Comparison of Several Multivariate Means

Shyh-Kang Jeng

Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking and Multimedia

Outline

- Introduction
- Comparison of Univariate Mean
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

Outline

- Comparing Several Multivariate
 Population Means (One-Way Manova)
- Simultaneous Confidence Intervals for Treatment Effects
- Testing for Equality of Covariance Matrices
- Two-Way ANOVA
- Two-Way Multivariate Analysis of Variance

Outline

- Profile Analysis
- ANOVA for Repeated Measures
- Repeated Measures Designs and Growth Curves
- Perspectives and Strategy for Analyzing Multivariate Models

Outline

- Introduction
- Comparison of Univariate Mean
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two
 Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

Introduction

 Extend previous ideas to handle problems involving the comparison of several mean vectors

Outline

- Introduction
- Comparison of Univariate Mean
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate Population Mean (One-Way ANOVA)

Questions

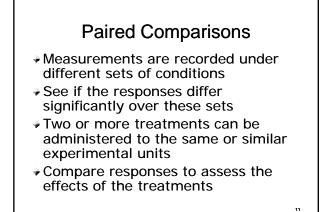
- What is the paired comparison?
- How to design experiments for paired comparison?
- How to test if the population means of paired groups are different?
- How to compute the confidence interval for the difference of population means of paired groups?

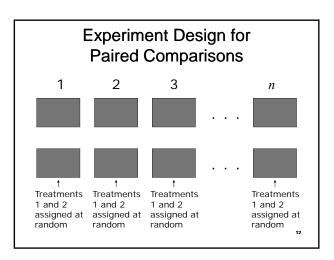
Questions

- How to compare population means of two populations without paired experiments?
- In such a case, how to estimate the common variance?

Scenarios

- To test if the differences are significant between
 - Teaching using Power Point vs. using chalks and blackboard only
 - -Drug vs. placebos
 - Processing speed of MP3 player model I of brand A vs. model G of brand B
 - Performance of students going to cram schools vs. those not





Single Response (Univariate) Case

 $D_{j} = X_{j1} - X_{j2}, j = 1, 2, \dots, n$ $D_{j} : N(\delta, \sigma_{d}^{2})$ $t = \frac{\overline{D} - \delta}{s_{d} / \sqrt{n}} : t_{n-1}$ Reject $H_{0} : \delta = 0$ in favor of $H_{1} : \delta \neq 0$ if $|t| > t_{n-1}(\alpha/2)$ $100(1 - \alpha)\%$ confidence interval for δ

$$\overline{d} - t_{n-1}(\alpha/2) \frac{s_d}{\sqrt{n}} \le \delta \le \overline{d} + t_{n-1}(\alpha/2) \frac{s_d}{\sqrt{n}}$$

- Without explicitly controlling for unitto-unit variability, as in the paired comparison case
- Experimental units are randomly assigned to populations
- Applicable to a more general collection of experimental units

Assumptions Concerning the Structure of Data

13

 $X_{11}, X_{12}, \dots, X_{1n_1}$: random sample from univariate population with mean μ_1 and variance σ_1^2 $X_{21}, X_{22}, \dots, X_{2n_2}$: random sample from univariate population with mean μ_2 and variance σ_2^2 $X_{11}, X_{12}, \dots, X_{1n_1}$ are independent of $X_{21}, X_{22}, \dots, X_{2n_2}$ Further assumptions when n_1 and n_2 small : Both populations are univariate normal $\sigma_1^2 = \sigma_2^2$

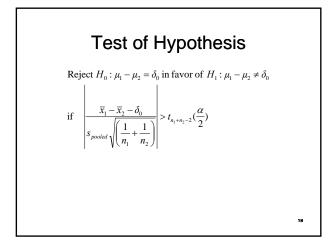
$$\frac{\text{Pooled Estimate of Population Variance}}{\sum_{j=1}^{n_1} (x_{j1} - \overline{x}_1)(x_{j1} - \overline{x}_1) \approx (n_1 - 1)\sigma^2}$$

$$\sum_{j=1}^{n_2} (x_{j2} - \overline{x}_2)(x_{j2} - \overline{x}_2) \approx (n_2 - 1)\sigma^2$$

$$s_{pooled}^2 = \frac{\sum_{j=1}^{n_1} (x_{j1} - \overline{x}_1)(x_{j1} - \overline{x}_1) + \sum_{j=1}^{n_2} (x_{j2} - \overline{x}_2)(x_{j2} - \overline{x}_2)}{n_1 + n_2 - 2}$$

$$= \frac{n_1 - 1}{n_1 + n_2 - 2} s_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} s_2^2$$

$$\begin{aligned} t-\text{Statistics for Comparing} \\ \text{Two Populations} \\ X_{11}, X_{12}, \cdots, X_{1n_1} : N(\mu_1, \sigma^2) \\ X_{21}, X_{22}, \cdots, X_{2n_2} : N(\mu_2, \sigma^2) \\ \overline{X}_1 - \overline{X}_2 &= \frac{1}{n_1} X_{11} + \dots + \frac{1}{n_1} X_{1n_1} - \frac{1}{n_2} X_{21} + \dots - \frac{1}{n_2} X_{2n_2} \\ &: N(\mu_1 - \mu_2, \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \sigma^2) \\ \Rightarrow t &= \left(\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)\right) / \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} s_{pooled}^2 \end{aligned}$$



20

Outline

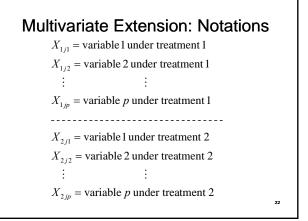
- Introduction
- Comparison of Univariate Mean
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate Population Mean (One-Way ANOVA)

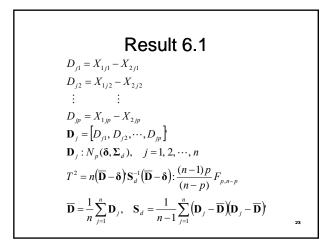
19

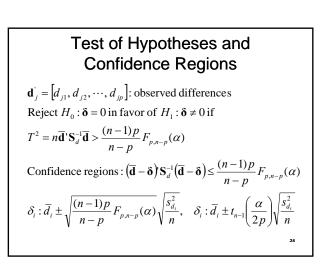
Questions

- How to make paired comparison for multivariate data?
- How to use the contrast matrix to carry out paired comparison for multivariate data?
- What is the repeated measures?
- How to test for equality of treatments in a repeated measures?

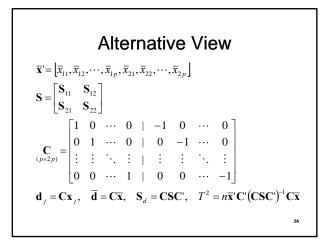
Example 6.1: Effluent Data from Two Labs					
Sample j	Commercial labSample j $x_{1/1}$ (BOD) $x_{1/2}$ (SS)		State lab of x_{2j1} (BOD)	hygiene $x_{2/2}$ (SS)	
1	6	27	25	15	
2	6	23	28	13	
3	18	64	36	22	
4	8	44	35	29	
5	11	30	15	31	
6	34	75	44	64	
7	28	26	42	30	
8	71	124	54	64	
9	43	54	34	56	
10	33	30	29	20	
11	20	14	39	21	
ource: Data	courtesy of S. We	ber.			

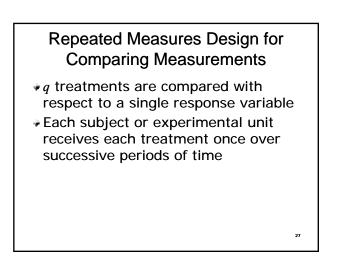


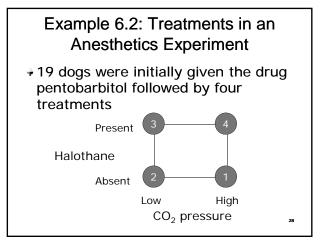




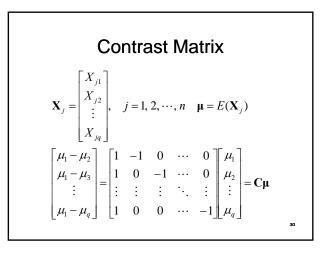
Example 6.1: Check Measurements from Two Labs $\vec{\mathbf{d}} = \begin{bmatrix} \vec{d}_1 \\ \vec{d}_2 \end{bmatrix} = \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}, \quad \mathbf{S}_d = \begin{bmatrix} 199.26 & 88.38 \\ 88.38 & 418.61 \end{bmatrix}$ $T^2 = 11 \begin{bmatrix} -9.36 & 13.27 \\ -0.0012 & 0.0026 \end{bmatrix} \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}$ $= 13.6 > \frac{2 \times 10}{9} F_{2,9} (0.05) = 9.47$ Reject $H_0 : \mathbf{\delta} = 0$ $\delta_1 : -9.36 \pm \sqrt{9.47} \sqrt{199.26/11} \text{ or } (-22.46, 3.74)$ $\delta_2 : 13.27 \pm \sqrt{9.47} \sqrt{418.61/11} \text{ or } (-5.71, 32.25)$ Both includes zero





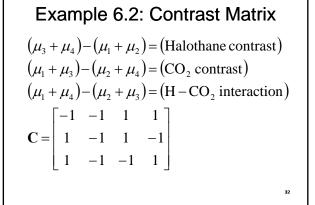


	0	0000	Jing i	Dog	Date
((LA)9)	0.02010	Treat	ment		-
Dog	1	2	3	4	
1	426	609	556	600	
2	253	236	392	395	
3	359	433	349	357	
4	432	431	522	600	
5	405	426	513	513	
6	324	438	507	539	
7	310	312	410	456	
8	326	326	350	504	
9	375	447	547	548	
10	286	286	403	422	
11	349	382	473	497	
12	429	410	488	547	
13	348	377	447	514	
14	412	473	472	446	
15	347	326	455	468	
16	434	458	637	524	
17	364	367	432	469	
18	420	395	508	531	
19	397	556	645	625	

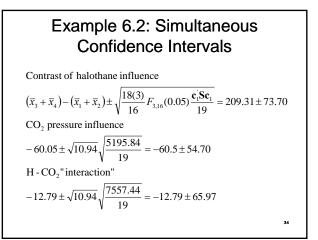


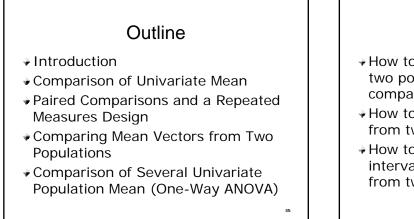
Test for Equality of Treatments in a Repeated Measures Design

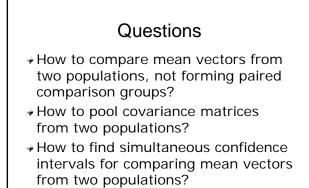
 $\mathbf{X} : N_q(\mathbf{\mu}, \mathbf{\Sigma}), \quad \mathbf{C} : \text{contrast matrix}$ Test of $H_0 : \mathbf{C}\mathbf{\mu} = 0 \text{ vs. } H_1 : \mathbf{C}\mathbf{\mu} \neq 0$ Reject H_0 if $T^2 = n(\mathbf{C}\overline{\mathbf{x}})'(\mathbf{CSC'})^{-1}\mathbf{C}\overline{\mathbf{x}} > \frac{(n-1)(q-1)}{(n-q+1)}F_{q-1,n-q+1}(\alpha)$











Questions

What is the multivariate Behrens-Fisher problem and how to solve it?

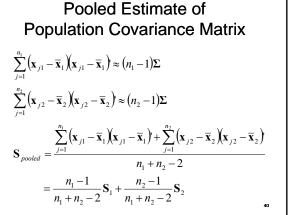
37

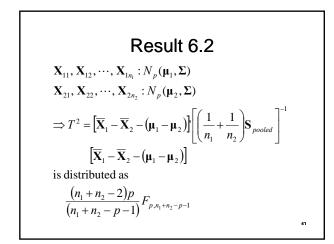
Comparing Mean Vectors from Two Populations

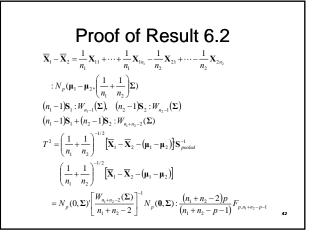
- Populations: Sets of experiment settings
- Without explicitly controlling for unitto-unit variability, as in the paired comparison case
- Experimental units are randomly assigned to populations
- Applicable to a more general collection of experimental units

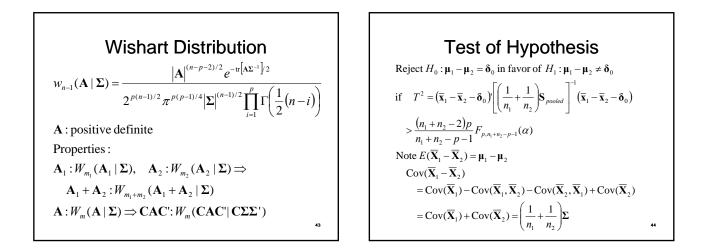
Assumptions Concerning the Structure of Data $X_{11}, X_{12}, \dots, X_{1n_1}$: random sample from p – variate population with mean vector μ_1 and covariance Σ_1 $X_{21}, X_{22}, \dots, X_{2n_2}$: random sample from p – variate population with mean vector μ_2 and covariance Σ_2 $X_{11}, X_{12}, \dots, X_{1n_1}$ are independent of $X_{21}, X_{22}, \dots, X_{2n_2}$ Further assumptions when n_1 and n_2 small: Both populations are multivariate normal

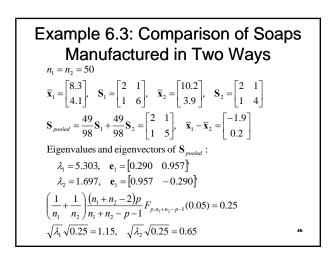
 $\Sigma_1 = \Sigma_2$

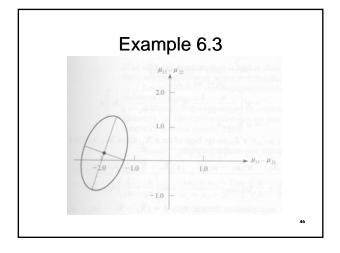


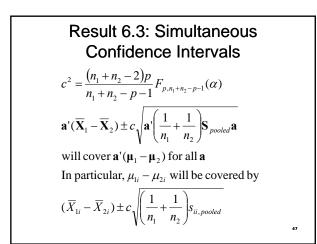


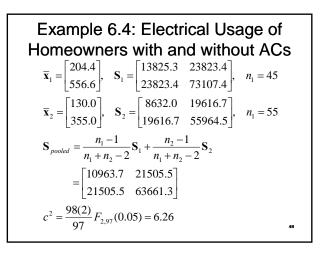


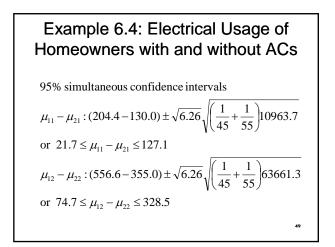


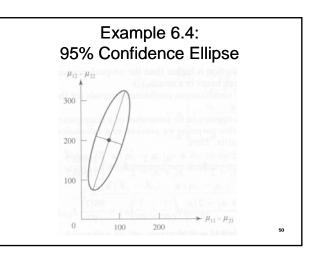


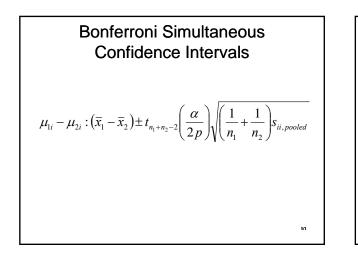


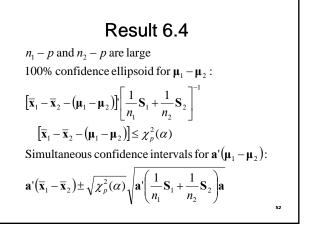


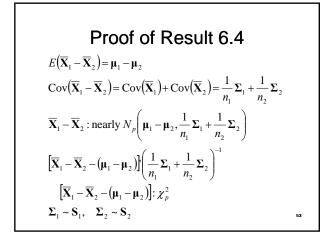


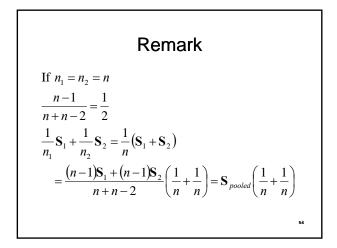












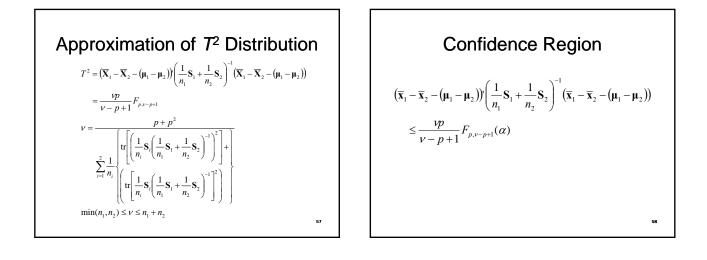
56

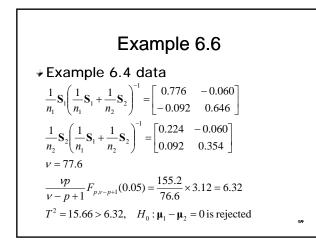
Example 6.5

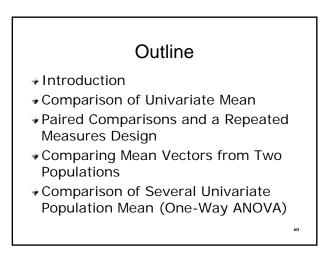
Example 6.4 Data $\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2} = \begin{bmatrix} 464.17 & 886.08\\ 886.08 & 2642.15 \end{bmatrix}$ $\mu_{11} - \mu_{21} : 74.4 \pm \sqrt{5.99}\sqrt{464.17} \text{ or } (21.7, 127.1)$ $\mu_{12} - \mu_{22} : 201.6 \pm \sqrt{5.99}\sqrt{2642.15} \text{ or } (75.8, 327.4)$ $H_{0} : \mathbf{\mu}_{1} - \mathbf{\mu}_{2} = 0$ $T^{2} = [\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}] \left[\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2} \right]^{-1} [\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}] = 15.66 > \chi_{2}^{2}(0.05) = 5.99$ Critical linear combination : $\left[\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2} \right]^{-1} [\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}] = \begin{bmatrix} 0.041\\ 0.063 \end{bmatrix}_{\mathbf{55}}$

Multivariate Behrens-Fisher Problem

- ✤ Test H₀: μ₁-μ₂=0
- Population covariance matrices are unequal
- +Sample sizes are not large
- Populations are multivariate normal
- Both sizes are greater than the number of variables







Questions

- Why paired comparisons are not good ways to compare several population means?
- How to compute summed squares (between)?
- How to compute summed squares (within)?
- How to compute summed squares (total)?

Questions

- How to calculate the degrees of freedom for summed squares (between)?
- How to calculate the degrees of freedom for summed squares (within)?
- How to calculate the degrees of freedom for summed squares (total)?

Questions

- How to compute the F value for testing of the null hypothesis?
- How are the three kinds of summed squares related?
- How to explain the geometric meaning of the degrees of freedom for a treatment vector?
- What is an ANOVA table?

Scenarios

- To test if the following statements are plausible
 - Music compressed by four MP3 compressors are with the same quality
 - Three new drugs are all as effective as a placebo
 - -Four brands of beer are equally tasty
 - Lectures, group studying, and computer assisted instruction are equally effective for undergraduate students

64

Comparing Four MP3 Compressors

- Test four brands, A, B, C, D
- 10 subjects each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

5

61

Hypotheses

Null hypothesis

$$H_0: \mu_A = \mu_B = \mu_C = \mu_D$$

- Alternative hypothesis
 - H_1 : Not all the μ s are equal

Problem of Using a *t*-Test

- Must compare two brands at a time
- There are 6 possible comparisons
- Each has a 0.05 chance of being significant by chance
- Overall chance of significant result, even when no difference exist, approaches 1-(0.95)⁶ ~ 0.26

67

Sample Data Subject Α в С D 4 5 2 7 1 2 4 5 8 1 5 3 7 6 2 4 5 6 9 3 6 7 5 6 3 3 6 4 6 3 2 7 4 4 5 8 4 5 2 4 9 3 6 2 4 10 4 3 3 3 Mean 4.2 5.3 4.9 3.1 Grand mean: 4.375 *Adapted from: G. R. Norman and D. L. Streiner, Biostatistics, 3rd ed.

Thinking in Terms of Signals and Noises

- Signals
 - Overall difference among the means of the groups
 - Sum of all the squared differences between group means and the overall means
- Noises
 - $-\operatorname{Overall}$ variability within the groups
 - Sum of all the squared differences between individual data and their group means

Sum of Squares (Between)

 $SS(between) = n \sum (\bar{x}_{\ell} - \bar{x})^{2}$ $SS(between) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$ = 27.875

Sum of Squares (Within)

$$SS(within) = \sum_{\ell} \sum_{j} \left(x_{\ell j} - \bar{x}_{\ell} \right)^{2}$$

$$SS(within) = (4 - 4.2)^{2} + (4 - 4.2)^{2} + \dots + (4 - 4.2)^{2} + (5 - 5.3)^{2} + (5 - 5.3)^{2} + \dots + (3 - 5.3)^{2} + (7 - 4.9)^{2} + (8 - 4.9)^{2} + \dots + (3 - 4.9)^{2} + (2 - 3.1)^{2} + (1 - 3.1)^{2} + \dots + (3 - 3.1)^{2}$$

$$[40 \text{ terms}]$$

$$= 101.50$$

Sum of Squares (Total)

$$SS(total) = \sum_{\ell} \sum_{j} (x_{\ell j} - \bar{x})^{2}$$

$$x_{\ell j} - \bar{x} = (x_{\ell j} - \bar{x}_{\ell}) + (\bar{x}_{\ell} - \bar{x})$$

$$(x_{\ell j} - \bar{x})^{2} = (x_{\ell j} - \bar{x}_{\ell})^{2} + 2(x_{\ell j} - \bar{x}_{\ell})(\bar{x}_{\ell} - \bar{x}) + (\bar{x}_{\ell} - \bar{x})^{2}$$

$$\sum_{j} (x_{\ell j} - \bar{x}_{\ell}) = 0$$

$$\sum_{j} (x_{\ell j} - \bar{x})^{2} = \sum_{j} (x_{\ell j} - \bar{x}_{\ell})^{2} + n(\bar{x}_{\ell} - \bar{x})^{2}$$

$$SS(total) = SS(within) + SS(between)$$

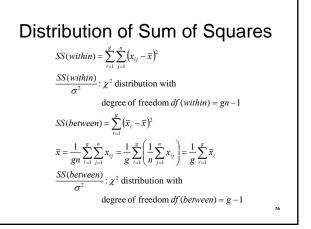
Sum of Squares (Total)

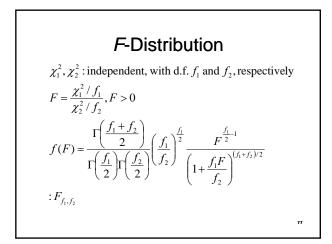
 $SS(total) = (4 - 4.375)^{2} + (4 - 4.375)^{2} + \dots + (4 - 4.375)^{2} + (5 - 4.375)^{2} + (5 - 4.375)^{2} + (5 - 4.375)^{2} + \dots + (3 - 4.375)^{2} + (7 - 4.375)^{2} + (8 - 4.375)^{2} + \dots + (3 - 4.375)^{2} + (2 - 4.375)^{2} + (1 - 4.375)^{2} + \dots + (3 - 4.375)^{2}$ [40 terms] = 129.375 = 101.50 + 27.875

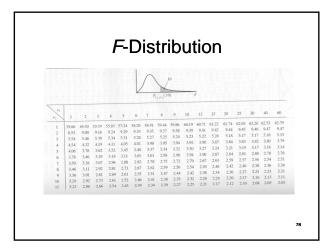
73

 $\chi^{2} \text{ Distribution}$ $X_{1}: N(\mu_{1}, \sigma_{1}^{2}), \quad X_{2}: N(\mu_{2}, \sigma_{2}^{2}), \quad \cdots,$ $X_{\nu}: N(\mu_{\nu}, \sigma_{\nu}^{2}); \quad Z_{i} = \frac{X_{i} - \mu_{i}}{\sigma_{i}}: N(0,1)$ $\chi^{2} = \sum_{i=1}^{\nu} \left(\frac{x_{i} - \mu_{i}}{\sigma_{i}}\right)^{2}, \quad \nu: \text{degrees of freedom (d.f.)}$ $f_{\nu}(\chi^{2}) = \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} (\chi^{2})^{\nu/2-1} e^{-\chi^{2}/2}, \chi^{2} > 0\\ 0, \qquad \chi^{2} \leq 0 \end{cases}$ (Gamma distribution with $\alpha = \nu/2$)

Distribution of Sum of Squares $X: N(\mu, \sigma^{2})$ $S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (X_{j} - \overline{X})^{2}$ $(n-1) \frac{S^{2}}{\sigma^{2}}: \chi^{2} \text{ distribution with } n-1 \text{ degrees of freedom}$ [proved by moment generating function, see P. G. Hoel, *Introduction to Mathematical Statistics*, 5th ed., John Wiley & Sons, 1984, p. 281]







Distribution of F

 $F = \frac{SS(between) / df(between)}{SS(within) / df(within)}$: F distribution of degree of freedoms df(between) and df(within)

Expected Values of Sum of Squares if no difference between groups $E[SS(between)/df(between)] = \sigma_{er}^{2}$, if no difference within groups $E[SS(between)/df(between)] = n\sigma_{bet}^{2} + \sigma_{er}^{2}$, if both differences can happen $E[SS(between)/df(between)] = n\sigma_{bet}^{2} + \sigma_{er}^{2}$, Thus, if H_{0} is invalid $\frac{E[SS(between)/df(between)]}{E[SS(within)/df(within)]} = \frac{n\sigma_{bet}^{2} + \sigma_{er}^{2}}{\sigma_{er}^{2}} > 1$

Degrees of Freedom

df (between) = g - 1 = 4 - 1 = 3 df (within) = g(n - 1) = 4(10 - 1) = 36 df (total) = gn - 1 = gn - g + g - 1 = df (within) + df (between)= 40 - 1 = 39 = 36 + 3

ANOVA Summary

Source	Sum of Squares	df	Mean square	F
Between	27.875	3	9.292	3.296
Within	101.500	36	2.819	
Total	129.375	39		
	ļ	ļ	<u> </u>	82

Hypothesis Testing

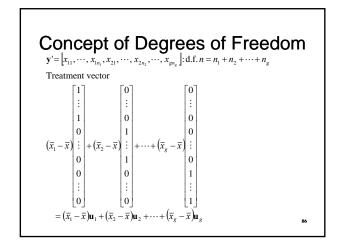
 $F = 3.296 > F_{3,36}(0.05) = 2.86$ reject $H_0: \mu_A = \mu_B = \mu_C = \mu_D$ at 0.05 significance level

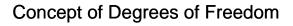
Univariate ANOVA

 $\begin{aligned} X_{\ell 1}, X_{\ell 2}, \cdots, X_{\ell n_{\ell}} : \text{random sample from } N(\mu_{\ell}, \sigma^2) \\ \ell = 1, 2, \cdots, g \\ \text{Null hypothesis } H_0 : \mu_1 = \mu_2 = \cdots = \mu_g \\ \text{Reparameterization} \\ \mu_{\ell} = \mu + \tau_{\ell} \\ H_0 : \tau_1 = \tau_2 = \cdots = \tau_g = 0 \\ X_{\ell j} = \mu + \tau_{\ell} + e_{\ell j}, \quad e_{\ell j} : N(0, \sigma^2), \quad \sum_{\ell=1}^g n_{\ell} \tau_{\ell} = 0 \\ x_{\ell j} = \overline{x} + (\overline{x}_{\ell} - \overline{x}) + (x_{\ell j} - \overline{x}_{\ell}) \end{aligned}$

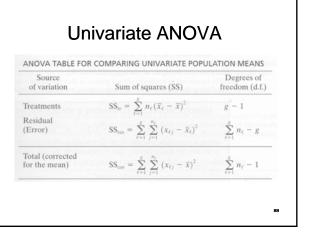
Univariate ANOVA

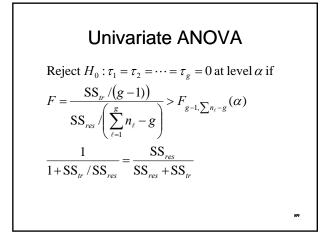
$$\begin{pmatrix} x_{\ell j} - \bar{x} \end{pmatrix}^{2} = (\bar{x}_{\ell} - \bar{x})^{2} + (x_{\ell j} - \bar{x}_{\ell})^{2} + 2(\bar{x}_{\ell} - \bar{x})(x_{\ell j} - \bar{x}_{\ell}) \\ \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell}) = 0 \\ \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^{2} = n_{\ell} (\bar{x}_{\ell} - \bar{x})^{2} + \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^{2} \\ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^{2} = \sum_{\ell=1}^{g} n_{\ell} (\bar{x}_{\ell} - \bar{x})^{2} + \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^{2} \\ (SS_{cor}) = (SS_{tr}) + (SS_{res}) \\ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} x_{\ell j}^{2} = (n_{1} + n_{2} + \dots + n_{\ell}) \bar{x}^{2} + \sum_{\ell=1}^{g} n_{\ell} (\bar{x}_{\ell} - \bar{x})^{2} + \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^{2} \\ (SS_{obs}) = (SS_{mean}) + (SS_{tr}) + (SS_{res}) \end{cases}$$

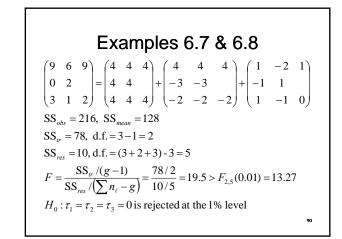




 $\mathbf{1} = [\mathbf{1}, \dots, \mathbf{1}] = \mathbf{u}_1 + \mathbf{u}_2 + \dots + \mathbf{u}_g$ Treatment vector and **1** are all on the hyperplane spanned by $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_g : \mathrm{d.f.} g$ **1** is perpendicular to the treatment vector \therefore mean vector $\overline{x}\mathbf{1} : \mathrm{d.f.} g - 1$ Residual vector $\mathbf{e} = \mathbf{y} - \overline{x}\mathbf{1} - [(\overline{x}_1 - \overline{x})\mathbf{u}_1 + (\overline{x}_2 - \overline{x})\mathbf{u}_2 + \dots + (\overline{x}_g - \overline{x})\mathbf{u}_g]$ perpendicular to the hyperplane spanned by $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_g$ \therefore d.f. of $\mathbf{e} : n - g$







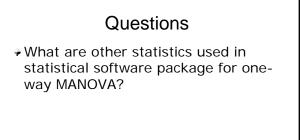
92

Outline

- Comparing Several Multivariate
 Population Means (One-Way Manova)
- Simultaneous Confidence Intervals for Treatment Effects
- Testing for Equality of Covariance Matrices
- Two-Way ANOVA
- Two-Way Multivariate Analysis of Variance

Questions

- What is the one-way MANOVA table?
- How to compute Wilk's lambda for MANOVA?
- How to test the equality of several mean vectors from the Wilk's lambda?
- How to test the equality of several mean vectors for large sample size?



Scenario: Example 6.10, Nursing Home Data

- Nursing homes can be classified by the owners: private (271), non-profit (138), government (107)
- Costs: nursing labor, dietary labor, plant operation and maintenance labor, housekeeping and laundry labor
- To investigate the effects of ownership on costs

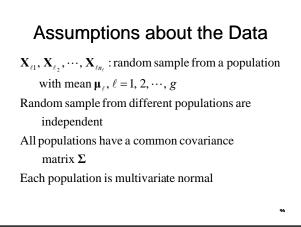
One-Way MANOVA

Population 1: \mathbf{X}_{11} , \mathbf{X}_{12} , \cdots , \mathbf{X}_{1n_1} Population 2: \mathbf{X}_{21} , \mathbf{X}_{22} , \cdots , \mathbf{X}_{2n_2}

÷ ÷

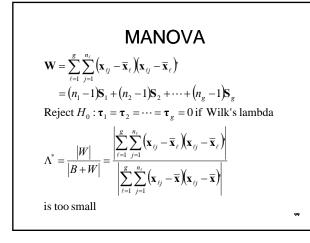
Population $g: \mathbf{X}_{g1}, \mathbf{X}_{g2}, \cdots, \mathbf{X}_{gn_g}$

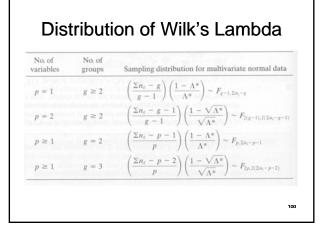
MANOVA (Multivariate ANalysis Of VAriance) is used to investigate whether the population mean vectors are the same, and, if not, which mean components differ significantly

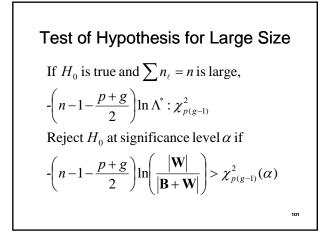


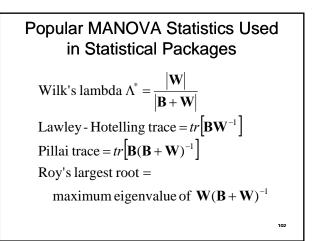
 $\begin{aligned} \mathbf{MANOVA} \\ \mathbf{X}_{ij} &= \mathbf{\mu} + \mathbf{\tau}_{\ell} + \mathbf{e}_{ij}; \ j = 1, 2, \cdots, n_{\ell}; \ \ell = 1, 2, \cdots, g \\ \mathbf{e}_{ij} : N_p(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{\mu}: \text{ overall mean (level)} \\ \mathbf{\tau}_{\ell} : \ell \text{th treatment effect}, \sum_{\ell=1}^{g} n_{\ell} \mathbf{\tau}_{\ell} = \mathbf{0} \\ \mathbf{x}_{ij} &= \overline{\mathbf{x}} + (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}) + (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{\ell}) = \hat{\mathbf{\mu}} + \hat{\mathbf{\tau}}_{\ell} + \hat{\mathbf{e}}_{ij} \\ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{ij} - \overline{\mathbf{x}}) + (\mathbf{x}_{ij} - \overline{\mathbf{x}}) = \hat{\mathbf{\mu}} + \hat{\mathbf{\tau}}_{\ell} + \hat{\mathbf{e}}_{ij} \\ + \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{ij} - \overline{\mathbf{x}}) (\mathbf{x}_{ij} - \overline{\mathbf{x}}) = \mathbf{B} + \mathbf{W} \end{aligned}$

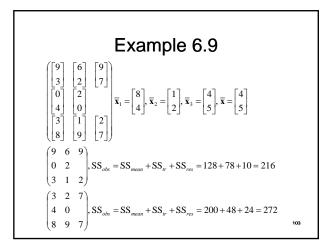
	OR COMPARING POPULATION MEAN VE	CTOPS
Source of variation	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.
Treatment	$\mathbf{B} = \sum_{\ell=1}^{g} n_{\ell} (\bar{\mathbf{x}}_{\ell} - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_{\ell} - \bar{\mathbf{x}})'$	g - 1
Residual (Error)	$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell})'$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$\mathbf{B} + \mathbf{W} = \sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})'$	$\sum_{\ell=1}^{\delta} n_{\ell} - 1$

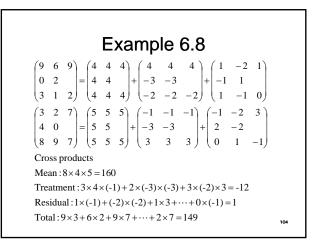


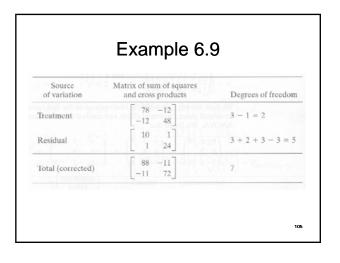


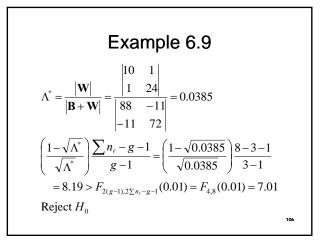


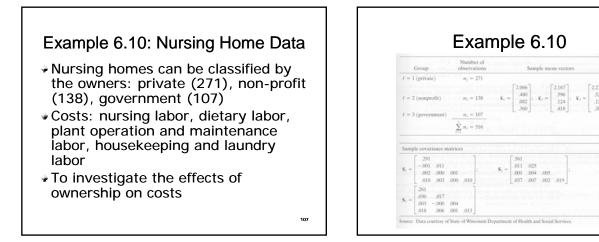


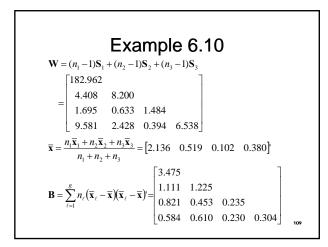


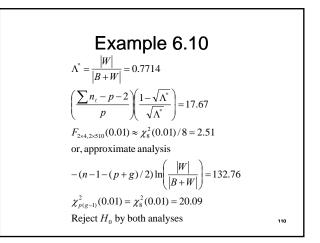


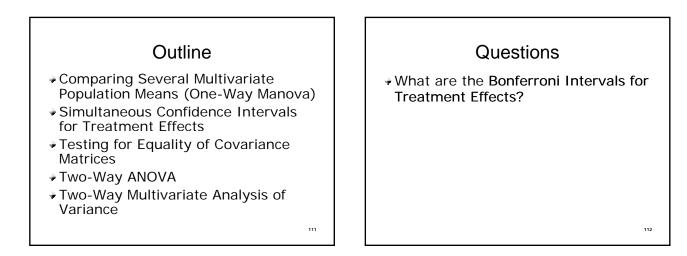












Bonferroni Intervals for Treatment Effects

$$\hat{\tau}_{ki} = \overline{x}_{ki} - \overline{x}_{i}, \quad \hat{\tau}_{ki} - \hat{\tau}_{\ell i} = \overline{x}_{ki} - \overline{x}_{\ell i}$$

$$\operatorname{Var}(\hat{\tau}_{ki} - \hat{\tau}_{\ell i}) = \operatorname{Var}(\overline{x}_{ki} - \overline{x}_{\ell i}) = \left(\frac{1}{n_{k}} + \frac{1}{n_{\ell}}\right) \sigma_{ii}$$

$$\mathbf{W} = (n_{1} - 1)\mathbf{S}_{1} + (n_{2} - 1)\mathbf{S}_{2} + \dots + (n_{g} - 1)\mathbf{S}_{g}$$

$$= (n - g)\mathbf{S}_{pooled} \approx (n - g)\mathbf{\Sigma}$$

$$\operatorname{Var}(\hat{\tau}_{ki} - \hat{\tau}_{\ell i}) \approx \left(\frac{1}{n_{k}} + \frac{1}{n_{\ell}}\right) \frac{w_{ii}}{(n - g)}$$

$$m = pg(g - 1)/2$$

Result 6.5: Bonferroni Intervals for
Treatment Effects
With confidence at least
$$(1-\alpha)$$

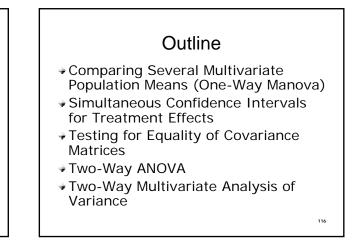
 $\tau_{ki} - \tau_{\ell i}$ belongs to
 $\overline{x}_{ki} - \overline{x}_{\ell i} \pm t_{n-g} \left(\frac{\alpha}{pg(g-1)}\right) \sqrt{\frac{w_{ii}}{n-g} \left(\frac{1}{n_k} + \frac{1}{n_\ell}\right)}$

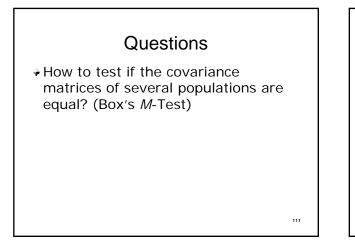
Example 6.11: Example 6.10 Data

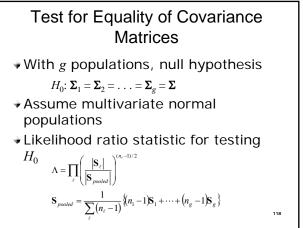
 $\hat{\boldsymbol{\tau}}_1 = \bar{\boldsymbol{x}}_1 - \bar{\boldsymbol{x}} = \begin{bmatrix} -0.070 & -0.039 & -0.020 \end{bmatrix}^t$ $\hat{\boldsymbol{\tau}}_3 = \bar{\boldsymbol{x}}_3 - \bar{\boldsymbol{x}} = \begin{bmatrix} 0.137 & 0.002 & 0.023 & 0.003 \end{bmatrix}^{1}$ $\hat{\tau}_{13} - \hat{\tau}_{33} = -0.20 - 0.023 = -0.043, n = 516$ $\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_3}\right)\frac{w_{33}}{n-g}} = \sqrt{\left(\frac{1}{271} + \frac{1}{107}\right)\frac{1.484}{516-3}} = 0.00614$

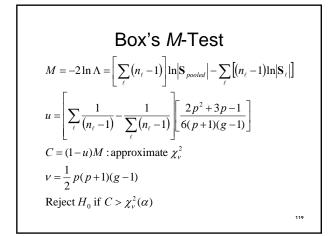
 $t_{513}(0.05/4 \times 3 \times 2) = 2.87$

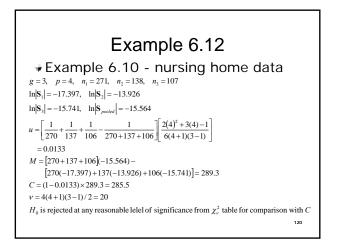
95% simultaneous confidence interval for $\tau_{13} - \tau_{33}$ $-0.043 \pm 2.87 \times 0.00614$ or (-0.061, -0.025)95% simultaneous confidence intervals for $\tau_{13} - \tau_{23} \text{ and } \tau_{23} - \tau_{33}: (-0.058, -0.026), (-0.021, 0.019)$ 115





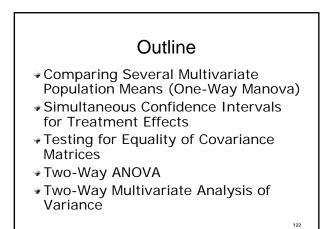






Example 6.13: Plastic Film Data

		Factor 2: Amount			unt of	of additive	
PROGRAM COMMANDS	- 508 ISO00	Low (1.0%)		High (1.5%)		5%)	
		<i>x</i> ₁	<u>x</u> 2	<u>x3</u>	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
		[6.5	9.5	4.4]	[6.9	9.1	5.71
		6.2	9.9	6.4]	7.2	10.0	2.0]
	Low (-10)%	5.8	9.6	3.0]	[6.9	9.9	3.9]
		[6.5	9.6		[6.1	9.5	1.9]
Factor 1: Change		[6.5	9.2	0.8]	[6.3	9.4	5.7]
in rate of extrusion		$\underline{x_1}$	<u>X2</u>	<u>X3</u>	\underline{x}_1	\underline{x}_2	<u>X3</u>
		[6.7	9.1	2.8]	[7.1	9.2	8.4]
		[6.6	9.3	4.1]	[7.0	8.8	5.2]
	High (10%)	[7.2	8.3	3.8]	[7.2	9.7	6.9]
		[7.1	8.4	1.6]	[7.5	10.1	2.7]
		6.8	8.5	3.4]	[7.6	9.2	1.9]



Questions

- How to determine if a factor and its interaction with the other factor is significant if two factors are involved in an experiment?
- What are the four types of interactions of two factors?
- What is the two-way ANOVA table?

123

Scenarios	
 To observe if effects of factors in the following scenarios are significant 	ý
 Ratings of music compressed by MP3 compressors: brands vs. ages of the subjects 	
 Performance of Teaching: methods (Lectures, group studying, and computer assisted instruction) vs. genders of undergraduate students 	
	124

Teaching Methods vs. Gender: Knowing only Overall Mean								
Gender	CAI	Lecture	Group Studying	Mean				
Boys	50	50	50	50				
Girls	50	50	50	50				
Mean	50	50	50	50				
				125				

Teaching Methods vs. Gender: Knowing Overall Mean and Row Effects Group Gender CAI Lecture Mean Studying Boys 40 40 40 40 Girls 60 60 60 60 50 50 Mean 50 50

	Teaching Methods vs. Gender: Knowing Overall Mean, Row Effects, and Column Effects								
Gender	CAI	Lecture	Group Studying	Mean					
Boys	50	40	30	40					
Girls	70	60	50	60					
Mean	60	50	40	50					
				127					

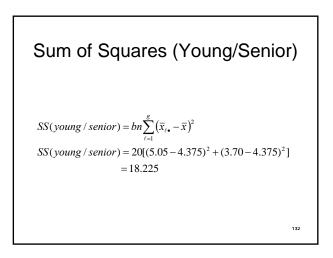
Teaching Methods vs. Gender: Including Interaction Terms								
Gender	CAI	Lecture	Group Studying	Mean				
Boys	65	40	15	40				
Girls	55	60	65	60				
Mean	60	50	40	50				
				128				

Comparing Four MP3 Compressors

- ✤Test four brands, A, B, C, D
- 10 subjects, 5 young and 5 senior, each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

		А	В	С	D	Mean
	1~4	4	5	7	2	
	5~8	4	5	8	1	5.05
Young	9~12	5	6	7	2	
Subjects	13~16	5	6	9	3	5.05
	17~20	6	7	6	3	
	Mean	4.8	5.8	7.4	2.2	

		San	nple	Data		
		А	В	С	D	Mean
Senior	21~24	3	6	3	4	3.70
	25~28	4	4	2	5	
	29~32	4	5	2	4	
Subjects	33~36	3	6	2	4	
	37~40	4	3	3	3	
	Mean	3.6	4.8	2.4	4.0	
		А	В	С	D	Mean
Brand	Mean	4.2	5.3	4.9	3.1	4.375



Sum of Squares (Brands)

$$SS(brands) = gn \sum_{k=1}^{b} (\bar{x}_{\bullet k} - \bar{x})^{2}$$

$$SS(brands) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$$

$$= 27.875$$

133

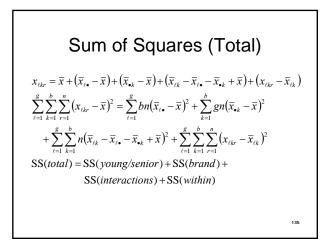
Sum of Squares (Within)

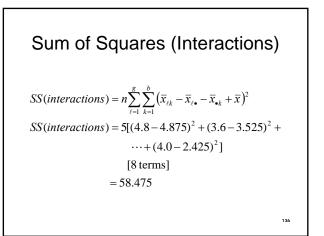
$$SS(within) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{\gamma=1}^{n} (x_{\ell k \gamma} - \bar{x}_{\ell k})$$

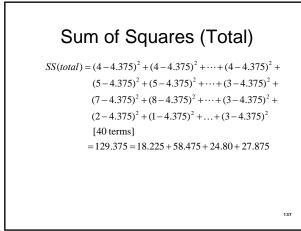
$$SS(within) = (4 - 4.8)^{2} + (4 - 4.8)^{2} + \dots + (6 - 4.8)^{2} + (5 - 5.8)^{2} + (5 - 5.8)^{2} + \dots + (7 - 5.9)^{2} + \dots + (4 - 4.0)^{2} + (5 - 4.0)^{2} + \dots + (3 - 4.0)^{2}$$

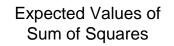
$$[40 \text{ terms}]$$

$$= 24.80$$









$$\begin{split} E[SS(brand) / df(brand)] \text{ contains } \sigma_{brand}^{2}, \sigma_{interactions}^{2}, \sigma_{err}^{2} \\ E[SS(within) / df(within)] &= \sigma_{err}^{2} \\ \text{Thus, if brand effect is significant} \\ \frac{E[SS(brand) / df(brand)]}{E[SS(within) / df(within)]} > 1 \\ F_{brand} > 1 \end{split}$$

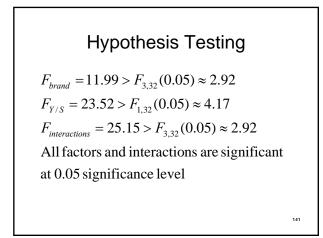
Degrees of Freedom

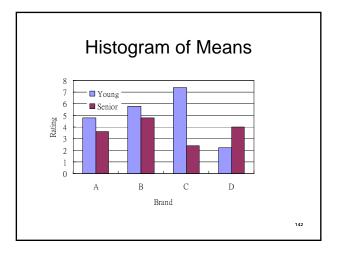
```
\begin{split} df(young / senior) &= g - 1 = 2 - 1 = 1 \\ df(brand) &= b - 1 = 4 - 1 = 3 \\ df(within) &= bg(n - 1) = 8(5 - 1) = 32 \\ df(interactions) &= (b - 1)(g - 1) = (4 - 1)(2 - 1) = 3 \\ df(total) &= bgn - 1 = bg(n - 1) + (b - 1)(g - 1) + b - 1 + g - 1 \\ &= df(within) + df(interactions) + \\ df(brand) + df(young / senior) \\ &= 40 - 1 = 39 = 32 + 3 + 1 \end{split}
```

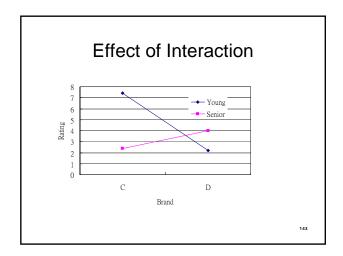
139

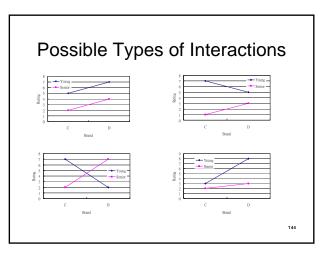
Two-way ANOVA Summary

Source	Sum of	df	Mean	F
	Squares		square	
Brand	27.875	3	9.29	11.99
Young/	18.225	1	18.23	23.52
Senior	10.225	1	10.25	23.52
Brand X	58.475	3	19.49	25.15
Y/S	50.475	5	17.47	23.15
Within	24.80	32	0.78	
Total	129.375	39		140





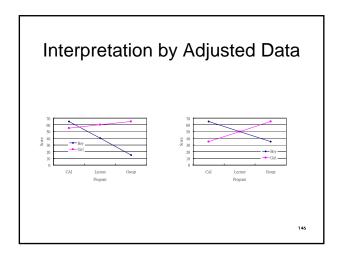


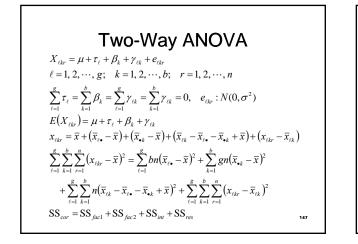


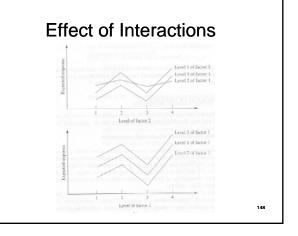
de Groot's Experiment (1965)

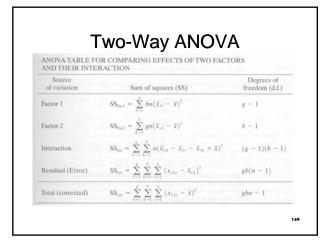
- Observed the ability of chess masters and novices to recall piece positions
- Experts
 - Recalled about 90% of the pieces in a typical mid-game
- Novices
 - Recalled about 20%
- Many factors might have been introduced

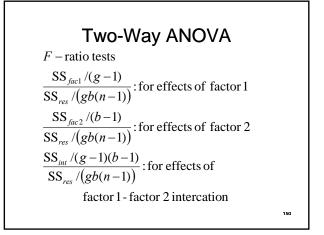
- + Randomized piece positions
 - Everybody recalled about 20%
 - No effect of expertise











152

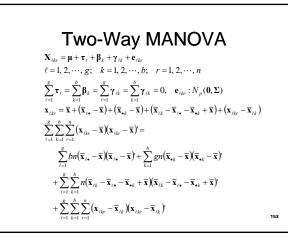
Outline

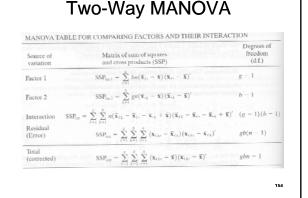
- Comparing Several Multivariate
 Population Means (One-Way Manova)
- Simultaneous Confidence Intervals for Treatment Effects
- Testing for Equality of Covariance Matrices
- Two-Way ANOVA
- Two-Way Multivariate Analysis of Variance

151

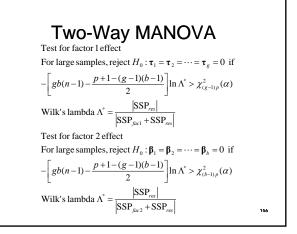
Questions

- What is the two-way MANOVA table?
- How to determine if the interaction effect exists?
- How to test the effect of each factor by the two-way MANOVA?
- How to determine the Bonferroni confidence intervals if the interaction effect is negligible?





Two-Way MANOVA Test for interaction For large samples, reject $H_0: \gamma_{11} = \gamma_{12} = \dots = \gamma_{gb} = 0$ if $-\left[gb(n-1) - \frac{p+1-(g-1)(b-1)}{2}\right] \ln \Lambda^* > \chi^2_{(g-1)(b-1)}(\alpha)$ Wilk's lambda $\Lambda^* = \frac{|SSP_{res}|}{|SSP_{int} + SSP_{res}|}$ If interaction effects exist, the factor effects do not have a clear interpretation



Bonferroni Confidence Intervals

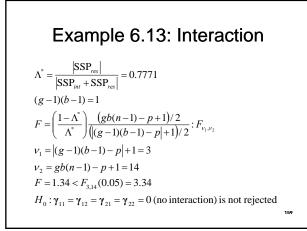
With negligible interactions,

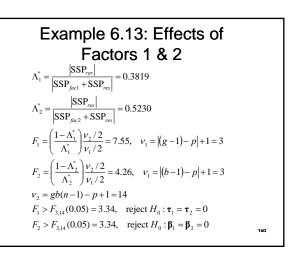
the simultaneus confidence intervals are

 $\left(\overline{x}_{\ell \bullet i} - \overline{x}_{m \bullet i}\right) \pm t_p \left(\frac{\alpha}{pg(g-1)}\right) \sqrt{\frac{E_{ii}}{\nu} \frac{2}{bn}} \quad \text{for } \tau_{\ell i} - \tau_{m i}$ and

 $(\overline{x}_{\bullet ki} - \overline{x}_{\bullet qi}) \pm t_p \left(\frac{\alpha}{pb(b-1)}\right) \sqrt{\frac{E_{ii}}{\nu} \frac{2}{gn}} \quad \text{for } \beta_{ki} - \beta_{qi}$ $\nu = gb(n-1), \quad \mathbf{E} = \mathbf{SSP}_{res}$

Source of variation		SSP		d.f.
	[1.7405]	-1.5045	.8555	
Factor 1: change in rate of extrusion		1.3005	7395	1
or extrusion	134		.4205	
	.7605	.6825	1.9305	
Factor 2: amount of	25	.6125	1.7325	1
additive	L		4.9005	
	.0005	.0165	.0445	
Interaction	from a set	.5445	1.4685	1
	L		3.9605	
	1.7640	.0200	-3.0700	
Residual		2.6280	5520	16
			64.9240	
0.91 (\$10)2	[4.2655	7855	2395	
Total (corrected)		5.0855	1.9095	19
			74.2055	



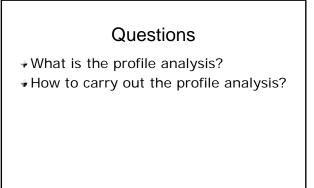


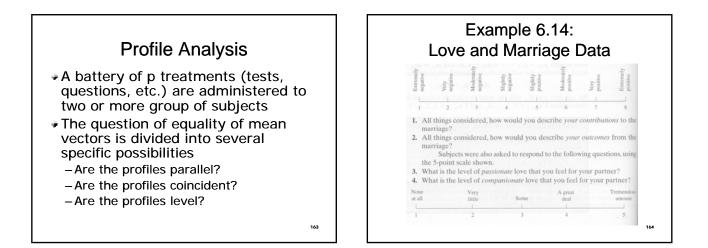
Outline

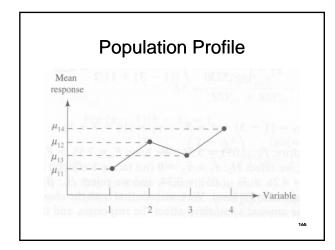
- Profile Analysis
- ANOVA for Repeated Measures
- Repeated Measures Designs and Growth Curves
- Perspectives and Strategy for Analyzing Multivariate Models

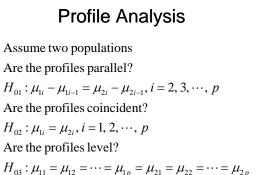
161

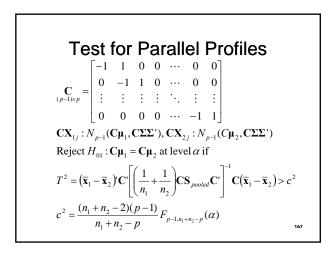
157

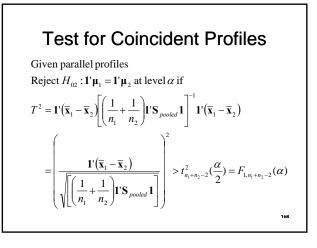




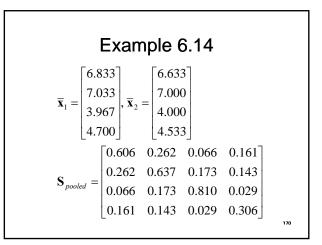


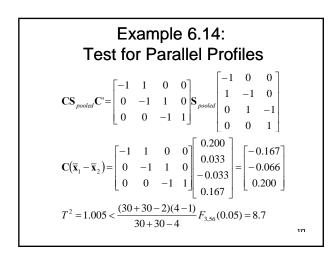


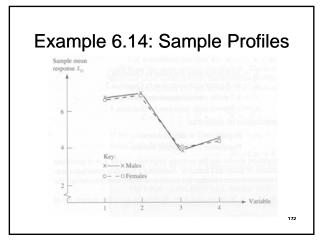


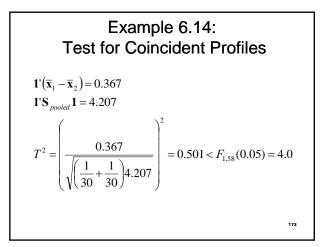


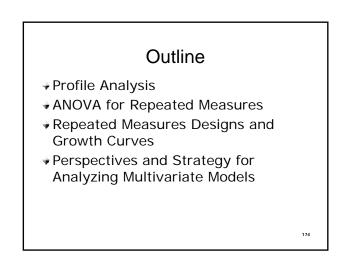
Test for Level Profiles Given coincident profiles Reject H_{03} : $C\mu = 0$ at level α if $(n_1 + n_2)\overline{\mathbf{x}}' \mathbf{C}' [\mathbf{CSC'}]^{-1} \mathbf{C}\overline{\mathbf{x}} > c^2$ $c^2 = \frac{(n_1 + n_2 - 1)(p - 1)}{n_1 + n_2 - p - 1} F_{p-1,n_1+n_2-p+1}(\alpha)$ $\overline{\mathbf{x}} = \frac{n_1}{n_1 + n_2} \overline{\mathbf{x}}_1 + \frac{n_2}{n_1 + n_2} \overline{\mathbf{x}}_2$











176

Questions

- What are repeated measures?
- How to view the data for repeated measures in a two-way ANOVA view?
- How to test the null hypothesis in repeated measures?

175

177

Repeated-Measures ANOVA

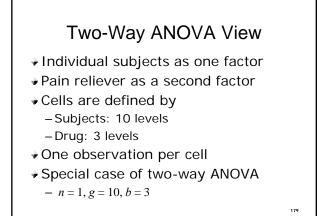
- Drugs A, B, C are tested to see if they are equally effective for pain relief
- Subjects are to take all of the drugs, in turn, suitably blinded and after a suitable washout period
- Subjects rate the degree of pain belief on a 1 to 6 scale (1: no relief, 6 complete relief)

Avoiding Order Effects

- Randomize the order of treatment
 1/3 get drug A first, 1/3 get drug B first, 1/3 get drug C first
- People in a long, natural healing course may grow tolerant of the irritant and learn to tune them out
 - The last medication may work the best
 - -Order effects

Sample Data

Subject	A	В	С	Average
1	5	3	2	3.33
2	5	4	3	4.00
3	5	6	5	5.33
4	6	4	2	4.00
5	6	6	6	6.00
6	4	2	1	2.33
7	4	4	3	3.67
8	4	5	5	4.67
9	4	2	2	2.67
10	5	3	1	3.00
Means	4.80	3.90	3.00	3.90

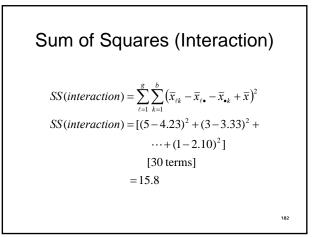


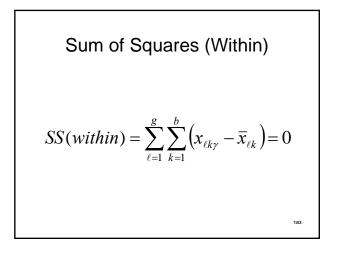
Sum of Squares (Drug)

 $SS(drug) = g \sum_{k=1}^{b} (\bar{x}_{\bullet k} - \bar{x})^{2}$ $SS(drug) = 10[(4.8 - 3.9)^{2} + (3.9 - 3.9)^{2} + (3.0 - 3.9)^{2}]$ = 16.2

Sum of Squares (Subjects) $SS(subjects) = b \sum_{\ell=1}^{8} (\bar{x}_{\ell} - \bar{x})^2$ $SS(subjects) = 3[(3.33 - 3.90)^2 + (4.00 - 3.90)^2 + \dots + (3.00 - 3.90)^2]$ = 36.7

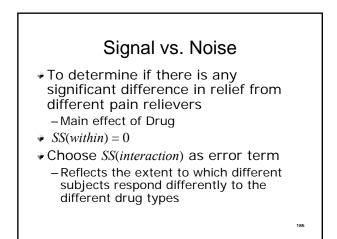
181





Degrees of Freedom

df (subject) = g - 1 = 10 - 1 = 9 df (drug) = b - 1 = 3 - 1 = 2 df (within) = bg(n - 1) = 0 df (interaction) = (b - 1)(g - 1) = (3 - 1)(10 - 1) = 18 df (total) = bg - 1 = (b - 1)(g - 1) + b - 1 + g - 1 = df (interaction) + df (interaction) + df (drug) + df (subject)= 30 - 1 = 29 = 18 + 2 + 9



ANOVA Table

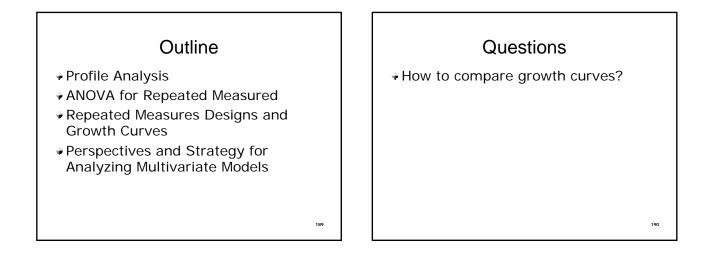
Source	Sum of	df	Mean	F
	Squares		square	
Drug	16.2	2	8.100	9.225
Subject	36.7	9	4.078	
Drug X Subject	15.8	18	0.878	
Totals	68.7	29		

Hypothesis Testing

 $F_{Drug} = 9.225 > F_{2,18}(0.05) \approx 3.55$

Drug effect is significant (i.e., difference exists) at 0.05 significance level

-	A Table for ne-Way			
Source	Sum of Squares	df	Mean square	F
Drug	16.2	2	8.100	4.107
Error	52.5	27	1.944	
Totals	68.7	29		
				188

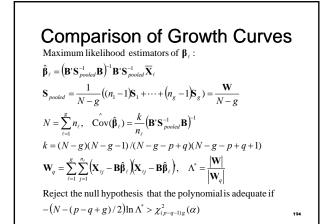


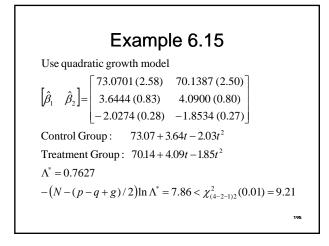
LA	mple 6 Cont	rol Gro		ica,
Subject	Initial	1 year	2 year	3 year
1	87.3	86.9	86.7	75.5
2	59.0	60.2	60.0	53.6
3	76.7	76.5	75.7	69.5
4	70.6	76.1	72.1	65.3
5	54.9	55.1	57.2	49.0
6	78.2	75.3	69.1	67.6
7	73.7	70.8	71.8	74.6
8	61.8	68.7	68.2	57.4
9	85.3	84.4	79.2	67.0
10	82.3	86.9	79.4	77.4
11	68.6	65.4	72.3	60.8
12	67.8	69.2	66.3	57.9
13	66.2	67.0	67.0	56.2
14	81.0	82.3	86.8	73.9
15	72.3	74.6	75.3	66.1
Mean	72.38	73.29	72.47	64.79

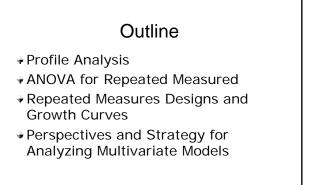
	ple 6. reatm			,
Subject	Initial	1 year	2 year	3 year
1	83.8	85.5	86.2	81.2
2	65.3	66.9	67.0	60.6
3	81.2	79.5	84.5	75.2
0.04 S	75.4	76.7	74.3	66.7
5	55.3	58.3	59.1	54.2
6	70.3	72.3	70.6	68.6
7	76.5	79.9	80.4	71.6
8	66.0	70.9	70.3	64.1
9	76.7	79.0	76.9	70.3
10	77.2	74.0	77.8	67.9
11	67.3	70.7	68.9	65.9
12	50.3	51.4	53.6	48.0
13	57.7	57.0	57.5	51.5
14	74.3	77.7	72.6	68.0
15	74.0	74.7	74.5	65.7
16	57.3	56.0	64.7	53.0
Mean	69.29	70.66	71.18	64.53

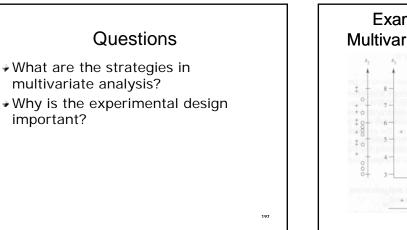
Comparison of Growth Curves

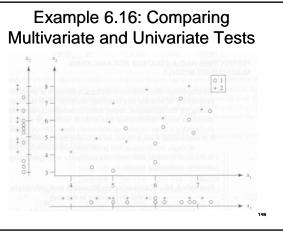
 $\begin{aligned} \mathbf{X}_{ij} : \text{vector of } p \text{ measurements on subject } j \text{ in group } \ell \\ j = 1, 2, \cdots, n_{\ell}; \quad \ell = 1, 2, \cdots, g \\ \mathbf{X}_{ij} : \text{Multivariate normal with covariance } \mathbf{\Sigma} \\ \text{Puthoff - Roy model} \\ E(\mathbf{X}_{ij}) = \begin{bmatrix} \beta_{\ell 0} + \beta_{\ell 1} t_1 + \cdots + \beta_{\ell q} t_1^q \\ \beta_{\ell 0} + \beta_{\ell 1} t_2 + \cdots + \beta_{\ell q} t_2^q \\ \vdots \\ \beta_{\ell 0} + \beta_{\ell 1} t_p + \cdots + \beta_{\ell q} t_p^q \end{bmatrix} = \begin{bmatrix} 1 & t_1 & \cdots & t_1^q \\ 1 & t_2 & \cdots & t_2^q \\ \vdots & \vdots & \ddots & \vdots \\ 1 & t_p & \cdots & t_p^q \end{bmatrix} \begin{bmatrix} \beta_{\ell 0} \\ \beta_{\ell 1} \\ \vdots \\ \beta_{\ell q} \end{bmatrix} \\ = \mathbf{B6}. \end{aligned}$











Example 6.16: Comparing Multivariate and Univariate Tests

Univariate test on x_1 : $F = 2.46 < F_{1,18}(0.10) = 3.01$ Univariate test on x_2 : $F = 2.68 < F_{1,18}(0.10) = 3.01$ Accept $\mu_1 = \mu_2$

Hotelling's test :

$$T^2 = 17.29 > c^2 = \frac{18 \times 2}{17} F_{2,17}(0.01) = 12.94$$

Reject $\mu_1 = \mu_2$

199

Strategy for Multivariate Comparison of Treatments

- Try to identify outliers
 Perform calculations with and without the outliers
- Perform a multivariate test of hypothesis
- Calculate the Bonferroni simultaneous confidence intervals
 For all pairs of groups or treatments, and all characteristics

200

Importance of Experimental Design

- Differences could appear in only one of the many characteristics or a few treatment combinations
- Differences may become lost among all the inactive ones
- Best preventative is a good experimental design
 - Do not include too many other variables that are not expected to show differences