2} = n(\overline{\mathbf{D}} - \boldsymbol{\delta}) \mathbf{S}_{d}^{-1} (\overline{\mathbf{D}} - \boldsymbol{\delta}) : \frac{(n-1)p}{(n-p)} F_{p,n-p}$	
$\overline{\mathbf{D}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{D}_{j}, \mathbf{S}_{d} = \frac{1}{n-1} \sum_{j=1}^{n} \left(\mathbf{D}_{j} - \overline{\mathbf{D}} \right) \left(\mathbf{D}_{j} - \overline{\mathbf{D}} \right)$	23

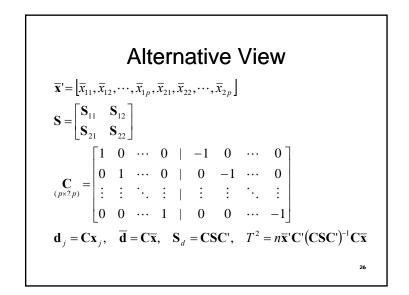


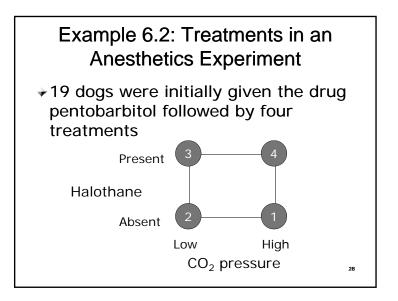
 $\begin{aligned} & \mathbf{F}_{a} = \begin{bmatrix} d_{j1}, d_{j2}, \cdots, d_{jp} \end{bmatrix}: \text{observed differences} \\ & \mathbf{e}_{j}^{T} = \begin{bmatrix} d_{j1}, d_{j2}, \cdots, d_{jp} \end{bmatrix}: \text{observed differences} \\ & \text{Reject } H_{0}: \mathbf{\delta} = 0 \text{ in favor of } H_{1}: \mathbf{\delta} \neq 0 \text{ if} \\ & T^{2} = n \overline{\mathbf{d}}^{T} \mathbf{S}_{d}^{-1} \overline{\mathbf{d}} > \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha) \\ & \text{Confidence regions}: (\overline{\mathbf{d}} - \mathbf{\delta}) \mathbf{S}_{d}^{-1} (\overline{\mathbf{d}} - \mathbf{\delta}) \leq \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha) \\ & \delta_{i}: \overline{d}_{i} \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{d_{i}}^{2}}{n}}, \quad \delta_{i}: \overline{d}_{i} \pm t_{n-1} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{s_{d_{i}}^{2}}{n}} \end{aligned}$

Example 6.1: Check Measurements from Two Labs $\vec{\mathbf{d}} = \begin{bmatrix} \vec{d}_1 \\ \vec{d}_2 \end{bmatrix} = \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}, \quad \mathbf{S}_d = \begin{bmatrix} 199.26 & 88.38 \\ 88.38 & 418.61 \end{bmatrix}$ $T^2 = 11 \begin{bmatrix} -9.36 & 13.27 \begin{bmatrix} 0.0055 & -0.0012 \\ -0.0012 & 0.0026 \end{bmatrix} \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}$ $= 13.6 > \frac{2 \times 10}{9} F_{2.9}(0.05) = 9.47$ Reject $H_0: \delta = 0$ $\delta_1: -9.36 \pm \sqrt{9.47} \sqrt{199.26/11} \text{ or } (-22.46, 3.74)$ $\delta_2: 13.27 \pm \sqrt{9.47} \sqrt{418.61/11} \text{ or } (-5.71, 32.25)$ Both includes zero

Repeated Measures Design for Comparing Measurements

- Each subject or experimental unit receives each treatment once over successive periods of time

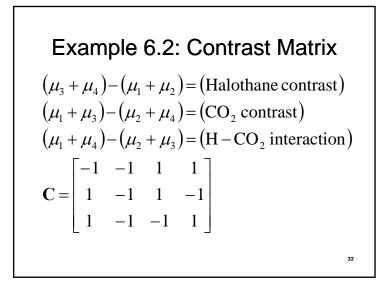




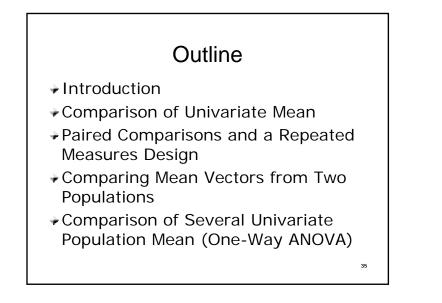
		••••		Dog D	au
3191 (2)	11/202010	Treat	ment	_	
Dog	1	2	3	4	
1	426	609	556	600	
2	253	236	392	395	
3	359	433	349	357	
4	432	431	522	600	
5	405	426	513	513	
6	324	438	507	539	
7	310	312	410	456	
8	326	326	350	504	
9	375	447	547	548	
10	286	286	403	422	
11	349	382	473	497	
12	429	410	488	547	
13	348	377	447	514	
14	412	473	472	446	
15	347	326	455	468	
16	434	458	637	524	
17	364	367	432	469	
18	420	395	508	531	
19	397	556	645	625	

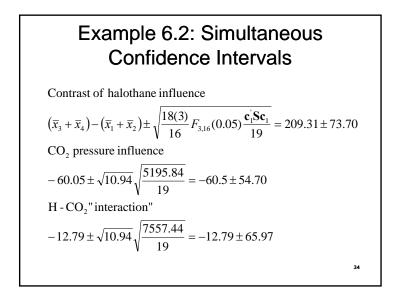
Test for Equality of Treatments in a Repeated Measures Design $\mathbf{X}: N_q(\mathbf{\mu}, \mathbf{\Sigma}), \quad \mathbf{C}: \text{ contrast matrix}$ $\text{Test of } H_0: \mathbf{C}\mathbf{\mu} = 0 \text{ vs. } H_1: \mathbf{C}\mathbf{\mu} \neq 0$ $\text{Reject } H_0 \text{ if}$ $T^2 = n(\mathbf{C}\mathbf{\overline{x}})'(\mathbf{CSC'})^{-1}\mathbf{C}\mathbf{\overline{x}} > \frac{(n-1)(q-1)}{(n-q+1)}F_{q-1,n-q+1}(\alpha)$

$$\begin{aligned} \mathbf{X}_{j} &= \begin{bmatrix} X_{j1} \\ X_{j2} \\ \vdots \\ X_{jq} \end{bmatrix}, \quad j = 1, 2, \cdots, n \quad \mathbf{\mu} = E(\mathbf{X}_{j}) \\ \begin{bmatrix} \mu_{1} - \mu_{2} \\ \mu_{1} - \mu_{3} \\ \vdots \\ \mu_{1} - \mu_{q} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{q} \end{bmatrix} = \mathbf{C} \mathbf{\mu} \end{aligned}$$



Example 6.2: Test of Hypothese	S				
[368.21] [2819.29]				
- 404.63 3568.42 7963.14					
$\mathbf{x} = \begin{vmatrix} 479.26 \end{vmatrix}, \mathbf{S} = \begin{vmatrix} 2943.49 & 5303.98 & 6851.32 \end{vmatrix}$					
$\overline{\mathbf{x}} = \begin{bmatrix} 368.21 \\ 404.63 \\ 479.26 \\ 502.89 \end{bmatrix}, \mathbf{S} = \begin{bmatrix} 2819.29 \\ 3568.42 & 7963.14 \\ 2943.49 & 5303.98 & 6851.32 \\ 2295.35 & 4065.44 & 4499.63 & 4878.9 \end{bmatrix}$	9				
[209.31] [9432.32 1098.92 927.62]					
$\mathbf{C}\overline{\mathbf{x}} = \begin{vmatrix} -60.05 \end{vmatrix}$, $\mathbf{CSC'} = \begin{vmatrix} 1098.92 & 5195.84 & 914.54 \end{vmatrix}$					
$\mathbf{C}\overline{\mathbf{x}} = \begin{bmatrix} 209.31 \\ -60.05 \\ -12.79 \end{bmatrix}, \mathbf{CSC'} = \begin{bmatrix} 9432.32 & 1098.92 & 927.62 \\ 1098.92 & 5195.84 & 914.54 \\ 927.62 & 914.54 & 7557.44 \end{bmatrix}$					
$T^{2} = n(\mathbf{C}\overline{\mathbf{x}})'(\mathbf{CSC'})^{-1}(\mathbf{C}\overline{\mathbf{x}}) = 116$					
$\frac{(n-1)(q-1)}{(n-q+1)}F_{q-1,n-q+1}(0.05) = 10.94$					
Reject H_0 : C $\mu = 0$	33				





- How to compare mean vectors from two populations, not forming paired comparison groups?
- How to pool covariance matrices from two populations?
- How to find simultaneous confidence intervals for comparing mean vectors from two populations?

Questions • What is the multivariate Behrens-Fisher problem and how to solve it?

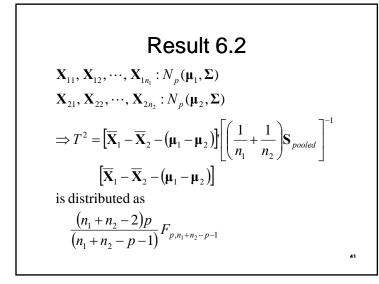
Assumptions Concerning the Structure of Data

 $\begin{aligned} \mathbf{X}_{11}, \mathbf{X}_{12}, \cdots, \mathbf{X}_{1n_1} : \text{random sample from } p - \text{variate} \\ \text{population with mean vector } \mathbf{\mu}_1 \text{ and covariance } \mathbf{\Sigma}_1 \\ \mathbf{X}_{21}, \mathbf{X}_{22}, \cdots, \mathbf{X}_{2n_2} : \text{random sample from } p - \text{variate} \\ \text{population with mean vector } \mathbf{\mu}_2 \text{ and covariance } \mathbf{\Sigma}_2 \\ \mathbf{X}_{11}, \mathbf{X}_{12}, \cdots, \mathbf{X}_{1n_1} \text{ are independent of } \mathbf{X}_{21}, \mathbf{X}_{22}, \cdots, \mathbf{X}_{2n_2} \\ \text{Further assumptions when } n_1 \text{ and } n_2 \text{ small :} \\ \text{Both populations are multivariate normal} \\ \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2 \end{aligned}$

Comparing Mean Vectors from Two Populations

- Populations: Sets of experiment settings
- Without explicitly controlling for unitto-unit variability, as in the paired comparison case
- Experimental units are randomly assigned to populations
- Applicable to a more general collection of experimental units

Pooled Estimate of Population Covariance Matrix $\sum_{j=1}^{n_1} (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) \approx (n_1 - 1) \Sigma$ $\sum_{j=1}^{n_2} (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2) (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2) \approx (n_2 - 1) \Sigma$ $\mathbf{S}_{pooled} = \frac{\sum_{j=1}^{n_1} (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) + \sum_{j=1}^{n_2} (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2) (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2)}{n_1 + n_2 - 2}$ $= \frac{n_1 - 1}{n_1 + n_2 - 2} \mathbf{S}_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} \mathbf{S}_2$



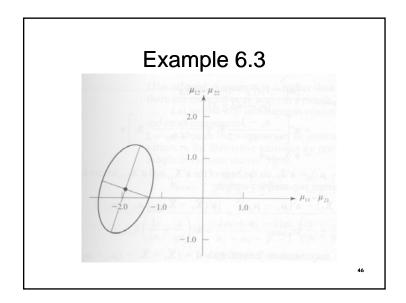
Wishart Distribution	
$w_{n-1}(\mathbf{A} \mid \mathbf{\Sigma}) = \frac{ \mathbf{A} ^{(n-p-2)/2} e^{-\mathrm{tr}[\mathbf{A}\mathbf{\Sigma}^{-1}]/2}}{2}$	
$w_{n-1}(\mathbf{A} \mid \boldsymbol{\omega}) = \frac{1}{2^{p(n-1)/2} \pi^{p(p-1)/4} \mathbf{\Sigma} ^{(n-1)/2} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n-i)\right)}$	Ĵ
A : positive definite	
Properties:	
$\mathbf{A}_1: W_{m_1}(\mathbf{A}_1 \mid \boldsymbol{\Sigma}), \mathbf{A}_2: W_{m_2}(\mathbf{A}_2 \mid \boldsymbol{\Sigma}) \Longrightarrow$	
$\mathbf{A}_1 + \mathbf{A}_2 : W_{m_1 + m_2}(\mathbf{A}_1 + \mathbf{A}_2 \mid \boldsymbol{\Sigma})$	
$\mathbf{A}: W_m(\mathbf{A} \mid \boldsymbol{\Sigma}) \Longrightarrow \mathbf{CAC'}: W_m(\mathbf{CAC'} \mid \mathbf{C\Sigma\Sigma'})$	
	43

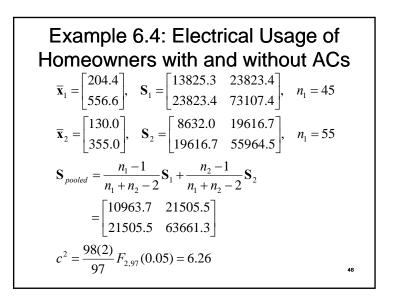
$$\begin{aligned} & \mathbf{Proof of Result 6.2} \\ \overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} = \frac{1}{n_{1}} \mathbf{X}_{11} + \dots + \frac{1}{n_{1}} \mathbf{X}_{1n_{1}} - \frac{1}{n_{2}} \mathbf{X}_{21} + \dots - \frac{1}{n_{2}} \mathbf{X}_{2n_{2}} \\ & : N_{p} (\mathbf{\mu}_{1} - \mathbf{\mu}_{2}, \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \mathbf{\Sigma}) \\ & (n_{1} - 1) \mathbf{S}_{1} : W_{n_{1} - 1} (\mathbf{\Sigma}), \quad (n_{2} - 1) \mathbf{S}_{2} : W_{n_{2} - 1} (\mathbf{\Sigma}) \\ & (n_{1} - 1) \mathbf{S}_{1} + (n_{2} - 1) \mathbf{S}_{2} : W_{n_{1} + n_{2} - 2} (\mathbf{\Sigma}) \\ & T^{2} = \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)^{-1/2} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2}) \right] \mathbf{S}_{pooled}^{-1} \\ & \qquad \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)^{-1/2} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2}) \right] \\ & = N_{p} (0, \mathbf{\Sigma})' \left[\frac{W_{n_{1} + n_{2} - 2}}{n_{1} + n_{2} - 2} \right]^{-1} N_{p} (\mathbf{0}, \mathbf{\Sigma}) : \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p, n_{1} + n_{2} - p - 1} \end{aligned}$$

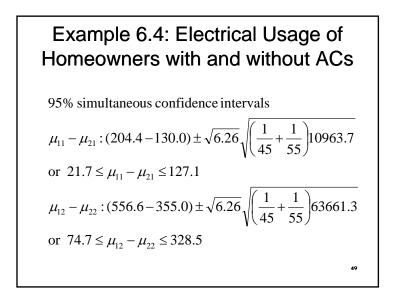
 $\begin{aligned} & \operatorname{Flux} \mathbf{D} = \mathbf{A}_{0} \text{ in favor of } H_{1} : \mathbf{\mu}_{1} - \mathbf{\mu}_{2} \neq \mathbf{\delta}_{0} \\ & \operatorname{if} \quad T^{2} = (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - \mathbf{\delta}_{0})' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{pooled} \right]^{-1} (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - \mathbf{\delta}_{0}) \\ & > \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p, n_{1} + n_{2} - p - 1}(\alpha) \\ & \operatorname{Note} E(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}) = \mathbf{\mu}_{1} - \mathbf{\mu}_{2} \\ & \operatorname{Cov}(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}) \\ & = \operatorname{Cov}(\overline{\mathbf{X}}_{1}) - \operatorname{Cov}(\overline{\mathbf{X}}_{1}, \overline{\mathbf{X}}_{2}) - \operatorname{Cov}(\overline{\mathbf{X}}_{2}, \overline{\mathbf{X}}_{1}) + \operatorname{Cov}(\overline{\mathbf{X}}_{2}) \\ & = \operatorname{Cov}(\overline{\mathbf{X}}_{1}) + \operatorname{Cov}(\overline{\mathbf{X}}_{2}) = \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{\Sigma} \end{aligned}$

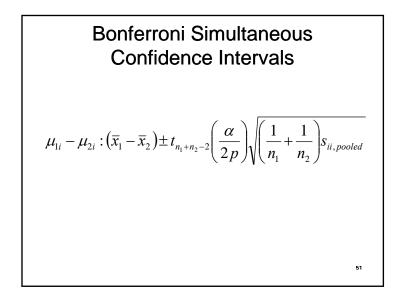
Example 6.3: Comparison of Soaps Manufactured in Two Ways $n_1 = n_2 = 50$ $\overline{\mathbf{x}}_1 = \begin{bmatrix} 8.3 \\ 4.1 \end{bmatrix}, \quad \mathbf{S}_1 = \begin{bmatrix} 2 & 1 \\ 1 & 6 \end{bmatrix}, \quad \overline{\mathbf{x}}_2 = \begin{bmatrix} 10.2 \\ 3.9 \end{bmatrix}, \quad \mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$ $\mathbf{S}_{pooled} = \frac{49}{98}\mathbf{S}_1 + \frac{49}{98}\mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}, \quad \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 = \begin{bmatrix} -1.9 \\ 0.2 \end{bmatrix}$ Eigenvalues and eigenvectors of \mathbf{S}_{pooled} : $\lambda_1 = 5.303, \quad \mathbf{e}_1 = \begin{bmatrix} 0.290 & 0.957 \end{bmatrix}$ $\lambda_2 = 1.697, \quad \mathbf{e}_1 = \begin{bmatrix} 0.957 & -0.290 \end{bmatrix}$ $\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1} F_{p,n_1 + n_2 - p - 1}(0.05) = 0.25$ $\sqrt{\lambda_1}\sqrt{0.25} = 1.15, \quad \sqrt{\lambda_2}\sqrt{0.25} = 0.65$

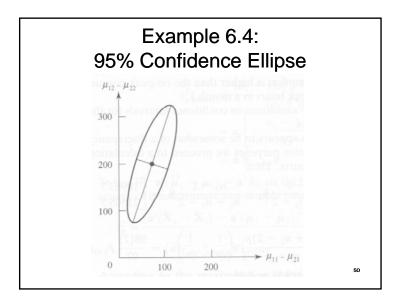
Result 6.3: Simultaneous Confidence Intervals	
$c^{2} = \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p,n_{1} + n_{2} - p - 1}(\alpha)$	
$\mathbf{a}'(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) \pm c \sqrt{\mathbf{a}'\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \mathbf{S}_{pooled} \mathbf{a}$	
will cover $\mathbf{a}'(\mathbf{\mu}_1 - \mathbf{\mu}_2)$ for all \mathbf{a}	
In particular, $\mu_{1i} - \mu_{2i}$ will be covered by	
$(\overline{X}_{1i} - \overline{X}_{2i}) \pm c \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) s_{ii,pooled}}$	
	47

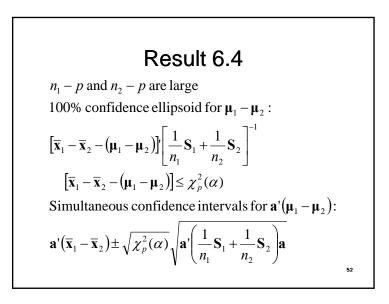












Proof of Result 6.4 $E(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}) = \mu_{1} - \mu_{2}$ $Cov(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}) = Cov(\overline{\mathbf{X}}_{1}) + Cov(\overline{\mathbf{X}}_{2}) = \frac{1}{n_{1}}\Sigma_{1} + \frac{1}{n_{2}}\Sigma_{2}$ $\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} : nearly N_{p} \left(\mu_{1} - \mu_{2}, \frac{1}{n_{1}}\Sigma_{1} + \frac{1}{n_{2}}\Sigma_{2}\right)$ $[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mu_{1} - \mu_{2})] \left(\frac{1}{n_{1}}\Sigma_{1} + \frac{1}{n_{2}}\Sigma_{2}\right)^{-1}$ $[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mu_{1} - \mu_{2})] : \chi_{p}^{2}$ $\Sigma_{1} \sim S_{1}, \quad \Sigma_{2} \sim S_{2}$

Example 6.5
Example 6.4 Data
$\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2 = \begin{bmatrix} 464.17 & 886.08\\ 886.08 & 2642.15 \end{bmatrix}$
$\mu_{11} - \mu_{21}$: 74.4 ± $\sqrt{5.99}\sqrt{464.17}$ or (21.7, 127.1)
$\mu_{12} - \mu_{22}$: 201.6 ± $\sqrt{5.99}\sqrt{2642.15}$ or (75.8, 327.4)
$H_0: \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = 0$
$T^{2} = \left[\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right] \left[\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2}\right]^{-1} \left[\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right] = 15.66 > \chi_{2}^{2}(0.05) = 5.99$
Critical linear combination: $\left[\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2\right]^{-1} \left[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2\right] = \begin{bmatrix} 0.041\\ 0.063 \end{bmatrix}$

$$\mathbf{Remark}$$
If $n_1 = n_2 = n$

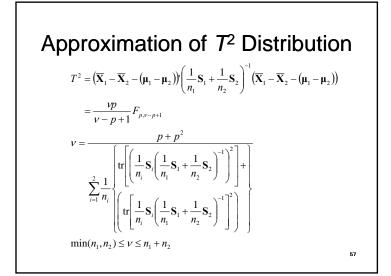
$$\frac{n-1}{n+n-2} = \frac{1}{2}$$

$$\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2 = \frac{1}{n}(\mathbf{S}_1 + \mathbf{S}_2)$$

$$= \frac{(n-1)\mathbf{S}_1 + (n-1)\mathbf{S}_2}{n+n-2} \left(\frac{1}{n} + \frac{1}{n}\right) = \mathbf{S}_{pooled} \left(\frac{1}{n} + \frac{1}{n}\right)$$

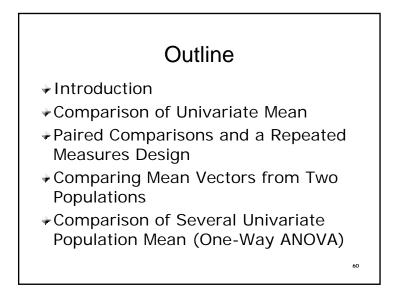
Multivariate Behrens-Fisher Problem

- ✤Test H₀: μ₁-μ₂=0
- Population covariance matrices are unequal
- → Sample sizes are not large
- Populations are multivariate normal
- Both sizes are greater than the number of variables



Example 6.6	
$\frac{1}{n_1}\mathbf{S}_1 \left(\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2\right)^{-1} = \begin{bmatrix} 0.776 & -0.060\\ -0.092 & 0.646 \end{bmatrix}$	
$\frac{1}{n_2}\mathbf{S}_2\left(\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2\right)^{-1} = \begin{bmatrix} 0.224 & -0.060\\ 0.092 & 0.354 \end{bmatrix}$	
<i>v</i> = 77.6	
$\frac{\nu p}{\nu - p + 1} F_{p,\nu - p + 1}(0.05) = \frac{155.2}{76.6} \times 3.12 = 6.32$	
$T^2 = 15.66 > 6.32$, $H_0 : \mathbf{\mu}_1 - \mathbf{\mu}_2 = 0$ is rejected	59

$$\begin{aligned} &(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))\left(\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2}\right)^{-1}(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})) \\ &\leq \frac{\nu p}{\nu - p + 1}F_{p,\nu - p + 1}(\boldsymbol{\alpha}) \end{aligned}$$



64

Questions

- Why paired comparisons are not good ways to compare several population means?
- How to compute summed squares (between)?
- How to compute summed squares (within)?
- How to compute summed squares (total)?

61

63

Questions

- How to compute the F value for testing of the null hypothesis?
- How are the three kinds of summed squares related?
- How to explain the geometric meaning of the degrees of freedom for a treatment vector?
- What is an ANOVA table?

Questions

- How to calculate the degrees of freedom for summed squares (between)?
- How to calculate the degrees of freedom for summed squares (within)?
- How to calculate the degrees of freedom for summed squares (total)?

Scenarios

- To test if the following statements are plausible
 - Music compressed by four MP3 compressors are with the same quality
 - Three new drugs are all as effective as a placebo
 - -Four brands of beer are equally tasty
 - Lectures, group studying, and computer assisted instruction are equally effective for undergraduate students

Comparing Four MP3 Compressors

- ✤Test four brands, A, B, C, D
- 10 subjects each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

Problem of Using a *t*-Test

- ✤Must compare two brands at a time
- There are 6 possible comparisons
- Each has a 0.05 chance of being significant by chance
- ✓ Overall chance of significant result, even when no difference exist, approaches 1-(0.95)⁶ ~ 0.26

Hypotheses
Null hypothesis
$H_0: \mu_A = \mu_B = \mu_C = \mu_D$
Alternative hypothesis
H_1 : Not all the μ s are equal

**

Subject	А	В	С	D
1	4	5	7	2
2	4	5	8	1
3	5	6	7	2
4	5	6	9	3
5	6	7	6	3
6	3	6	3	4
7	4	4	2	5
8	4	5	2	4
9	3	6	2	4
10	4	3	3	3
Mean	4.2	5.3	4.9	3.1

67

Thinking in Terms of Signals and Noises

Signals

- Overall difference among the means of the groups
- Sum of all the squared differences between group means and the overall means

Noises

- -Overall variability within the groups
- Sum of all the squared differences between individual data and their group means

 $SS(within) = \sum_{\ell} \sum_{j} \left(x_{\ell j} - \bar{x}_{\ell} \right)^{2}$ $SS(within) = (4 - 4.2)^{2} + (4 - 4.2)^{2} + \dots + (4 - 4.2)^{2} + (5 - 5.3)^{2} + (5 - 5.3)^{2} + \dots + (3 - 5.3)^{2} + (7 - 4.9)^{2} + (8 - 4.9)^{2} + \dots + (3 - 4.9)^{2} + (2 - 3.1)^{2} + (1 - 3.1)^{2} + \dots + (3 - 3.1)^{2}$ [40 terms]= 101.50

Sum of Squares (Between) $SS(between) = n \sum_{k} (\bar{x}_{\ell} - \bar{x})^{2}$ $SS(between) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$ = 27.875

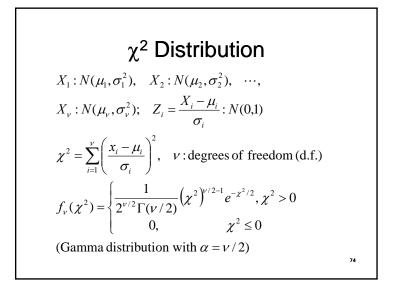
$Ss(total) = \sum_{\ell} \sum_{j} (x_{\ell j} - \bar{x})^{2}$ $x_{\ell j} - \bar{x} = (x_{\ell j} - \bar{x}_{\ell}) + (\bar{x}_{\ell} - \bar{x})$ $(x_{\ell j} - \bar{x})^{2} = (x_{\ell j} - \bar{x}_{\ell})^{2} + 2(x_{\ell j} - \bar{x}_{\ell})(\bar{x}_{\ell} - \bar{x}) + (\bar{x}_{\ell} - \bar{x})^{2}$ $\sum_{j} (x_{\ell j} - \bar{x}_{\ell})^{2} = \sum_{j} (x_{\ell j} - \bar{x}_{\ell})^{2} + n(\bar{x}_{\ell} - \bar{x})^{2}$ Ss(total) = Ss(within) + Ss(between)

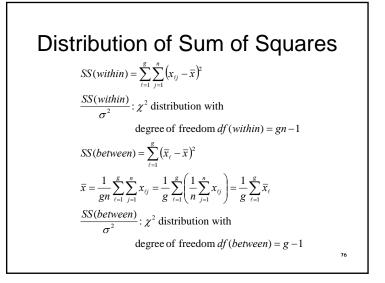
Sum of Squares (Total)

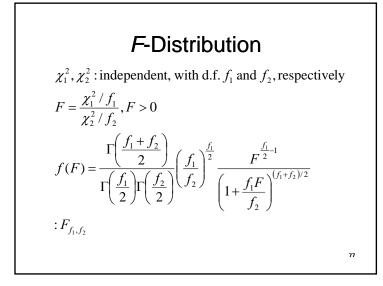
 $SS(total) = (4 - 4.375)^{2} + (4 - 4.375)^{2} + \dots + (4 - 4.375)^{2} + (5 - 4.375)^{2} + (5 - 4.375)^{2} + (5 - 4.375)^{2} + \dots + (3 - 4.375)^{2} + (7 - 4.375)^{2} + (8 - 4.375)^{2} + \dots + (3 - 4.375)^{2} + (2 - 4.375)^{2} + (1 - 4.375)^{2} + \dots + (3 - 4.375)^{2}$ [40 terms] = 129.375 = 101.50 + 27.875

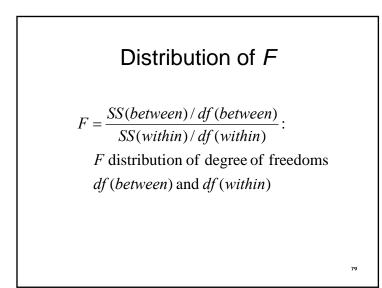
73

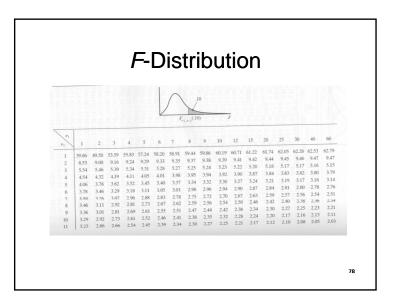
<equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

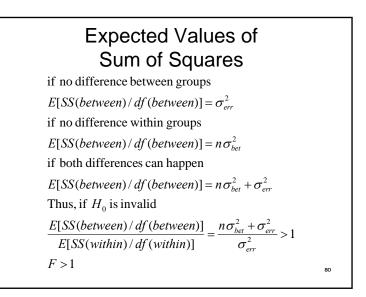












Degrees of Freedom

df (between) = g - 1 = 4 - 1 = 3 df (within) = g(n - 1) = 4(10 - 1) = 36 df (total) = gn - 1 = gn - g + g - 1 = df (within) + df (between)= 40 - 1 = 39 = 36 + 3

81

83

Hypothesis Testing $F = 3.296 > F_{3,36}(0.05) = 2.86$ reject $H_0: \mu_A = \mu_B = \mu_C = \mu_D$ at 0.05 significance level

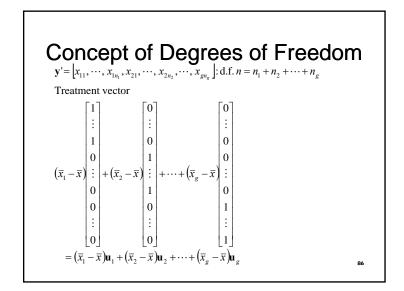
ANOVA Summary					
Source	Sum of Squares	df	Mean square	F	
Between	27.875	3	9.292	3.296	
Within	101.500	36	2.819		
Total	129.375	39			
				82	

 $\begin{aligned} & \text{Univariate ANOVA} \\ & X_{\ell_1}, X_{\ell_2}, \cdots, X_{\ell_{n_\ell}} : \text{random sample from } N(\mu_\ell, \sigma^2) \\ & \ell = 1, 2, \cdots, g \\ & \text{Null hypothesis } H_0 : \mu_1 = \mu_2 = \cdots = \mu_g \\ & \text{Null hypothesis } H_0 : \mu_1 = \mu_2 = \cdots = \mu_g \\ & \text{Reparameterization} \\ & \mu_\ell = \mu + \tau_\ell \\ & H_0 : \tau_1 = \tau_2 = \cdots = \tau_g = 0 \\ & X_{\ell j} = \mu + \tau_\ell + e_{\ell j}, \ e_{\ell j} : N(0, \sigma^2), \ \sum_{\ell=1}^g n_\ell \tau_\ell = 0 \\ & X_{\ell j} = \overline{x} + (\overline{x}_\ell - \overline{x}) + (x_{\ell j} - \overline{x}_\ell) \end{aligned}$

Univariate ANOVA

$$\begin{pmatrix} x_{\ell j} - \bar{x} \end{pmatrix}^{2} = (\bar{x}_{\ell} - \bar{x})^{2} + (x_{\ell j} - \bar{x}_{\ell})^{2} + 2(\bar{x}_{\ell} - \bar{x})(x_{\ell j} - \bar{x}_{\ell}) \\ \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell}) = 0 \\ \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^{2} = n_{\ell} (\bar{x}_{\ell} - \bar{x})^{2} + \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^{2} \\ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^{2} = \sum_{\ell=1}^{g} n_{\ell} (\bar{x}_{\ell} - \bar{x})^{2} + \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^{2} \\ (SS_{cor}) = (SS_{tr}) + (SS_{res}) \\ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} x_{\ell j}^{2} = (n_{1} + n_{2} + \dots + n_{\ell}) \bar{x}^{2} + \sum_{\ell=1}^{g} n_{\ell} (\bar{x}_{\ell} - \bar{x})^{2} + \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^{2} \\ (SS_{obs}) = (SS_{mean}) + (SS_{tr}) + (SS_{res})$$

Concept of Degrees of Freedom	ו
$1 = [1, \cdots, 1] = \mathbf{u}_1 + \mathbf{u}_2 + \cdots + \mathbf{u}_n$	
Treatment vector and 1 are all on the hyperplane	
spanned by $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_g$: d.f. g	
1 is perpendicular to the treatment vector	
\therefore mean vector $\overline{x}1$: d.f. $g-1$	
Residual vector	
$\mathbf{e} = \mathbf{y} - \overline{x}1 - \left[(\overline{x}_1 - \overline{x})\mathbf{u}_1 + (\overline{x}_2 - \overline{x})\mathbf{u}_2 + \dots + (\overline{x}_g - \overline{x})\mathbf{u}_g \right]$	
perpendicular to the hyperplane spanned by $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_g$	
\therefore d.f. of e : $n - g$	
	87



Source of variation	COMPARING UNIVARIATE POPU Sum of squares (SS)	Degrees of freedom (d.f.)
Treatments	$SS_{tr} = \sum_{\ell=1}^{g} n_{\ell} (\overline{x}_{\ell} - \overline{x})^2$	g - 1
Residual (Error)	$SS_{res} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^2$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$SS_{cor} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^2$	$\sum_{\ell=1}^{g} n_{\ell} - 1$

Univariate ANOVA

Reject
$$H_0: \tau_1 = \tau_2 = \dots = \tau_g = 0$$
 at level α if

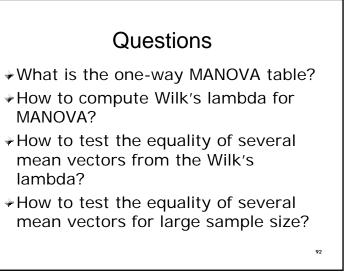
$$F = \frac{SS_{tr} / (g - 1))}{SS_{res} / \left(\sum_{\ell=1}^{g} n_\ell - g\right)} > F_{g-1,\sum_{l} n_\ell - g}(\alpha)$$

$$\frac{1}{1 + SS_{tr} / SS_{res}} = \frac{SS_{res}}{SS_{res} + SS_{tr}}$$

89

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

$$\begin{aligned} & \left(\begin{array}{c} 9 & 6 & 9 \\ 0 & 2 \\ 3 & 1 & 2 \end{array} \right) = \left(\begin{array}{c} 4 & 4 & 4 \\ 4 & 4 \\ 4 & 4 \end{array} \right) + \left(\begin{array}{c} 4 & 4 & 4 \\ -3 & -3 \\ -2 & -2 & -2 \end{array} \right) + \left(\begin{array}{c} 1 & -2 & 1 \\ -1 & 1 \\ 1 & -1 & 0 \end{array} \right) \\ & \text{SS}_{obs} = 216, \text{ SS}_{mean} = 128 \\ & \text{SS}_{tr} = 78, \text{ d.f.} = 3 - 1 = 2 \\ & \text{SS}_{res} = 10, \text{ d.f.} = (3 + 2 + 3) - 3 = 5 \\ & F = \frac{\text{SS}_{tr} / (g - 1)}{\text{SS}_{res} / \left[\sum n_{\ell} - g \right]} = \frac{78/2}{10/5} = 19.5 > F_{2,5}(0.01) = 13.27 \\ & H_0 : \tau_1 = \tau_2 = \tau_3 = 0 \text{ is rejected at the 1\% level} \end{aligned}$$



96

Questions

What are other statistics used in statistical software package for oneway MANOVA?

One-Way MANOVA

Population 1: $\mathbf{X}_{11}, \mathbf{X}_{12}, \dots, \mathbf{X}_{1n_1}$ Population 2: $\mathbf{X}_{21}, \mathbf{X}_{22}, \dots, \mathbf{X}_{2n_2}$ \vdots \vdots Population $g: \mathbf{X}_{g1}, \mathbf{X}_{g2}, \dots, \mathbf{X}_{gn_g}$ MANOVA (Multivariate ANalysis Of VAriance) is used to investigate whether the population mean vectors are the same, and, if not, which mean components differ significantly

95

93

Scenario: Example 6.10, Nursing Home Data

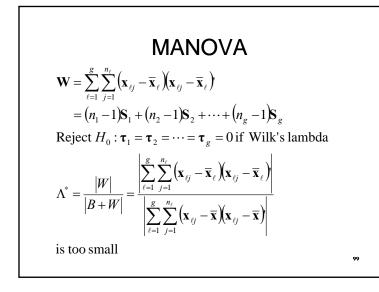
- Nursing homes can be classified by the owners: private (271), non-profit (138), government (107)
- Costs: nursing labor, dietary labor, plant operation and maintenance labor, housekeeping and laundry labor
- To investigate the effects of ownership on costs

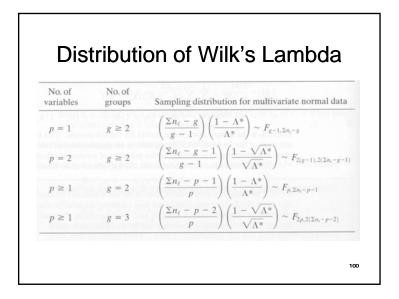
Assumptions about the Data

 $\mathbf{X}_{\ell 1}, \mathbf{X}_{\ell_2}, \cdots, \mathbf{X}_{\ell n_{\ell}}$: random sample from a population with mean $\mathbf{\mu}_{\ell}, \ell = 1, 2, \cdots, g$ Random sample from different populations are independent All populations have a common covariance matrix $\mathbf{\Sigma}$ Each population is multivariate normal

MANOVA	
$\mathbf{X}_{\ell j} = \mathbf{\mu} + \mathbf{\tau}_{\ell} + \mathbf{e}_{\ell j}; \ j = 1, 2, \cdots, n_{\ell}; \ \ell = 1, 2, \cdots, g$	
$\mathbf{e}_{ij}: N_p(0, \boldsymbol{\Sigma}), \boldsymbol{\mu}: \text{ overall mean (level)}$	
$\mathbf{\tau}_{\ell}$: ℓ th treatment effect, $\sum_{\ell=1}^{g} n_{\ell} \mathbf{\tau}_{\ell} = 0$	
$\mathbf{x}_{\ell j} = \overline{\mathbf{x}} + \left(\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}\right) + \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}\right) = \hat{\mathbf{\mu}} + \hat{\mathbf{\tau}}_{\ell} + \hat{\mathbf{e}}_{\ell j}$	
$\sum_{\ell=1}^{g}\sum_{j=1}^{n_{\ell}} \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}\right) \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}\right) = \sum_{\ell=1}^{g} n_{\ell} \left(\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}\right) \left(\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}\right)'$	
$+\sum_{\ell=1}^{g}\sum_{j=1}^{n_{\ell}} \left(\mathbf{x}_{\ell j}-\overline{\mathbf{x}}_{\ell}\right) \left(\mathbf{x}_{\ell j}-\overline{\mathbf{x}}_{\ell}\right) = \mathbf{B} + \mathbf{W}$	97

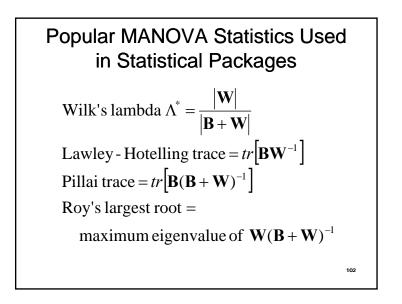
MANOVA TABLE F	OR COMPARING POPULATION MEAN VE	CTORS
	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.)
Treatment	$\mathbf{B} = \sum_{\ell=1}^{s} n_{\ell} (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}})'$	g - 1
Residual (Error)	$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell})'$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$\mathbf{B} + \mathbf{W} = \sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})'$	$\sum_{\ell=1}^{g} n_{\ell} - 1$





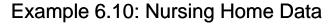
Test of Hypothesis for Large Size If H_0 is true and $\sum n_\ell = n$ is large, $-\left(n-1-\frac{p+g}{2}\right)\ln\Lambda^*:\chi^2_{p(g-1)}$ Reject H_0 at significance level α if $-\left(n-1-\frac{p+g}{2}\right)\ln\left(\frac{|\mathbf{W}|}{|\mathbf{B}+\mathbf{W}|}\right) > \chi^2_{p(g-1)}(\alpha)$

Example 6.9	
$ \begin{pmatrix} \begin{bmatrix} 9\\3 \end{bmatrix} \begin{bmatrix} 6\\2 \end{bmatrix} \begin{bmatrix} 9\\7 \end{bmatrix} \\ \begin{bmatrix} 0\\4 \end{bmatrix} \begin{bmatrix} 2\\0 \end{bmatrix} \\ \begin{bmatrix} 3\\8 \end{bmatrix} \begin{bmatrix} 1\\9 \end{bmatrix} \begin{bmatrix} 2\\7 \end{bmatrix} \\ \overline{\mathbf{x}}_1 = \begin{bmatrix} 8\\4 \end{bmatrix}, \overline{\mathbf{x}}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}, \overline{\mathbf{x}}_3 = \begin{bmatrix} 4\\5 \end{bmatrix}, \overline{\mathbf{x}} = \begin{bmatrix} 4\\5 \end{bmatrix} $	
$\begin{pmatrix} 9 & 6 & 9 \\ 0 & 2 & \\ 3 & 1 & 2 \end{pmatrix}, SS_{obs} = SS_{mean} + SS_{tr} + SS_{res} = 128 + 78 + 10 = 216$	
$\begin{pmatrix} 3 & 2 & 7 \\ 4 & 0 \\ 8 & 9 & 7 \end{pmatrix}, SS_{obs} = SS_{mean} + SS_{rr} + SS_{res} = 200 + 48 + 24 = 272$	103

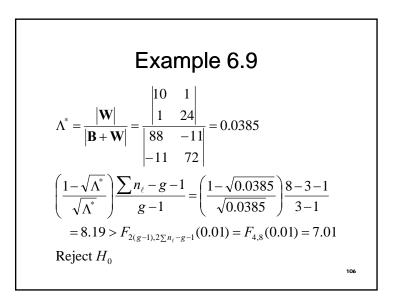


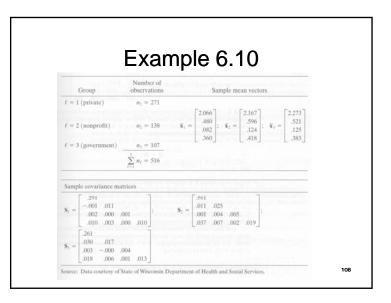
			Ε	xample 6.8		
				$ \begin{array}{cccc} 4 \\ 4 \\ 4 \end{array} + \begin{pmatrix} 4 & 4 & 4 \\ -3 & -3 & \\ -2 & -2 & -2 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \\ 5 \\ 5 \end{pmatrix} + \begin{pmatrix} -1 & -1 & -1 \\ -3 & -3 & \\ 3 & 3 & 3 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} $	/	
Cro	ss p	oroducts				
Mea	an:	$8 \times 4 \times 5 =$	160			
Trea	atm	ent: 3×4	×(-1	$)+2\times(-3)\times(-3)+3\times(-2)\times3=$	=-12	
Res	idu	al:1×(-1)	+(-	$2) \times (-2) + 1 \times 3 + \dots + 0 \times (-1) =$	- 1	
Tota	al : 9	$9 \times 3 + 6 \times 3$	2+9	$\times 7 + \dots + 2 \times 7 = 149$		10

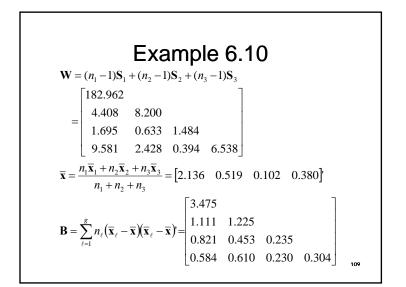
Source of variation	Matrix of sum of squares and cross products	Degrees of freedom
Treatment	$\begin{bmatrix} 78 & -12 \\ -12 & 48 \end{bmatrix}$	3 - 1 = 2
Residual	$\begin{bmatrix} 10 & 1 \\ 1 & 24 \end{bmatrix}$	3 + 2 + 3 - 3 = 5
Total (corrected)	$\begin{bmatrix} 88 & -11 \\ -11 & 72 \end{bmatrix}$	7

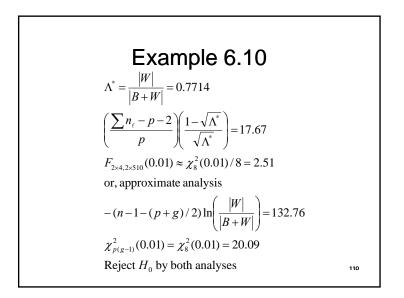


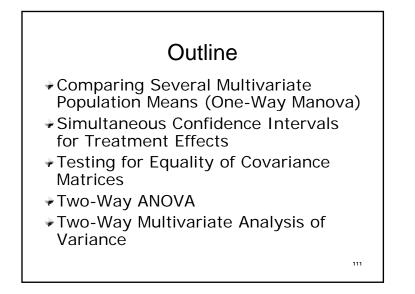
- Nursing homes can be classified by the owners: private (271), non-profit (138), government (107)
- Costs: nursing labor, dietary labor, plant operation and maintenance labor, housekeeping and laundry labor
- To investigate the effects of ownership on costs

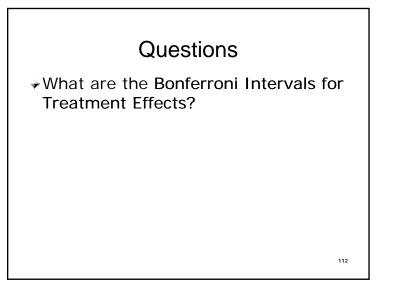












Bonferroni Intervals for Treatment Effects

$$\hat{\tau}_{ki} = \overline{x}_{ki} - \overline{x}_{i}, \quad \hat{\tau}_{ki} - \hat{\tau}_{\ell i} = \overline{x}_{ki} - \overline{x}_{\ell i}$$

$$\operatorname{Var}(\hat{\tau}_{ki} - \hat{\tau}_{\ell i}) = \operatorname{Var}(\overline{x}_{ki} - \overline{x}_{\ell i}) = \left(\frac{1}{n_{k}} + \frac{1}{n_{\ell}}\right) \sigma_{ii}$$

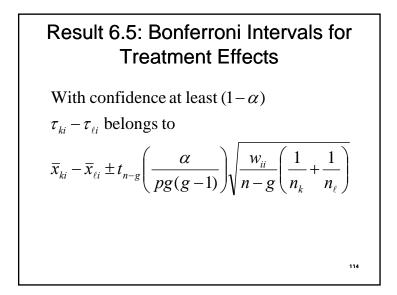
$$\mathbf{W} = (n_{1} - 1)\mathbf{S}_{1} + (n_{2} - 1)\mathbf{S}_{2} + \dots + (n_{g} - 1)\mathbf{S}_{g}$$

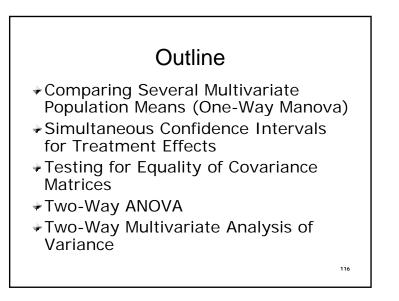
$$= (n - g)\mathbf{S}_{pooled} \approx (n - g)\mathbf{\Sigma}$$

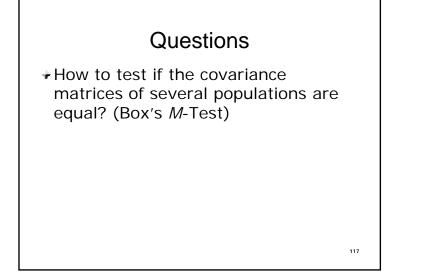
$$\operatorname{Var}(\hat{\tau}_{ki} - \hat{\tau}_{\ell i}) \approx \left(\frac{1}{n_{k}} + \frac{1}{n_{\ell}}\right) \frac{w_{ii}}{(n - g)}$$

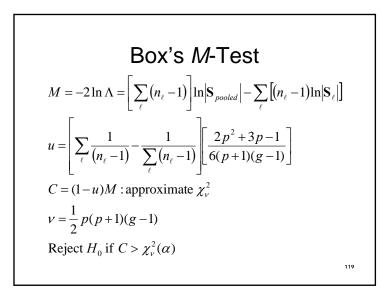
$$m = pg(g - 1)/2$$

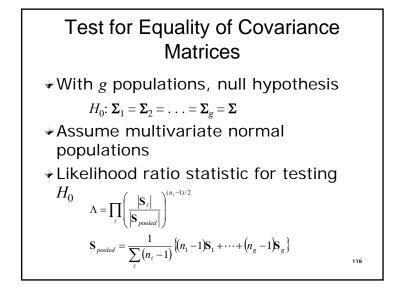
Example 6.11: Example 6.10 Data
$\hat{\mathbf{\tau}}_1 = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}} = \begin{bmatrix} -0.070 & -0.039 & -0.020 \end{bmatrix}$
$\hat{\boldsymbol{\tau}}_3 = \overline{\boldsymbol{x}}_3 - \overline{\boldsymbol{x}} = \begin{bmatrix} 0.137 & 0.002 & 0.023 & 0.003 \end{bmatrix}$
$\hat{\tau}_{13} - \hat{\tau}_{33} = -0.20 - 0.023 = -0.043, n = 516$
$\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_3}\right)\frac{w_{33}}{n-g}} = \sqrt{\left(\frac{1}{271} + \frac{1}{107}\right)\frac{1.484}{516-3}} = 0.00614$
$t_{513}(0.05/4 \times 3 \times 2) = 2.87$
95% simultaneous confidence interval for $\tau_{13} - \tau_{33}$
$-0.043 \pm 2.87 \times 0.00614$ or $(-0.061, -0.025)$
95% simultaneous confidence intervals for
$\tau_{13} - \tau_{23}$ and $\tau_{23} - \tau_{33}$: (-0.058, -0.026), (-0.021, 0.019)

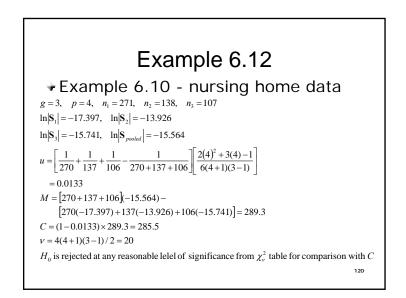












$x_1 = \text{tear resistance}, x_1 = \text{tear resistance}, x_2 = 1$	$x_2 = \text{gloss}, \text{ and } x_3 = \text{opacity}$						
		Fa	actor	2: Amo	unt of a	additi	ve
	L		Low (1.0%)		High (1.5%)		
	74.2055588053	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
		[6.5	9.5	4.4]	[6.9	9.1	5.7
		[6.2	9.9	6.4]	[7.2	10.0	2.0
	Low (-10)%	[5.8	9.6	3.0]	[6.9	9.9	3.9
		[6.5	9.6	4.1]	[6.1	9.5	1.9
Factor 1: Change		[6.5	9.2	0.8]	[6.3	9.4	5.7
in rate of extrusion		X1	<i>X</i> ₂	<i>x</i> ₃	x_1	x_2	x
		[6.7	9.1	2.8]		9.2	
		10.7	2.1	2.0]	[/.1	2.4	0.4

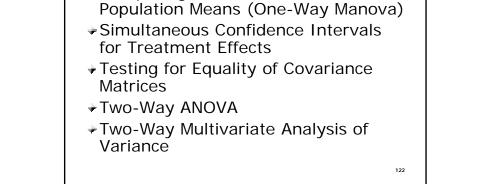
High (10%)

[7.2 8.3 3.8]

[7.1 8.4 1.6] [6.8 8.5 3.4] [7.2 9.7 6.9] [7.5 10.1 2.7]

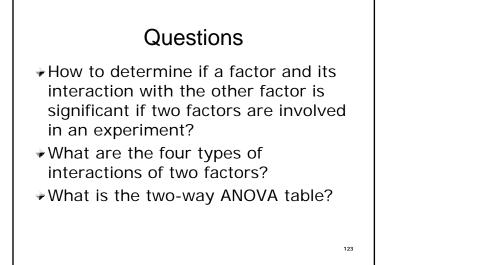
[7.6 9.2 1.9]

121



Outline

Comparing Several Multivariate



Scenarios

- To observe if effects of factors in the following scenarios are significant
 - Ratings of music compressed by MP3 compressors: brands vs. ages of the subjects
 - Performance of Teaching: methods (Lectures, group studying, and computer assisted instruction) vs. genders of undergraduate students

Teaching Methods vs. Gender: Knowing only Overall Mean								
Gender	CAI	Lecture	Group Studying	Mean				
Boys	50	50	50	50				
Girls	50	50	50	50				
Mean	50	50	50	50				
				125				

Teaching Methods vs. Gender: Knowing Overall Mean, Row Effects, and Column Effects								
Gender	CAI	Lecture	Group Studying	Mean				
Boys	50	40	30	40				
Girls	70	60	50	60				
Mean	60	50	40	50				
		1	I	127				

Teaching Methods vs. Gender: Knowing Overall Mean and Row Effects								
Gender	CAI	Lecture	Group Studying	Mean				
Boys	40	40	40	40				
Girls	60	60	60	60				
Mean	50	50	50	50				
				126				

Teaching Methods vs. Gender: Including Interaction Terms								
Gender	CAI	Lecture	Group Studying	Mean				
Boys	65	40	15	40				
Girls	55	60	65	60				
Mean	60	50	40	50				

Comparing Four MP3 Compressors

- ✤Test four brands, A, B, C, D
- 10 subjects, 5 young and 5 senior, each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

129	

		А	В	С	D	Mean
	1~4	4	5	7	2	
	5~8	4	5	8	1	5.05
Young	9~12	5	6	7	2	
Subjects	13~16	5	6	9	3	
	17~20	6	7	6	3	
	Mean	4.8	5.8	7.4	2.2	1

		San	nple l	Jata		
		А	В	С	D	Mean
	21~24	3	6	3	4	
	25~28	4	4	2	5	
Senior	29~32	4	5	2	4	3.70
Subjects	33~36	3	6	2	4	
	37~40	4	3	3	3	1
	Mean	3.6	4.8	2.4	4.0	
		А	В	С	D	Mean
Brand Mean		4.2	5.3	4.9	3.1	4.375

Sum of Squares (Young/Senior) $SS(young \, / \, senior) = bn \sum_{\ell=1}^{s} (\overline{x}_{\ell \bullet} - \overline{x})^2$ $SS(young / senior) = 20[(5.05 - 4.375)^{2} + (3.70 - 4.375)^{2}]$ =18.225 132

Sum of Squares (Brands)

$$SS(brands) = gn \sum_{k=1}^{b} (\bar{x}_{\bullet k} - \bar{x})^{2}$$

$$SS(brands) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$$

$$= 27.875$$

$$Ss(within) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{\gamma=1}^{n} (x_{\ell k \gamma} - \bar{x}_{\ell k})$$

$$Ss(within) = (4 - 4.8)^{2} + (4 - 4.8)^{2} + \dots + (6 - 4.8)^{2} + (5 - 5.8)^{2} + (5 - 5.8)^{2} + \dots + (7 - 5.9)^{2} + \dots + (4 - 4.0)^{2} + (5 - 4.0)^{2} + \dots + (3 - 4.0)^{2}$$

$$[40 \text{ terms}]$$

$$= 24.80$$

$$\begin{aligned} & \text{sum of Squares (Total)} \\ &$$

Sum of Squares (Interactions)

$$S(interactions) = n \sum_{\ell=1}^{g} \sum_{k=1}^{b} (\bar{x}_{\ell_k} - \bar{x}_{\ell_k} - \bar{x}_{\ell_k})^2$$

$$S(interactions) = 5[(4.8 - 4.875)^2 + (3.6 - 3.525)^2 + (.4.6) - 2.425)^2]$$

$$[8 \text{ terms}]$$

$$= 58.475$$

Sum of Squares (Total)

 $SS(total) = (4 - 4.375)^{2} + (4 - 4.375)^{2} + \dots + (4 - 4.375)^{2} + (5 - 4.375)^{2} + (5 - 4.375)^{2} + (5 - 4.375)^{2} + \dots + (3 - 4.375)^{2} + (7 - 4.375)^{2} + (8 - 4.375)^{2} + \dots + (3 - 4.375)^{2} + (2 - 4.375)^{2} + (1 - 4.375)^{2} + \dots + (3 - 4.375)^{2}$ [40 terms] = 129.375 = 18.225 + 58.475 + 24.80 + 27.875

137

Degrees of Freedom

```
df (young / senior) = g - 1 = 2 - 1 = 1

df (brand) = b - 1 = 4 - 1 = 3

df (within) = bg(n - 1) = 8(5 - 1) = 32

df (interactions) = (b - 1)(g - 1) = (4 - 1)(2 - 1) = 3

df (total) = bgn - 1 = bg(n - 1) + (b - 1)(g - 1) + b - 1 + g - 1

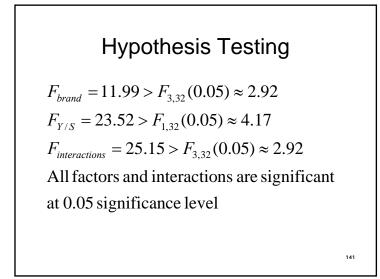
= df (within) + df (interactions) + df (brand) + df (young / senior)

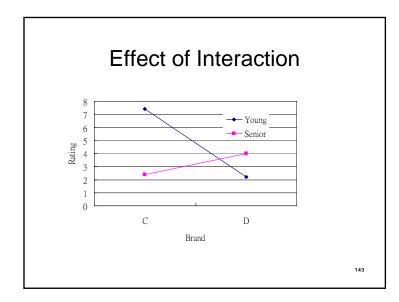
= 40 - 1 = 39 = 32 + 3 + 3 + 1
```

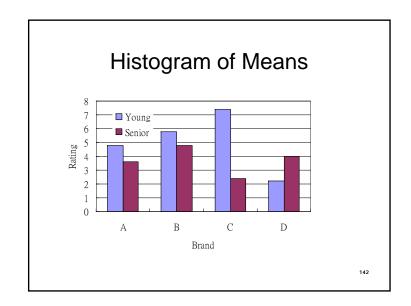
E[SS(brand) / df (brand)] contains σ_{brand}^2 , σ_{err}^2 E[SS(within) / df (within)] = σ_{err}^2 Thus, if brand effect is significant $\frac{E[SS(brand) / df (brand)]}{E[SS(within) / df (within)]} > 1$ $F_{brand} > 1$

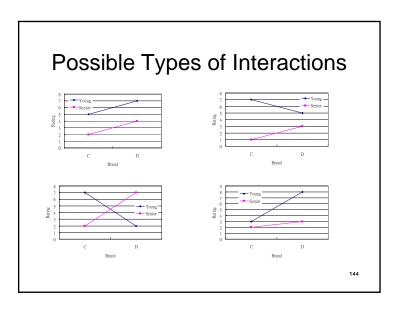
Source	Sum of	df	Mean	F
	Squares		square	
Brand	27.875	3	9.29	11.99
Young/ Senior	18.225	1	18.23	23.52
Brand X Y/S	58.475	3	19.49	25.15
Within	24.80	32	0.78	
Total	129.375	39		140

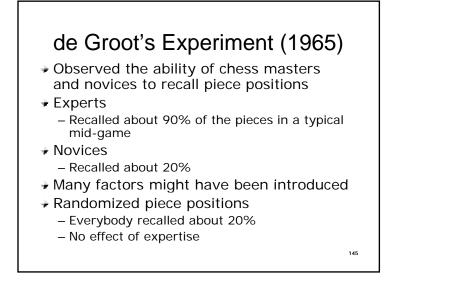
Two-way ANOVA Summary

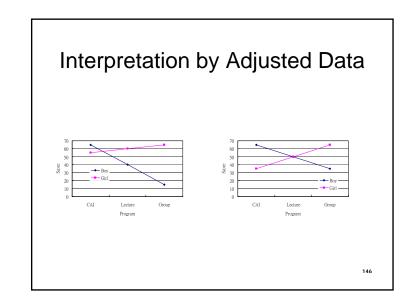


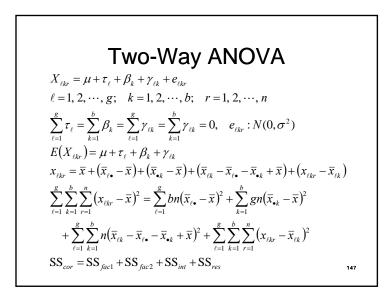


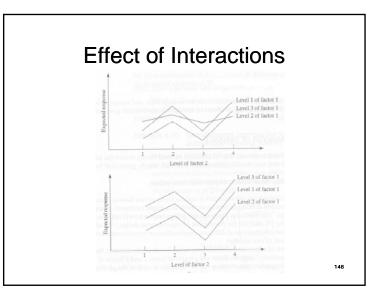


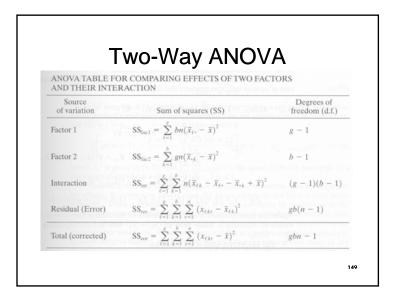






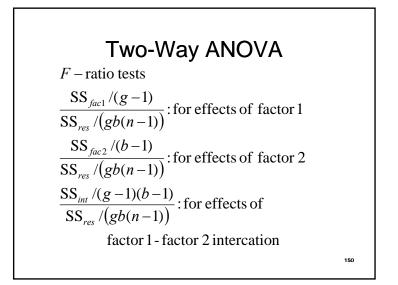


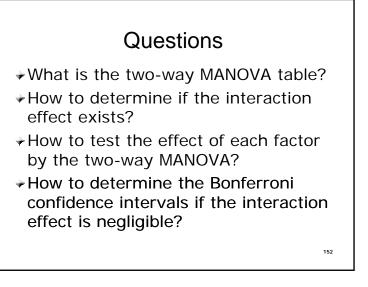




Outline

- Comparing Several Multivariate
 Population Means (One-Way Manova)
- Simultaneous Confidence Intervals for Treatment Effects
- Testing for Equality of Covariance Matrices
- ✤Two-Way ANOVA
- Two-Way Multivariate Analysis of Variance





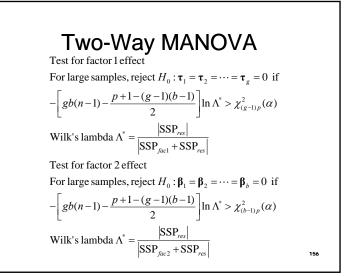
Two-Way MANOVA

$$\begin{split} \mathbf{X}_{\ell k r} &= \mathbf{\mu} + \mathbf{\tau}_{\ell} + \mathbf{\beta}_{k} + \mathbf{\gamma}_{\ell k} + \mathbf{e}_{\ell k r} \\ \ell &= 1, 2, \cdots, g; \quad k = 1, 2, \cdots, b; \quad r = 1, 2, \cdots, n \\ \sum_{\ell=1}^{g} \mathbf{\tau}_{\ell} &= \sum_{k=1}^{b} \mathbf{\beta}_{k} = \sum_{\ell=1}^{g} \mathbf{\gamma}_{\ell k} = \sum_{k=1}^{b} \mathbf{\gamma}_{\ell k} = 0, \quad \mathbf{e}_{\ell k r} : N_{p}(\mathbf{0}, \mathbf{\Sigma}) \\ \mathbf{x}_{\ell k r} &= \overline{\mathbf{x}} + (\overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\bullet \bullet} + \overline{\mathbf{x}}) + (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k}) \\ \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}})^{\prime} = \\ \sum_{\ell=1}^{g} b n(\overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}})^{\prime} + \sum_{k=1}^{b} g n(\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}})^{\prime} \\ &+ \sum_{\ell=1}^{g} \sum_{k=1}^{b} n(\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}_{\bullet k} + \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\bullet \bullet} + \overline{\mathbf{x}})^{\prime} \\ &+ \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k})^{\prime} \end{split}$$

153

Two-Way MANOVA MANOVA TABLE FOR COMPARING FACTORS AND THEIR INTERACTION Degrees of freedom Matrix of sum of squares Source of (d.f.) and cross products (SSP) variation $\text{SSP}_{\text{fsc1}} = \sum_{\ell=1}^{\infty} bn(\overline{\mathbf{x}}_{\ell}, -\overline{\mathbf{x}})(\overline{\mathbf{x}}_{\ell}, -\overline{\mathbf{x}})'$ g - 1Factor 1 $SSP_{fac2} = \sum_{k=1}^{b} gn(\overline{\mathbf{x}}_{,k} - \overline{\mathbf{x}})(\overline{\mathbf{x}}_{,k} - \overline{\mathbf{x}})'$ Factor 2 Interaction SSP_{int} = $\sum_{\ell=1}^{\varepsilon} \sum_{k=1}^{b} n(\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell}, -\overline{\mathbf{x}}_{\cdot k} + \overline{\mathbf{x}})(\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell}, -\overline{\mathbf{x}}_{\cdot k} + \overline{\mathbf{x}})'$ (g-1)(b-1)Residual $SSP_{res} = \sum_{k=1}^{s} \sum_{k=1}^{b} \sum_{k=1}^{n} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k})' \qquad gb(n-1)$ (Error) Total $SSP_{cor} = \sum_{i=1}^{g} \sum_{j=1}^{b} \sum_{i=1}^{d} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}})' \qquad gbn = 1$ (corrected) 154

$\begin{array}{l} \textbf{ Descend the product of th$



Bonferroni Confidence Intervals

With negligible interactions, the simultaneus confidence intervals are

$$(\bar{x}_{\ell \bullet i} - \bar{x}_{m \bullet i}) \pm t_p \left(\frac{\alpha}{pg(g-1)}\right) \sqrt{\frac{E_{ii}}{\nu} \frac{2}{bn}} \quad \text{for } \tau_{\ell i} - \tau_{m i}$$

and
$$(\bar{x}_{\bullet k i} - \bar{x}_{\bullet q i}) \pm t_p \left(\frac{\alpha}{pb(b-1)}\right) \sqrt{\frac{E_{ii}}{\nu} \frac{2}{gn}} \quad \text{for } \beta_{k i} - \beta_{q i}$$

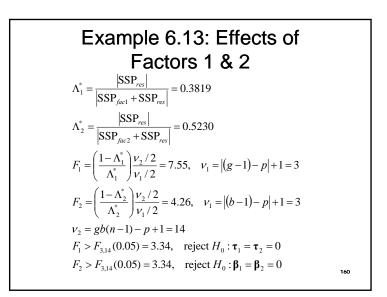
$$\nu = gb(n-1), \quad \mathbf{E} = \mathbf{SSP}_{res}$$

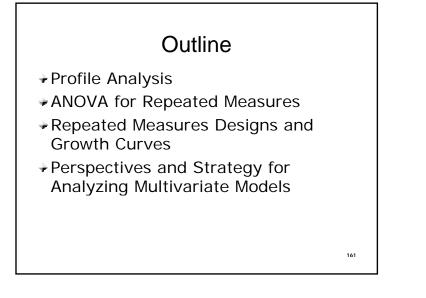
157

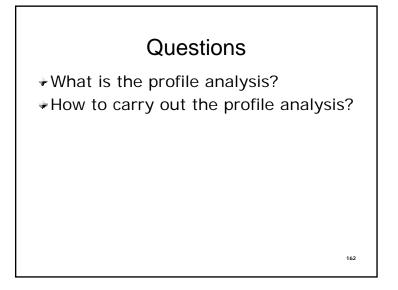
Example 6.13: Interaction $\begin{aligned}
& A^* = \frac{|SSP_{res}|}{|SSP_{int} + SSP_{res}|} = 0.771 \\
& (g-1)(b-1) = 1 \\
& F = \left(\frac{1-A^*}{A^*}\right) \frac{(gb(n-1)-p+1)/2}{([g-1)(b-1)-p]+1)/2} : F_{v_1,v_2} \\
& v_1 = |g-1)(b-1) - p| + 1 = 3 \\
& v_2 = gb(n-1) - p + 1 = 14 \\
& F = 1.34 < F_{3,14}(0.05) = 3.34 \\
& H_0: \gamma_{11} = \gamma_{12} = \gamma_{21} = \gamma_{22} = 0 \text{ (no interaction) is not rejected}
\end{aligned}$

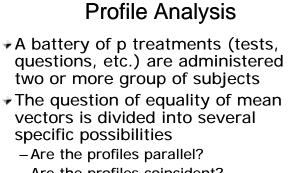
Example 6.13: MANOVA Table

Source of variation		SSP		d.f.
above in out	[1.7405	-1.5045	.8555	
Factor 1: change in rate of extrusion		1.3005	7395	1
or extrusion	13		.4205	
amount of	.7605	.6825	1.9305	
Factor 2:	Server sugar	.6125	1.7325	1
additive	L		4.9005	
	.0005	.0165	.0445	
Interaction	TORE E -MER	.5445	1.4685	1
	1	.3443	3.9605	
	1.7640	.0200	-3.0700	
Residual		2.6280	5520	16
018/201200			64.9240	
	4.2655	7855	2395	0.0247
Total (corrected)		5.0855	1.9095	19
	L		74.2055	







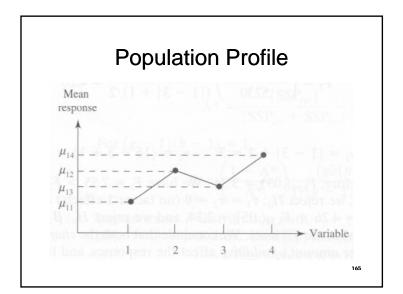


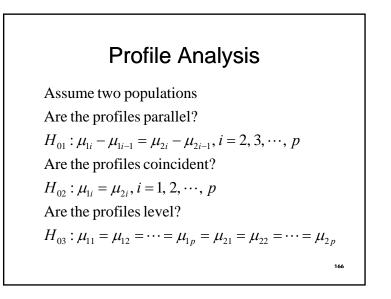
questions, etc.) are administered to

163

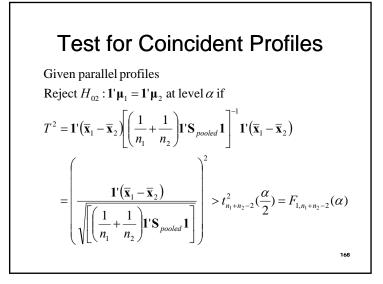
- vectors is divided into several specific possibilities
 - -Are the profiles coincident?
 - -Are the profiles level?

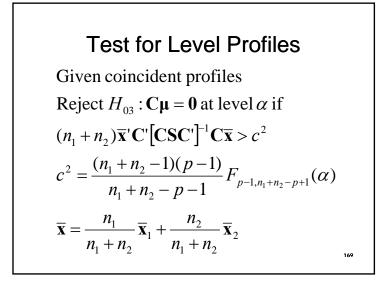
Example 6.14: Love and Marriage Data 1 2 2 4 1 3 4 5 5 1 200 6 1. All things considered, how would you describe your contributions to the marriage? 2. All things considered, how would you describe your outcomes from the marriage? Subjects were also asked to respond to the following questions, using the 5-point scale shown. 3. What is the level of *passionate* love that you feel for your partner? 4. What is the level of *companionate* love that you feel for your partner? at all little deal 164



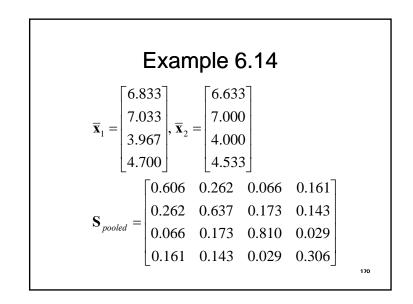


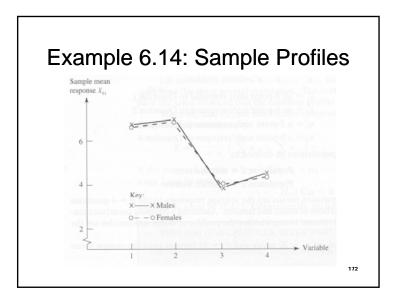
Test for Parallel Profiles
$\begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$
$\mathbf{C}_{(p-1)\times p} = \begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$
$\mathbf{C}\mathbf{X}_{1j} : N_{p-1}(\mathbf{C}\boldsymbol{\mu}_1, \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}'), \mathbf{C}\mathbf{X}_{2j} : N_{p-1}(\mathbf{C}\boldsymbol{\mu}_2, \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}')$
Reject H_{01} : $\mathbf{C}\mathbf{\mu}_1 = \mathbf{C}\mathbf{\mu}_2$ at level α if
$T^{2} = \left(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right)'\mathbf{C}' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \mathbf{CS}_{pooled} \mathbf{C}' \right]^{-1} \mathbf{C} \left(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right) > c^{2}$
$c^{2} = \frac{(n_{1} + n_{2} - 2)(p - 1)}{n_{1} + n_{2} - p} F_{p - 1, n_{1} + n_{2} - p}(\alpha)$





Example 6.14: Test for Parallel Profiles	
$\mathbf{CS}_{pooled}\mathbf{C}' = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \mathbf{S}_{pooled} \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$	
$\mathbf{C}(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}) = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0.200 \\ 0.033 \\ -0.033 \\ 0.167 \end{bmatrix} = \begin{bmatrix} -0.167 \\ -0.066 \\ 0.200 \end{bmatrix}$	
$T^{2} = 1.005 < \frac{(30+30-2)(4-1)}{30+30-4} F_{3,56}(0.05) = 8.7$	



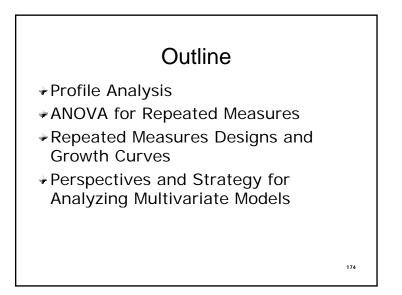


Example 6.14: Test for Coincident Profiles

$$\mathbf{l}'(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2}) = 0.367$$
$$\mathbf{l}'\mathbf{S}_{pooled} \mathbf{l} = 4.207$$
$$T^{2} = \left(\frac{0.367}{\sqrt{\left(\frac{1}{30} + \frac{1}{30}\right)} 4.207}}\right)^{2} = 0.501 < F_{1,58}(0.05) = 4.0$$

Questions

- ♦ What are repeated measures?
- How to view the data for repeated measures in a two-way ANOVA view?
- How to test the null hypothesis in repeated measures?



Repeated-Measures ANOVA

- Drugs A, B, C are tested to see if they are equally effective for pain relief
- Subjects are to take all of the drugs, in turn, suitably blinded and after a suitable washout period
- Subjects rate the degree of pain belief on a 1 to 6 scale (1: no relief, 6 complete relief)

Average

3.33

4.00

5.33

4.00

6.00

2.33

3.67

4.67

2.67

3.00

3.90

5

2

6

1

3

5

2

1

3.00

Avoiding Order Effects

- +Randomize the order of treatment
 - -1/3 get drug A first, 1/3 get drug B first, 1/3 get drug C first
- People in a long, natural healing course may grow tolerant of the irritant and learn to tune them out - The last medication may work the best -Order effects

177

Sample Data Subject В С А 5 3 1 2 2 5 4 3

6

4

6

2

4

5

2

3

5

6

6

4

4

4

4

5

4.80

3

4

5

6

7

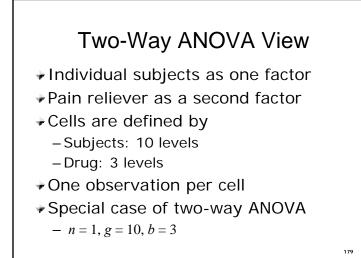
8

9

10

Means

3.90 *Adapted from: G. R. Norman and D. L. Streiner, *Biostatistics*, 3rd ed.



Sum of Squares (Drug) $SS(drug) = g \sum_{k=1}^{b} (\bar{x}_{\bullet k} - \bar{x})^2$ $SS(drug) = 10[(4.8-3.9)^2 + (3.9-3.9)^2 + (3.0-3.9)^2]$ =16.2180

Sum of Squares (Subjects)

$$SS(subjects) = b \sum_{\ell=1}^{g} (\overline{x}_{\ell \bullet} - \overline{x})^{2}$$

$$SS(subjects) = 3[(3.33 - 3.90)^{2} + (4.00 - 3.90)^{2} + \dots + (3.00 - 3.90)^{2}]$$

$$= 36.7$$

181

Sum of Squares (Within) $SS(within) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} (x_{\ell k \gamma} - \bar{x}_{\ell k}) = 0$

Sum of Squares (Interaction)

$$SS(interaction) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} (\bar{x}_{\ell k} - \bar{x}_{\ell \bullet} - \bar{x}_{\bullet k} + \bar{x})^{2}$$

$$SS(interaction) = [(5 - 4.23)^{2} + (3 - 3.33)^{2} + (1 - 2.10)^{2}]$$

$$[30 \text{ terms}]$$

$$= 15.8$$

Degrees of Freedom df(subject) = g - 1 = 0 - 1 = 9 df(subject) = g - 1 = 0 - 1 = 9 df(subject) = bg(-1) = 0 df(subject) = bg(-1) = (g - 1)(g - 1)(g - 1) = 16 df(subject) = bg(-1)(g - 1)(g - 1)(

Signal vs. Noise

- To determine if there is any significant difference in relief from different pain relievers

 Main effect of Drug
- \Rightarrow SS(within) = 0
- Choose SS(interaction) as error term
 - Reflects the extent to which different subjects respond differently to the different drug types

Hypothesis Testing

 $F_{Drug} = 9.225 > F_{2,18}(0.05) \approx 3.55$

Drug effect is significant (i.e., difference exists) at 0.05 significance level

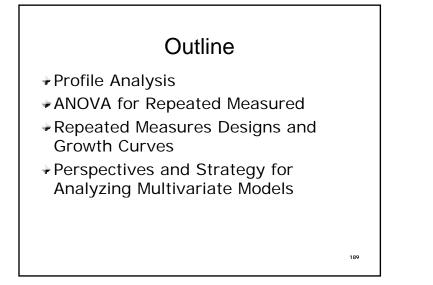
ANOVA Table

Source	Sum of	df	Mean	F
	Squares		square	
Drug	16.2	2	8.100	9.225
Subject	36.7	9	4.078	
Drug X Subject	15.8	18	0.878	
Totals	68.7	29		
				186

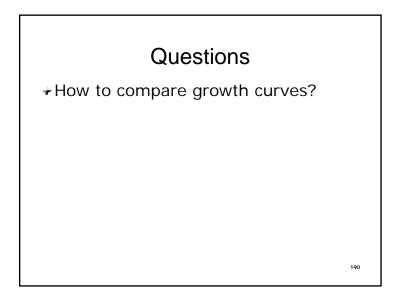
ANOVA Table for Same Data as a One-Way ANOVA Test

Source	Sum of Squares	df	Mean square	F
Drug	16.2	2	8.100	4.107
Error	52.5	27	1.944	
Totals	68.7	29		
				188

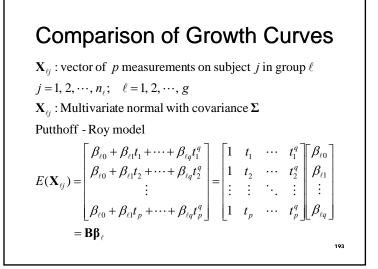
187

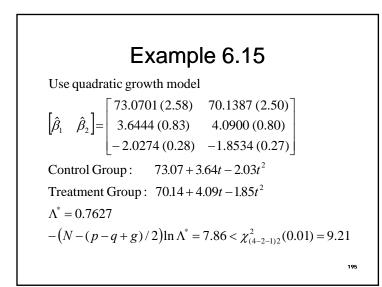


Control Group					
Subject	Initial	1 year	2 year	3 year	
1	87.3	86.9	86.7	75.5	
2	59.0	60.2	60.0	53.6	
3	76.7	76.5	75.7	69.5	
4	70.6	76.1	72.1	65.3	
5	54.9	55.1	57.2	49.0	
6	78.2	75.3	69.1	67.6	
7	73.7	70.8	71.8	74.6	
8	61.8	68.7	68.2	57.4	
9	85.3	84.4	79.2	67.0	
10	82.3	86.9	79.4	77.4	
11	68.6	65.4	72.3	60.8	
12	67.8	69.2	66.3	57.9	
13	66.2	67.0	67.0	56.2	
14	81.0	82.3	86.8	73.9	
15	72.3	74.6	75.3	66.1	
Mean	72.38	73.29	72.47	64.79	

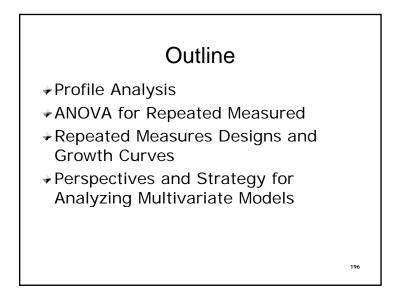


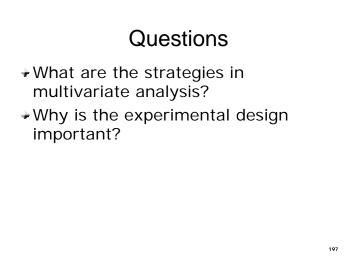
			oup	
Subject	Initial	1 year	2 year	3 year
1	83.8	85.5	86.2	81.2
2	65.3	66.9	67.0	60.6
3	81.2	79.5	84.5	75.2
00 4 S	75.4	76.7	74.3	66.7
5	55.3	58.3	59.1	54.2
6	70.3	72.3	70.6	68.6
7	76.5	79.9	80.4	71.6
8	66.0	70.9	70.3	64.1
9	76.7	79.0	76.9	70.3
10	77.2	74.0	77.8	67.9
11	67.3	70.7	68.9	65.9
12	50.3	51.4	53.6	48.0
13	57.7	57.0	57.5	51.5
14	74.3	77.7	72.6	68.0
15	74.0	74.7	74.5	65.7
16	57.3	56.0	64.7	53.0
Mean	69.29	70.66	71.18	64.53





 $\begin{aligned} & \textbf{B}(\mathbf{x}) = \mathbf{A}_{l} \\ \text{Maximum likelihood estimators of } \mathbf{\beta}_{\ell} :\\ & \hat{\mathbf{\beta}}_{\ell} = \left(\mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \overline{\mathbf{X}}_{\ell} \\ & \hat{\mathbf{\beta}}_{\ell} = \left(\mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \overline{\mathbf{X}}_{\ell} \\ & \hat{\mathbf{\beta}}_{pooled} = \frac{1}{N-g} \left((n_{1}-1) \mathbf{S}_{1} + \dots + \left(n_{g}-1 \right) \mathbf{S}_{g} \right) = \frac{\mathbf{W}}{N-g} \\ & \hat{\mathbf{M}}_{l} = \sum_{\ell=1}^{g} n_{\ell}, \quad \hat{\mathbf{Cov}}(\hat{\mathbf{\beta}}_{\ell}) = \frac{k}{n_{\ell}} \left(\mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \mathbf{B} \right)^{-1} \\ & \hat{\mathbf{M}}_{q} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} \left(\mathbf{X}_{\ell j} - \mathbf{B} \hat{\mathbf{\beta}}_{\ell} \right) \left(\mathbf{X}_{\ell j} - \mathbf{B} \hat{\mathbf{\beta}}_{\ell} \right), \quad \hat{\mathbf{M}}^{*} = \frac{\left| \mathbf{W} \right|}{\left| \mathbf{W}_{q} \right|} \\ & \text{Reject the null hypothesis that the polynomial is adequate if} \\ & - \left(N - (p - q + g)/2 \right) \ln \Lambda^{*} > \chi_{(p - q - 1)g}^{2} (\alpha) \end{aligned}$





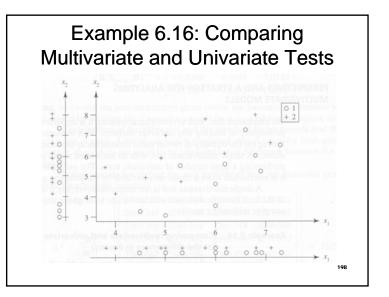
Example 6.16: Comparing Multivariate and Univariate Tests

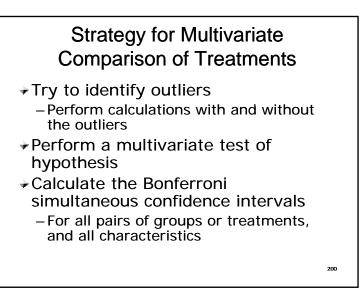
Univariate test on x_1 : $F = 2.46 < F_{1,18}(0.10) = 3.01$ Univariate test on x_2 : $F = 2.68 < F_{1,18}(0.10) = 3.01$ Accept $\mu_1 = \mu_2$

Hotelling's test :

$$T^2 = 17.29 > c^2 = \frac{18 \times 2}{17} F_{2,17}(0.01) = 12.94$$

Reject $\mu_1 = \mu_2$





Importance of Experimental Design

- Differences could appear in only one of the many characteristics or a few treatment combinations
- Differences may become lost among all the inactive ones
- Best preventative is a good experimental design
 - Do not include too many other variables that are not expected to show differences