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Questions

- What is a statistical inference?

~Give a sample scenario for making a
statistical inference

2010/10/14

Inference

~ Reaching valid conclusions
concerning a population on the basis
of information from a sample

Scenarios

~To test if the following statements

are plausible

—A clam by a cram school that their
course can increase the 1Q of your
children

—A diuretic is effective

—An MP3 compressor is with higher
quality

—A claim by a lady that she can
distinguish whether the milk is added
before making milk tea

Evaluating Normality of Univariate
Marginal Distributions

Number of samples within an interval :

binomial distribution ( jpyq”
y

When n s large, [njpyq"_y ~ N(np,npq)
y

The distribution of p =2 is N(p,2<
n n
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Evaluating Normality of Univariate
Marginal Distributions
After checking symmetry of data,
p, - portion of data lyingin (x — N \/E)
D, - portion of data lyingin (x — 25,5 +24s)

either | p, —0.683 >3 (0.683)(0.317) _1.396
n Vn
ot ~0.954]» 3 [©954(006) _ 0628
n Vn

indicate departure from an assumed normal
distribution
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Component Means

Questions

- What are the two-sided and the one-
sided tests of hypotheses?

~ How to reject or accept a null
hypothesis?

»What is the Student’s t-statistics?

~What are the differences between

the normal distribution and the
Student’s t-distribution?

Questions

~What is the meaning of the
confidence interval for the population
mean 4?
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Tests of Hypotheses

» Developed by Fisher, Pearson,
Neyman, etc.

~ Two-sided
H,:p=u, (nullhypothesis)
H,:u+u, (alternative hypothesis)
+ One-sided
H,:pu>u, (nullhypothesis)
H,:u<u, (alternative hypothesis)

Assumption under Null Hypothesis
X N(ﬂo’gz)
X :N(uy,0°1In)

7 =M:N(O,l)
ol+/n

Rejection or Acceptance of
Null Hypothesis

Rejection ol
Rejg on Failure-to-Reject Region ;:5‘3:?“

Probability Density Function
[=]
)

Student’s t-Statistics

()?_ﬂo) v_ 1%
t . ’X_n,lei
S2:i y (Xl.—)?)z
n—14
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Student’s t-distribution

Z
l‘:—
NS
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Student’s t-distribution

Prabability

04

03 - £ R—

Student’s t-distribution

/'. -.\\
— LB

Origin of the Name “Student”

-~ Pseudonym of William Gossett at
Guinness Brewery in Dublin around
the turn of the 20th Century

~ Gossett use pseudonym because all
Guinness Brewery employees were
forbidden to publish

~Too bad Guinness doesn’t run
universities
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Test of Hypothesis
Reject H, in favor of H,
at significance level « if
X — Mo

I\n

] = >t (al?2)

e,
t* = n(f_ﬂo)(sz)_l()_c_ﬂo) > ff_l(a/z)

Selection of «

- Often chosen as 0.05, 0.01, or 0.1

~Actually, Fisher said in 1956:

—No scientific worker has a fixed level of
significance at which year to year, and
in all circumstances, he rejects
hypotheses; he rather gives his mind to
each particular case in the light of his
evidence and hid ideas

Confidence Interval for g,
X —

Pr( sin

Pr(r, ,(0.025)s/n > X - pu> 1, ,(0.025)s/n)
~0.95

Prl- X+, ,(0.025)s /\n > —u>-X 1, ,(0.025)s/n)
~0.95

Pr(X +1,,(0.025)s /v > > X ~1, ,(0.025)s/\/n )
~0.95

Clyy (X —1, ,(0.025)s 1\, X +1, ,(0.025)s/\n

< z“(o.ozs)] =095

Neyman'’s Interpretation

H—e———
—to—

F—f—0—
H—e——

H——

e
—t—eo—
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Statistically Significant vs.
Scientifically Significant

» The cram school claims that its course
will increase the 1Q of your child
statistically significant at the 0.05
level

» Assume that 100 students took the
courses were tested, and the
population standard deviation is 15

» The actual 1Q improvement to be
statistically significant at 0.05 level is
simply (o/+/n)xz, gy =1.5%x1.96 = 2.94 .

Outline

~ Introduction

» Inferences about a Mean for
Univariate Normal Distribution

- The probability of 4, as a value for a
Normal Population Mean

~Hotelling’s 7% and Likelihood Ratio
Tests

~ Confidence Regions and
Simultaneous Comparison of
Component Means

Questions

» How to test a null hypothesis for a
multivariate normal distribution?

» How to convert Hotelling’s 72
distribution to the F distribution?

« Is the Hotelling’s 7?2 distribution
invariant with linear transformation?

Plausibility of p, as a Multivariate
Normal Population Mean
Null hypothesis H, :p=p,
(Two -sided) alternative hypothesis H, :p # p,
X,,X,, -+, X, : Random sample from a normal
population
Hotelling's 7% statistics :

T’ =(X—uo)(:j1(x—uo)
= n(X_l'o)Sil(i_llo)

1 1 X X
R 2% = 2 Xk %)

= = 28
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T? as an F-Distribution

F-Distribution

212, 7% :independent, with d.f. £, and f,, respectively

2
ro2lh gy

11
F(fl;fzj A F
f(F): = +15)12
F(fl)r(fzj 1, [1+J,1FJ(/’1 12)
2 2 £
g

F-Distribution

Nature of 72-Distribution

S, -Xx, %) |
T? :\/;(i—,uo) ]ﬂT \/;(i—,uo)

T? =

pot (random vector

Wishart random )
multivariate normal )| matrix multivariate normal
d.f. random vector

- Np(O,E)'|:%1 W,,,n,l(z)}vp(o,z)

df.xp (n-1)p
by calculus, g = .
TS G ) Ty

32
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Test of Hypothesis
Reject H, in favor of H,
at significance level o if

T? =n(X—p,)'S" (X—n,)

S DP e (@)
n—p

Example 5.1 Evaluating 772
6 9

9 _ |8 4 -3
X =10 6,u0:5:>x:6,S: 3 9

8 3
L 13 w9
S =
119 4/27
1/3 1/9 |8-9
T*=3B-9 6-5 _!
1/9 4/27|6-5] 9

T? :%FZ32 =4F,,

Example 5.2 Testing a

Mean Vector
H,:w'=[4 50 10 H,:w'=[4 50 10]
Testatalevel« =0.10. »n = 20, check normality
4.640 2.879 10.010 -1.810
x{45.400],5{10.010 199.788 5.640]
9.965 -1.810 -5.640 3.628
0586 —0.022 0.258
sl{o.ozz 0.006 o.ooz],ng.m
0.258 —0.002 0.402
Critical value: "~ DP 0.10)=23 £ (0.1)-8.18
(n-p) """ 17 -

T? =9.74>8.18 = Reject H,, at the 10% level

Invariance of 72-Statistic
Y =CX+d, C:non-singular

y=cxrds, =25 (v, -7)ly, -¥)=csc

ny =E(Y)=Cp+d,p,,=Cp,+d

T*=n(y —pyo)S; (T —Ryo)
=n(X~p,)'C'(CSC) " C(X-p,)
= n(X—p,)'S™(X— )
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Outline

- Introduction

» Inferences about a Mean for
Univariate Normal Distribution

- The probability of 4, as a value for a
Normal Population Mean

» Hotelling’s 7? and Likelihood Ratio
Tests

~ Confidence Regions and
Simultaneous Comparison of
Component Means

Questions

~What is the likelihood ratio test?

~How to derive the Hotelling’s 72
distribution using the likelihood ratio
test? (Result 5.1)

r What is the general likelihood ratio
method?
~What is the behavior of the general

likelihood ratio method when sample
size n is large?

T2-Statistic from
Likelihood Ratio Test

—npl2

max L(p, ) =
nx

J=t

maXL(lIo‘ X)
Likelihood ratio=A = —2%>———
max L(p, X)
nX

39

T2-Statistic from
Likelihood Ratio Test

Z(Xj _uo)zil(xj —po):gtr[):.l(xj —Mo)(xj _uo)]

J=1

=tr Zflzn:(xj _HOXXJ _"o)

=

1 —npl2
A~ |nl2

(27[)"”/2 X

0

max Ly, ) =

n

)A:o :%Z(X/ _lloxxf _llo)

j

40

10



Result 4.10

B : px p symmetric positive definite matrix
b : positive scalar

1 e—tr(Z'lB)IZ < ib (Zb)pbe—bp

= B

for all positive definite ( )y ; with equality
pxp

holding only for £ = (1/25)B

Likelihood Ratio Test
A" =[5/ /|£,| - Wilks' lambda
Likelihood ratio test of
H, p=p,against 4, :p #p,
Reject H, at the level «

-~ nl2
if A= E =
[\Zod

nl2

n

> (Xj - i)(xj - i)

J=1

n

Z(X‘,- - uo)(xj - "0)

J=1

Result 5.1

X,, X+, X, :random sample from N, (u, X)

= T test is equivalent to the likelihood test of
Hy:p=p,Vs.H, :pn+#p, because

2 -1
AP :(1+ d J
n—1

Proof of Result 5.1

| Ay [
‘A‘ = ‘AzzHAn _A12A£;A21‘ = ‘AMHAZZ _A21A1_11A12

2010/10/14
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Proof of Result 5.1

D) Z}(X, =S, — X en(E - NE -1, )
z(X)<>[z<x>j<ﬁ
g(", =S, — X +n(R - o X g )= g(xf o X, — o)

I

o)

Computing 77 from Determinants

A

(n-1)x,
e (n-1)

A

X

n

(n-1) Z (Xj Ny XX_/ - uo)

J=1

—(n-1)

n

> (X.i - ixx./‘ - i)

j=1

General Likelihood Ratio Method

0 : unknown population parameters,0 € @
L(0) : likelihood function by random sample
H,:0€0,
Rejects H, in favorof H,:0 ¢ @, if

max L(0)

_ 06€0,

_—LG <c
maxL(9)

Result 5.2

when samplesize nis large,

maxL(e)}

2InA=-2In| X%
T%xL(O)

is approximately a ;(f% random variable, where
v -v, = (dimension of ®)—(dimension of ©,)

12
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Questions

» How to find the confidence region for
the population mean vector of a
multivariate normal distribution?

» What are the axes of the confidence
ellipsoid?

-What are the simultaneous
confidence statements?

Questions

~ How to find the confidence interval
for a linear combination of
multivariate normal random
variables?

» How to find the maximum of the t
value for all linear combination
coefficients?

» How to determine the 72 intervals?
(Result 5.2)

Questions

~What are the difference of trends for
t and 72 intervals as the sample size n
increases?

» How to determine simultaneous 72
intervals?

~ How to determine one-at-a-time
intervals?

13
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Questions

~What is the Bonferroni inequality?

»How to find the simultaneous
Bonferroni intervals?

~What is the trend of the ratio
between the length of Bonferroni
interval to the length of 7’-Interval
with increasing sample size n under
different m?

100(1-2)% Confidence Region

0 : unknown population parameters, 6 € @
R(X) : region of likely 0 values determined
by data array X
100(1- )% confidence region : R(X) where
P[R(X) will cover the true 0] =1—«
Region consisting of all 8, for which the
test will not reject H,, : 0 =0, in favor of
H, atsignificance level «

100(1-2)% Confidence Region

Univariate Normal Case :
The interval of u
_ -1,
n(E@-p)s?) (7 - m)< 2 (@)
Multivariate Normal Case :
The ellipsoid determined by all p such that

n(X—p)S*H(x—p)< MF,},H (@)
n—p

Axes of the Confidence Ellipsoid

beginning at the center x, the axes are

s 4 \/MF (@),

n(n—p) "
where Se, = Ae,

14
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Example 5.3 :
Microwave Oven Radiation
= 4/measured radiation with door closed

x, = 4/measured radiation with door open

_ 10.564 S 0.0144 0.0117
X = s =
0.603 0.0117 0.0146

., [203.018 -163.391
{—163.391 200.228}
2,=0.026, e, =[0.704 0.710]
2,=0.002, e,=[-0.710 0.704]

57

Example 5.3 :
95% Confidence Region
203.018 -163.391] 0.564 — 1
420504, 0.003- 2{7163.391 200.228}[0.603—;12}
2(41)

<55 Fow(009) =662

w'=[0.562 0.589]

203.018 -163.391| 0.564-0.562
42[0.564-0.562 0.603—0.589
-163.391 200.228 | 0.603-0.589

=1.30<6.62
. pisin the 95% confidence region.

0.562
By thistest H,:p= [0 589} would not be rejected

0.562
in favor of H, :p = {0 589} at the significance level & = 0.05

Example 5.3 :
95% Confidence Ellipse for pu

center:
x'=[0.564 0.603]
semi - major and semi - minor axes:

\/Z\/p(” Y F,. () =+/0.026 241 (3.23)

n(n—p) 42(40)
=0.064
p(n-1) 2(41)
A +/0.002 3.23
oy o) =00 (205 02
=0.018

59

Example 5.3 :
95% Confidence Ellipse for

60

15
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Simultaneous
Confidence Statements

r Sometimes we need confidence
statements about the individual
component means

- All if the separate confidence
statements should hold
simultaneously with a specified high
probability

Concept of Simultaneously
Confidence Statements

Confidence Interval of Linear
Combination of Variables

X:N,(nY), Z=2a'X
u,=a'n, oc’=a'ta, Z:N(a'pa'Za)
Z=a'X, s’ =a'Sa

_zZ-u, n(@x-a'p)

t

- s.I\n ~ Jasa
< (a)
vJa'Sa , — vJa'Sa

a'i—tn_l(a)T <a'p<a x+tn_l(a)T

Maximum # Value for All a

max¢® = max—n(al(i_”))2
a a a'Sa
V(= 2 V[— 2
1@ E-p)f ,{max (a'(F-p) }
a a'Sa a a'Sa

=n(x-p)S7(x-p)=T"
maximum occurs for a proportional to
S (x-p)

16



Maximization Lemma

B positive definite matrix, d given vector
f 2

ma X _ g
=0 x'Bx
maximum attained when x = ¢B'd for ¢ # 0
Proof :
(x'd)’ < (x'Bx)(d'Bd)
x'Bx>0
a4

x'Bx

65

Result 5.3: 77 Interval
X, X,,-+, X, :random sample from N (u, X)

Simultaneously for all a, the interval (7' interval)

determined by

ax- \/ p(n= 1) F,,. p( Ja'Sa and
n(n—p)

a’i+\/p( _1)) . p(a)aSa

n(n

will contain a'p with probability at least1— «

66

Comparison of - and 7%-Intervals

67

Simultaneous 7?-Intervals

p(n D 5 ()JE<#< p(n D .
p) P 4 ) P P
p(" ];) (@ )\/§<,Uz <X, + p(” ];) .

fpi p(n_l)Fp‘”—P(a)\/gSﬂpsxﬁ-F P(” 1) p p(
(n=p) n -p)

>F

68

2010/10/14
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Example 5.4: Shadows of the
Confidence Ellipsoid

69

Example 5.5
X, : CLEP score for social science and history
X, :CQT score for verbal
X, :CQT score for science

n =87
526.59 5691.34 600.51 217.25
x=| 54.69 |, S=| 600.51 126.05 23.37
25.13 217.25 23.37 2311

70

Example 5.5
Pl @)= D 005)-829
n—p " 87-3 "7

526.59—/8.29 % < 14 <526.59+ 829 565;17.34

503.30 < 4, <549.88, 51.22< u, <58.16, 23.65< u, <26.61
a'=[0,1,—1] for x, — u,, end points of its confidence interval are

(fz —)@)i p(n-1) prnip (0.05) \/S22+S33_2S23
(n-p) n

i.e.,,29.56+3.12is an at - least 95% confidence interval for y, — 1,

71

Example 5.5: Confidence Ellipses
for Pairs of Means

72

18



One-at-a-Time Intervals

Xt (al2) % < S)_cl+tn_l(a/2),/%

%,—t (al?2) % <u, <%, +tn1(a/2),/%

— N _ s
X, —t,.(al2) f <p,<x,+t,,(al?2), /%

Bonferroni Inequality
C, : confidence statement about a, u
P[Ctrue]l=1-a,, i=12,---,m
Plall C, true]=1- P[at least one C, false]
>1- i P|C, false]=1— i (1-P[C, true))
i=1 i=1
=1—(051+052 +~~~+am)

74

Bonferroni Method of
Multiple Comparisons

a,=alm, m=p

P{x,. itnfl(zij, /s— contains 4, all z} >
m n

1_(g+g+...+gj:1—a
m m m
- 7

m terms

Example 5.6
p=2, « =005/2=0.025

ty (@) =2.327

X, it41(0'0125) o 0.564 +2.327 0.0144
\ n 42

or 0.521< 4, <0.607

X, it41(0-0:|-25)\/sﬁ =0.603+2.327 0.0146
n 42

or 0.560 < 4, < 0.646

76

2010/10/14
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Example 5.6

77
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(Length of Bonferroni Interval )/
(Length of T*-Interval)

78

Outline

~Large Sample Inferences about a
Population Mean Vector

» Multivariate Quality Control Charts

» Inferences about Mean Vectors When
Some Observations Are Missing

~ Difficulties Due to Time Dependence
in Multivariate Observations

Questions

~What is the limit distribution of the
square of the statistical distance?

~How to reject or accept a null
hypothesis when n-p is large?

- How to find the confidence interval
and the simultaneous confidence
statements for large n-p? (Result 5.5)

20
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Limit Distribution of the Square of
Statistical Distance

X :nearly N, (n, 1 Y) for large samplesize n >> p
n

n(X—p)' = (X~ p) approximately
for large n-p

S close to X with high probability when
nislarge

. n(X—p)'S™(X —p):approximately >
for large n-p

81

Result 5.4

X,,X,,:--,X, :random sample from a population
with mean p and positive definite covariance

n— p large

H,:p=n,isrejectedin favorof H, :p#p,,

at a level of significance approximately «, if

n(i_”o)lsil(i_uo)> Z;zz(a)

82

Result 5.5

X,,X,, -, X, : random sample from a population
with mean p and positive definite covariance X
n— p large

a'ii,/zﬁ(a)wfalsa

will contain a'p, for every a, with probability

approximately 1— «

83

Result 5.5

100(1- @)% simultaneous confidence statements

_ S _ S.
xl_\lli(a)ﬁf Sﬂlﬁxl-‘r\,l;(a)‘ f

_ N _ N
X, —Wti(a),/% <u, <X, +\/z§(a),/f

for all pairs (1, 41, )
-1 —
S S X. — U.
n[)?i_lui xk_lle]|:S” lki| |:l Iu’j|£7(§(a)

ik Sk X — My

contain (z,, 1, ) with confidence (1- )

21
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Example 5.7: Musical Aptitude
Profile for 96 Finish Students

85

Example 5.7: Simultaneous 90%
Confidence Limits

X2 (0.10)\/; 22(0.10) =12.02
n

26.06 < g4 <30.14, 24.53< u, <28.67

34.05< u, <36.75, 32.39< y, <36.01

22.27 <y, £24.93, 20.61< p, <23.39

21.27 <y, <2413

Profile of American students

My =[31 27 34 31 23 22 22]

melody, tempo, meter components are not plausible

86

One-at-a-Time and Bonferroni
Confidence Intervals

One-at -a -time confidence intervals

X, —z & ‘/&S,ul.é)_ci+z 2
2 )\ n 2 )\ n

Bonferroni confidence intervals

- a ) |s, _ a ) |[s,
X, —Z — L[ S SX +z) — L[
(ZPJ n (ZPJ L

87

Large-Sample 95% Intervals for
Example 5.7

88
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95% Intervals for Example 5.7

89

Outline

~Large Sample Inferences about a
Population Mean Vector

~Multivariate Quality Control Charts

~ Inferences about Mean Vectors When
Some Observations Are Missing

~ Difficulties Due to Time Dependence
in Multivariate Observations

Questions

»What is the control chart?

» How to monitor a sample for
stability?

- How to draw an quality control
ellipse?

~How to draw an x chart?

» How to draw a 7? chart

Questions

~What is the distribution of 72 for an
individual future observation? (Result
5.6)

~How to find the control region for an
individual future observation?

»How to draw T2-chart for future
observations?

~How to draw control chart based on
subsample means?

2010/10/14
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Example 5.8: Overtime Hours for
Control Chart a Police Department

- Represents collected data to evaluate < ” v e e At 5
the capabilities and stability of the
process

~ ldentify occurrences of special
causes of variation that come from
outside of the usual process

. Compens Tt wed 0

Example 5.8
Univariate Control Chart Monitoring a Sample for Stability
Legal Appearances Overtime Hour X, X,, -+, X, independently distributed as
N,(n,X)
E(X,-X)=0
n-1

Cov(X,-X)="—"x
n

X, —Xis normal, but is not independent of S
Approximate (X, - X)'S™(X, — X) asa chi-square
distribution

95 96

24



Example 5.9:
99% Ellipse Format Chart

Example 5.9: X-Chart for X,

f

\.\x _/ \\w//\_f/\t"l "" o

\ A

Example 5.10: 77 Chart
for X; and X,

Example 5.11: Robotic Welders

X, : Voltage (volts)

X, : Current (amps)

X, : Feed speed (in/min)

X, : (inert) Gas flow (cfm)
Normal assumption is reasonable

No appreciable serial correlation for successive
observations on each variable

2010/10/14
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Example 5.11: 77 Chart

I 9% Limit

12

Example 5.11: 99% Quality Control
Ellipse for In(Gas flow) and voltage

. .la' ssel \

L] 0.:. L1 .. L]

Example 5.11: x -Chart for
In(Gas flow)

o #I UCI

1 ,f'ﬁl. f'fll'l, I |

| LM
5| A L/ 4L | Mean = 3.95]
Ny \'v\ﬁuW \

Control Regions for Future
Individual Observations

- Set for future observations from
collected data when process is stable
- Forecast or prediction region

—in which a future observation is
expected to lie

2010/10/14
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Result 5.6
X, X,,--+, X, rindependently as N, (n, X)
X : future observation from

the same distribution

n

72 =" (X-X)S$*(X-X)

n+1

(n-1p
FP:”*P

n—p

is distributed as

Proof of Result 5.6
E(X-X)=0
Cov(X—-X) =Cov(X)+Cov(X)=X + 1y
n

_ntly
n

n <). .
/n_ﬂ(x— X):N,(0.%), S:7,, (%)

n ATt _—_(n—l)p
:m(x X)s*(X-X): /T

Result 4.8

X,,X,, -+, X, :mutually independent
X;:N,(n,,X)

V, =X, +6,X, ++¢,X, ZNP[ZCJ.HJ.,(ZCJZ.)EJ

J=1 J=l

V, =bX,+b,X,+:--+b X, and V, are joint normal

- 2 1
(E cj)): (b'c)X
with covariance matrix| /=

(b'c)X (ibj)z

Example 5.12 Control Ellipse
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T?-Chart for Future Observations
Plot

T° = nzl(x—i)'s_l(x—i)

in time order
LCL=0

ucL =Y=DP k(g 05)

(n-p) "

Control Chart Based on
Subsample Means

Process: N, (n,X), m >Lunits besampled at the same time
_ . = 1
X, :subsamplemeanat time j, X==Y X,

nig

X, —i:Np(o,Mz)
nm

wCov(X, - X)

:Cov{(l—l)i/. +£§1+~--+EXH+EXM+~~~+£XW}
n n n n n

R P
:(kfj Cov(X,)+ 5 Cov(Xl)
n n

2
{(11] gvzl}lz:(nnZ
n n m nm

Control Chart Based on
Subsample Means

p,nm-n

s:i(sl+sz+---+sn):W ()
n

(% -X):N,(0,%)

n-1

nm

=T%= (X,. —i)s-l(ij —i):

(nm—n)p
(nm—n—p+1)

p,nm—n—p+1

Control Regions for Future
Subsample Observations

Process: N,(n,X), m>1units besampled at the same time

_ = 1<
X : future subsample mean, X:—ZX/.
n‘3

(n+1)

X, XN, (0,5

x)

-+ Cov(X - X) = Cov(X) + Cov{1 X, + lin }
n n

= Cov(X)+ 1 cov(X,)= n+l
n nm

(R -Xs -y
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Control Chart Based on
Subsample Means

s:i(sl+sz+---+sn):W ()

p,nm-n
n

\/z (X, -X):n,0%)

=T? = ”ml (x -X)s(x, -X)

n—

(nm—n)p
(nm—n—p+1)

p,nm—n—p+1

Outline

~Large Sample Inferences about a
Population Mean Vector

~Multivariate Quality Control Charts

~ Inferences about Mean Vectors When
Some Observations Are Missing

~ Difficulties Due to Time Dependence
in Multivariate Observations

Questions

~What is the EM algorithm?
~What are sufficient statistics?

+ What are sufficient statistics for
multivariate normal distribution?

- How to estimate the mean and
variance-covariance matrix for
multivariate normal distribution
when some observations are
missing?

EM Algorithm

~Prediction step

—Given some estimate of the unknown
parameters, predict the contribution of
the missing observations to the
sufficient statistics

~ Estimation step

—Use the predicted statistics to compute
a revised estimate of the parameters

~ Cycle from one step to the other

2010/10/14
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Complete-Data Sufficient Statistics

lezn“szni

J=1

T,=) XX, =(n-)S+nXX'

Prediction Step for
Multivariate Normal Distribution
x! : missing components of x
x'? 1available components of x,

Given estimates p, b
% = E(XO |75, £) -0 +
xWx® = E(XOXY'|x@; 1, E)

Yy L xOFW:
2 XXy + X;7X;

I

M=
|

M

Jj=1
Result 4.6
X m
X=|-——[IN,(n,%), p=|-——|
L X, I,
i 2'11 | 2"12
T=|-—— + ———| [Eu[>0=
_221 | X,

conditional distribution of X, given X, =x, is
normal with mean = p, + £, 2,2 (x, —p,) and
covariance=X,, - X, X, %,

Estimation Step for
Multivariate Normal Distribution

Compute the revised maximum
likelihood estimates
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Example 5.13: EM Algorithm

- 0 3

7 2 6 - - -
X = 5 1 2 =06, =1 =4

- — 5
-~  (6-6Y+(7-6)+(5-6)+(6-6f 1
O = 4 :E
- 1 - 5 < 1 - 3 -
O'zz—Ev Uss_Ev 0'12_21 0'23_21 o =1

Example 5.13: Prediction Step

H ~() ou | 0n Oy S S
n n, | E,
_ |- o
= _ |=|—— Y= _ | _ _ =|—-= 4+ —=
H, ~(2) O, O Op s <
~ n ~ ~ ~ L, | Z,
Hy O | 0p O

Xy = M+ T, — 1, x,— =573
X4 =65, LT %, + X2 =32.99

xll[le x13]:5€11[x12 xlS]:[O 17-18]

Example 5.13: Prediction Step

7 ~(1) Oy Oy Oy S S
ol " G, & G| | B 1 Ba
ii= 2 || __| §-|%= 2 2| _|__ 4 __
T s - == S 5
~ n ~ ~ ~ L, | Zy
H O13 Oy O3

¥ xgxg|_[4106 8277 [, __[320
" 2 827 1.97| |x,[*® |65
Xa1Xs2

Xa2

Example 5.13: Prediction Step

X+ Xy +Xg X, | | 2413
T, =| Xy, + %y + Xy + Xy | =| 4.30
Xyg + Xpg + Xgg + Xy 16.00
148.05 27.27 101.18
T,=| 27.27 697 2050
101.18 20.50 74.00
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Example 5.13: Estimation Step

061 0.33 1.17
—ffi'=|0.33 059 0.83
1.17 0.83 2.50

Outline

~Large Sample Inferences about a
Population Mean Vector

~Multivariate Quality Control Charts

~ Inferences about Mean Vectors When
Some Observations Are Missing

~ Difficulties Due to Time Dependence
in Multivariate Observations

Question

- What is the confidence region for a
time-varying multivariate normal
distribution following AR(1) model?

Time Dependence in Observations

X, —n=®(X,,-n)+e, :AR(1)model
=4, |f<1

nominal 95% confidence interval

fall psuch that n(X - p)$*(X—p)< 72(0.05) |
actual coverage probability

Plr? < (-g)1+9) " 22(0.0)]

2010/10/14
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Coverage Probability of
the 95% Confidence Ellipsoid

0 g

089 950 ] 742

993 950 4 632

£ 998 950 51 405
10 999 950 1 193
15 1.000 950 548 090
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