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Questions

- What is the univariate normal
distribution?

- What is the multivariate normal
distribution?

»Why to study multivariate normal
distribution?

Multivariate Normal Distribution

~ Generalized from univariate normal
density

~Base of many multivariate analysis
techniques

~Useful approximation to “true”
population distribution

» Central limit distribution of many
multivariate statistics

» Mathematical tractable

Outline

- Introduction

» The Multivariate Normal Density
and Its Properties

~ Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

The Sampling Distribution of X and
S

~Large-Sample Behavior of X and S

Questions

~What is the formula for the
probability density function of a
univariate normal distribution?

~What are the probability meaning of
parameters ¢ and o?

-~ How much probability are in the
intervals (o, u+o) and (u-20, ut+20)?

~How to look up the accumulated

univariate normal probability in Table
1, Appendix?
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Questions

- What is the Mahalanobis distance for
univariate normal distribution?

~What is the Mahalanobis distance for
multivariate normal distribution?

» What are the symbol for and the
formula of the probability density of
a p-dimensional multivariate normal
distribution?

Questions

~What are the possible shapes in a
surface diagram of a bivariate
normal density?

~What is the constant probability
density contour for a p-dimensional
multivariate normal distribution?

~What are the eigenvalues and

eigenvectors of the inverse of £?
(Result 4.1)

Questions

~What is the region that the total
probability inside equals 1-a?

~What is the probability distribution
for a linear combination of p random
variables with the same multivariate-
normal distribution? (Result 4.2)

» How to find the marginal distribution

of a multivariate-normal distribution
by Result 4.27?

Questions

~What is the probability distribution
for a random vector obtained by
multiplying a matrix to a random
vector of p random variables with the
same multivariate-normal
distribution? (Result 4.3)

»What is the probability distribution of
a random vector of multivariate
normal distribution plus a constant
vector? (Result 4.3)
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Questions

» Given the mean and covariance
matrix of a multivariate random
vector, and the random vector is
partitioned, how to find the mean
and covariance matrix of the two
parts of the partitioned random
vector? (Result 4.4)

Questions

~What are the if-and-only-if conditions
for two multivariate normal vectors
X; and X, to be independent? (Result
4.5)

- If two multivariate normal vectors X;
and X, are independent, what will be
the probability distribution of the
random vector partitioned into X;
and X,? (Result 4.5)

Questions

» A random vector X is partitioned into
X, and X,, then what is the
conditional probability distribution od
X, given X, = x,? (Result 4.6)

» What is the probability distribution
for the square of the Mahalanobis
distance for a multivariate normal
vector? (Result 4.7)

Questions

» How to find the value of the
Mahalanobis distance for a
multivariate normal vector when the
probability inside the corresponding
ellipsoid is specified? (Result 4.7)

2010/9/30



Questions

~What is the shape of a chi-square
distribution curve?

~How to look up the accumulated
chi-square probability from Table 3,
Appendix?

- What is the joint distribution of two
random vectors which are two linear
combinations of n different
multivariate random vectors? (Result
4.8)

Univariate Normal Distribution

N(u,0%)

1 (e
f(x)=72 P R
2no

Table 1, Appendix

Square of Distance
(Mahalanobis distance)

("‘“) — (=)0 (-0
O

v

(x—p)Z™*(x—p)
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p-dimensional Normal Density
N,(nX)

1 —(x—p)EH(x—p)/2
f(X) — PR n
(27[)[;/2‘2‘1/2
—o<x; <o, i=12-p
x is a sample from random vector
Xl:[X]_; XZ’ cee Xp]

Example 4.1 Bivariate Normal

y=E(X}), 4, = E(X;)
oy, = Var(X,), o, = Var(X,)

P2 =0 /(\/0_11\/0'_22): Corr(X,, X,)

o, O 1 o -0,
) u 2|y 22 12
{ } - ; { }
On O 01105 =01, [ 012 On

2 2
01109, =0y, = 01,0, (1= pr)

Example 4.1 Squared Distance

(x—p)=*(x-p)

R
' e ’ 0110 (l_plzz)

l: O _plzJ;n@:||:xl_M:|
_plzﬁ@ Oy X, — Hy

2 2
_ 1 (xl_:ul] _l{xz_:uz] _zplz[xl_ﬂlJ(xz_ﬂz]
1-pp VOu \VO2 Oy VO2

Example 4.1 Density Function
1
27 \/ 01,0, (1- ,0122)

S(x,x,) =

_ 1 X H 2 Xo —Hy 2
exp{ 2(1_,0122)[( \/0'711] 7{ o j
_ YT H || X
enl 20| 22 p
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Example 4.1 Bivariate Distribution

On = Oz, P, =0
25

Example 4.1 Bivariate Distribution

Ou = Oz, P2 = 0.75
26

Contours

Constant probability density contour
= {all xsuch that (x —p)' £ (x-p) = ¢ |}
=surface of an ellipsoid centered at p

axes:tcq/ e,

Xe,=4e, i=12,--,p

27

Result 4.1

X : positive definite
1
Ye=de=>X'e =

(1,e) for = (1/1,e) for =
Y positive definite

28
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Example 4.2 Bivariate Contour

Bivariate normal, o, =o0,,
eigenvalues and eigenvectors

A =0y, + 07y, ellz[%’%]

, 1 -1
Ay =0,—01, € :[ﬁ’ﬁ]

Example 4.2 Positive Correlation

Probability Related to
Squared Distance

Solid ellipsoid of x valuessatisfying

(x—p)Z7(x-p)< 75 ()
has probability1— «

Probability Related to
Squared Distance

2010/9/30



Result 4.2

X:N,(n,2)=
aX=aX +a,X,++a,X, .
N(a'p,a'Xa)
a'X:N(a'p,a'Xa)foreverya—=
X mustbe N, (n, X)

Example 4.3 Marginal Distribution
X=[X;, Xy, X, ]"N, (0, X)
a'=[10,---,0], a'X=X,
ap=p, aXa=oy
a'’X:N(a'p,a'Xa)=N(y,o,)
Marginal distribution of X, in X:

N(y;,0;)

Result 4.3

X:Np(u,):.)

_a11X1+---+a1po

a21X1+---+a2po _ '
. .Nq(Au,AZA)

AX =

_aqul+---+aqup_

X+d:N,(n+d,X)

Proof of Result 4.3: Part 1

Any linear combination b'(AX) = a'X,
a=A'b=
(b'A)X : N((b'A)p, (b'A)Z(A'b))
=
b'(AX): N(b'(Apn),b' (AZA")b)
valid foreveryb = AX: N _(Ap,AXA’)
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Proof of Result 4.3: Part 2

a'(X+d)=a'X+a'd
a'X:N(a'p,a'Xa)
a'X+a'd:N(a'np+a'd,a'Xa)
aisarbitrary =
X+d:N,(n+d,X)

Example 4.4 Linear Combinations

X N;(n,X)
Xy
X, |=AX
Xy

X -X, | 1 -1 0
X,-X,| |0 1 -1
0y —20y,+ 0y, O1p+ 0y =0y — 0'13}

Au:|:#l_ﬂ2:|
Ho—

A):.A'=|:
O1p + 093 =0y — 013 Oy —20,+ 03

AX:N,(Ap,AXA")
can be verified withY, = X, - X,, Y, = X, - X,

Result 4.4
X:Np(p,):)
X
(qxi) n , | Z,
X: ———, u: ———, Z: —_— + —_—
X, K, X, | Zy
((p—9)x1)

=X Nq(ul’zn)

Proof :Set A :[ I | 0 }in Result 4.3

(gxp) (9%q) (gx(p—9))

Example 4.5 Subset Distribution

X: Ny(,E)
X o o
X1:|: 2}ul:|:ﬂ2} 211:{ 2 24}
X, My Oy Oy
X,: quﬂz}{azz 0'24D
Hy || O Oy

2010/9/30
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Result 4.5
(@) X, X, :independent, Cov(X,,X,)= 0
(¢1x1) (g2x1) (31%q2)
X, 1y X, | Z,
O) = Ny | == || =+ =
X, R, X, | X,

= X,,X, :independent if and onlyif X,, =0
(©) X, i Ny (g, Xy), X5 1N, (. E,,) independent

Example 4.6 Independence

X N;(n, X)
4 10

Xx={1 3 0
0 0 2

X,, X, :not independent

X
X, = {Xl} and X, are independent

2

(XX, isindependent of X, and also X,)

42

X, Iy z, | 0
== 'Ny |- || ——— + ——-

X, 2 0 | xE “

Result 4.6

X, M
X=|-——[IN,(n,%), p=|-——|

L X, I,

D2 I
T=|-—— + ———| [Eu[>0=

Xy | ZEy

conditional distribution of X, given X, =x, is
normal with mean = p, + £, 2,2 (x, —p,) and
covariance=X,, - X, X, w

Proof of Result 4.6

I | -z,
A=|l—— + ——— |,

o | 1

X, —m - Z:122;; (X, —my)
AX-p)=| —————————————— :

X;—nm,
joint normal with covariance

z"11_2‘1222):'21 | 0
AZA'=| ———————— + ——

2010/9/30
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Proof of Result 4.6

X, -, —X,X0(X, —p,) and X, —p, are independent

A, Bindependent = P(A|B) = P(4,B)/ P(B) = P(A)

SX - - 2122;% (X, —my) =%, —p; — 2“122“; (x;—ny) |
X,=x,)=

SX - - Z'1222 (X, —p,)=x,—p, — E1222 (x, —1,))

Xi—m - 2‘1222 (X, —ny): N, (0,X, - Z1222221)

X, given X, =x,:

N, (n, + 212):;; (x; —my), Xy — 212):;;221)

Example 4.7 Conditional Bivariate

{XI}NZ({%}{GM J12j|)
Xy Hy | |01 Op
show that

2
O. O.
S ]x)= N(ﬂl“'&(xz _luz)’o_ll_i

Oy Oy

Example 4.1 Density Function
1

S(x,x,) = >
27 \/ 01105, (1 p1y)

- 1 X H 2 Xo —Hy 2
exp{ 2(1_,0122)[( \/0'711] 7{ o j
_ YT H || X K
enl 22| 2 p

Example 4.7

2 2
1 [ MTHA T ~2p, N X B ]
2(1- plzz) VOou VO 2 VOou VO2
2
1 Op J 1 (x, _/uz)z
e LTy | )
20'11(1—p122)[ L 22 2 2 2 Oy
27 01,0, (1-pf) =+ 2”\/0'11(1_,0122)\/ 276y,

SO lx) = 0, x,) 1 f(x,)
1

= ¢

m\/ o, (l- P122)

~(x—p~(012/ 532 )(x2 */42))2/2‘711 (1*9122)

2010/9/30
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Result 4.7
X:N,(nX), [Z[>0
@ (X-p) T (X-p):z,
(b) The probability inside the solid ellipsoid
{x:(X-p)E*(X-p) < 7 (a)}isl-a,
where y; () denotes the upper (100c)th

percentile of the ;(j distribution

v2 Distribution
X, N(,07), X, :N(y,07), -

X, N(u,,0); 7, = "H N
O-i
v 2
x 22()@ _ﬂ’) , v :degrees of freedom (d.f.)
i=1 o;

1 221 2
—_— wx°>0
ﬁ,(lz): 2vl2r(vlz) (Z ) € ’1/
0, 72 <0
(Gamma distribution with & = v /2)

v2 Distribution Curves

{ y2 3
S x,\ _',df=l

-

_df=3

Table 3, Appendix

2010/9/30

13



Proof of Result 4.7 (a)

(X=X ) = 3 T (X-Wee (X—p)

i=1 7Y

1, z ., , . N |
—;L/Ze,.(xp)} =220 Z=AX-W:N,0AZA)

YN

._eIZ/\//Tz S T I
AZA'=| T [;zieiei}hz N \/Z]—I

e'p/\/z

P
ZiNQOL), (X-p) L2 (X-p) = 7" 1}
i=1

53

Proof of Result 4.7 (b)

P|(X—p)'=*(X—p)<c?| is the probability
assigned to the ellipsoid by X: N, (, X)

(X —p)'T (X —p) new random variable
distributed by y>

PIX-py =1 (X-p) < 72 (@)]=1-«

Result 4.8

X, X,,--+, X, : mutually independent
XJ : Np (",yz)
V, =¢ X, +¢,X, +-+¢,X, :N{ng,,(Zcf)ZJ
j=1 j=1
V, =bX, +b,X, +---+b,X, and V, and V, are joint normal

(Z ¢)E (o)X
with covariance matrix | /= .,
' 2
(b'e)x (Zlbj )X
J=

55

Proof of Result 4.8

X'=[X;, X5, X, 11N, (1. Zy)

[ £ 0 - 0
S HE

", 00 - %

et Yo nan

block diagonal terms of AZ,A": (D ¢?)E, (D b2)E
=

J=L

off —diagonaltermsof AL A" (3 c,b,)L

i=1 56

2010/9/30
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Example 4.8 Linear Combinations

X,, X,,X;, X, rindependent identical N,(pn, X)

3 3 -11
p=l-1/z=|-1 1 0
1 1 0 2

a'X,:N(a'p,a'Xa)
a'p=3a,—a,+a,
a'Ya=3a’ +a. +2d; - 2a,a, +2a,a,

57

Example 4.8 Linear Combinations

1 1 1 1
\71 :EX1+EX2 +EX3 +EX4 :N3(u'V1’ZV1)

6
4
My =D Cl; =2n= {_ 2}
=

2
\ 3 -11
= HE=X=|-1 1 0
H L 0 2]

4
V, =X, +X,+X,-3X,, Cov(V,,V,)=(D¢;b,)£=0
j=1

58

Outline

- Introduction

» The Multivariate Normal Density
and Its Properties

~ Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of x and
S

~Large-Sample Behavior of X and S

Questions

~What are random samples?
~What is the likelihood?

» How to estimate the mean and
variance of a univariate normal
distribution by the maximum-
likelihood technique? (point
estimates)

~What is the multivariate normal
likelihood?

2010/9/30

15



Questions

~What is the trace of a matrix?

~ How to compute the quadratic form
using the trace of the matrix? (Result
4.9)

» How to express the trace of a matrix
by its eigenvalues? (Result 4.9)

~Result 4.10

Questions

~ How to estimate the mean and
covariance matrix of a multivariate
normal vector? (Result 4.11)

~What is the invariance property of
the maximum likelihood estimates?

~ What is the sufficient statistics?

Maximum-likelihood Estimation

! 2 3 4 5 6 \\.-"
63

Multivariate Normal Likelihood

X, X,,--+, X, :randomsample from N (n, X)

{Joint density of 1 2R w2
nl2

X, X5, X, }_ (27)""|z
as a function of pand X for fixed x,,x,,--, X,
= likelihood
Maximum likelihood estimation
Maximum likelihood estimates

2010/9/30
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Trace of a Matrix
k
(kék) - {aij }3 tr(A) = 2_1: a,; cisascalar

(@) tr(cA) =ctr(A)

(b) tr(A £B) =tr(A) £ tr(B)
(c) tr(AB) = tr(BA)

(d) tr(BAB) = tr(A)

k k

(e) tr(AA) =D > a;

i=1 j=1

Result 4.9

Ak x k symetric matrix
X .k x1vector
(@) x' Ax = tr(x' Ax) = tr(Axx')

mnmm:f}g

Proof of Result 4.9 (a)

B:mxk matrix, C:kxm matrix
tr(BC) = tr(CB)

- tr(BC) = i[ﬁ b,.jcﬂ)
{r(CB) = ﬁ(fcﬁbyj - Z(Zk; by.cﬂ} ~ r(BC)

= tr(x' Ax) = tr((Ax)x') = tr(Axx')

Proof of Result 4.9 (b)

A=P'AP, PP=1
A =diag{d, Ay, A }
tr(A) =tr(P'AP)

=tr(APP') =tr(A) = Zk: A,

i=1

2010/9/30
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Likelihood Function
ji;(x/—p)z’l( /u):tr{zlg(x/uXx/u)}
> (x, ~m)x, —n)

Jj=1

:;(x,.—mi—p)(x/—mi—p)
=3, ), %)+ a5 )Y

J=1

—tr|

LX) = zfl[g(x/7;)(x,,;yﬂ,(ifp)(if")ﬂ/z

_
@)

Result 4.10

B : px p symmetric positive definite matrix
b : positive scalar

ib e—tr(Z'lB)IZ < ib (2 b)pb e—bp

=] B]

for all positive definite ( Y , with equality
Pxp)

holding only for £ = (1/25)B

Proof of Result 4.10

tr(Z’lB) _ tl’[(Z’lBUZ )BI/Z ] —1r [BMZ’IBM ]
7, - eigenvalues of BY?X'B"?, all positive

P P
tr(=*B)=n. [=B=]1n=[8/z
i1 i=1

b
»
Hmj
1 —tr(Z'B)/2 (u 27/2 L b _-n12
—e =~=_2 ¢ e
B g Ll
n°e™'? has a maximum (2b) e at 77 = 2b .~ ‘1‘ e IEBI2 < \Bl\ (2b)’e™

upper bound is attained when X = (1/ 2b)B such that BY2Z*BY? = 251

Result 4.11 Maximum Likelihood
Estimators of u and £

X, Xy, -+, X, :random sample from N (n, X)

(x, -X)x, -X)=""1s

j=L n

2010/9/30
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Proof of Result 4.11

Exponent of L(p, X):

—;t{):l(znl(x -x)x, —x)ﬂ —%n(i— pyZi(x-p)

=1

L(i,Z) = 2,,)1/127_’2 et{p[;(x”‘x"f"}ﬂ

(
=¥= i(x/—iXxj—i):n—_lS
A n

73

Invariance Property

A

& : maximum likelihood estimator of &

h(é) : maximum likelihood estimator of 4(8)
Examples:

MLEof w2 'p=f'E

MLE of \J/o, =[5,

6-1'1' zli(Xﬁ —)?,-)2 = MLE of Var(Xl.)
niig

74

Sufficient Statistics

Joint density of
le sz"',X

n

1 -"{E’l[i(xj—i)(x,-—x)'+n<x-u>(x—p>-ﬂ/z

Jj=1

= nl2

B (Zﬁ)np/Z ) €
depends on the whole set of observations

X, X,, -+, X, throughxand S

~.x and S are sufficient statistics of a multivariate

normal population

75

Outline

- Introduction

-~ The Multivariate Normal Density
and Its Properties

~ Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

»The Sampling Distribution of x¥ and
S

~Large-Sample Behavior of X and S

2010/9/30
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Questions

~What is the distribution of sample
mean for multivariate normal
samples?

»What is the distribution of sample
covariance matrix for multivariate
normal samples?

Distribution of Sample Mean

X, X,, -+, X, rrandom sample from N (n, X)
Univariatecase: p =1
X :N(u,0%In)
Multivariate case:
X:N,(n,X/n)
cf.Result 4.8

78

Sampling Distribution of S

X,, Xy, -+, X, rrandom sample from N, (u, X)
Univariatecase: p =1

(n-1)s° :i(Xj —)?)2 oyl

j=1
(n-1)s? =O'ZZZJ?, oZ, :N(0,67)
j=1

Multivariate case :
Z,=X,-X:N,(0,xX)

(n-DS= z ZjZ', : Wishart distribution W,_, ((n-1)S | X)
j=1

79

Wishart Distribution

(-p-2)12 -ufax]2

A
QP12 70 -2 21:[ F(;(n —i ))

A : positive definite

Properties:

AW, (A |Z), A,: w.,, (A, |1E)=
Al + Az : W?ll+n12 (Al + Az | E)

AW, (A|E)= CAC: W, (CAC|CZC")

Wn—l(A | 2‘) =

80

2010/9/30
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Outline

~ Introduction

- The Multivariate Normal Density
and Its Properties

» Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of x and
S

~ Large-Sample Behavior of X and S

Questions

- What is the univariate central limit
theorem?

~What is the law of large numbers, for
the univariate case and the
multivariate case? (Result 4.12)

« What is the multivariate central limit
theorem? (Result 4.13)

Questions

»What is the limit distribution for the
square of statistical distance?

Univariate Central Limit Theorem

X :determined by a large number of independent
causesV,, V,, -+, V,

V. :random variables having approximately
the same variability

X=V+V,+--+V,

= X has a nearly normal distribution

X is also nearly normal for large sample size

2010/9/30
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Result 4.12 Law of Large Numbers

1, Y,.---, Y :independent observations from a
population (may not be normal) with £(Y,) = u
=

Y+Y,+---4+7 . .
=1 -2 "nconvergesin probability

7
n
to u
That is, for any prescribed & > 0,
Pl-e<Y-u<e]—>lasn —> oo

85

Result 4.12 Multivariate Cases

X,,X,, -+, X, independent observations from
population (may not be multivariate normal)
with mean E(X;) =p=

X converges in probability top

S convergesin probability to X

86

Result 4.13 Central Limit Theorem

X, X,,:-+, X, :independent observation from a
population with mean p and finite
covariance X

— Jn(X - p) is approximately N,(0,%)
for large samplesize n >> p
(quite good approximation for moderate » when
the parent population is nearly normal)

87

Limit Distribution of
Statistical Distance

X :nearly N,(n, 1 Y) for large samplesize n >> p
n

n(X—p)' = (X—p) approximately
for large n-p

S close to X with high probability when
nislarge

. n(X—p)'S™(X —p):approximately >
for large n-p

88

2010/9/30
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Outline

» Assessing the Assumption of
Normality

~ Detecting Outliers and Cleaning Data
» Transformations to Near Normality

Questions

~How to determine if the samples
follow a normal distribution?

~What is the Q-Q plot? Why is it
valid?

» How to measure the straightness in a

Q-Q plot?

Questions

» How to use Result 4.7 to check if the
samples are taken from a
multivariate normal population?

» What is the chi-square plot? How to
use it?

Q-Q Plot

Xy S X5 -+ < X,y tObservations on X,

Letx be distict and » moderate to large, e.g., n > 20
. . o1

Portionof x<x,:j/n —)(j—E)/n

j-1/2

n

aw 1 _ep
P[Z<qg . ]=| —e" "“dz=
() J‘,w \/g
Plot (q( X0 )to seeif they are approximately
linear, since x,;, = oq,;, + w if the data are from

a normal distribution

92

2010/9/30
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Example 4.9

Ordered

observations }‘E'l\|‘-;|f'\i:ill\ levels

Standard normal

quantiles ¢

00 0 —1.645
A0 5 036
16 25 74
A1 33
2 A5 2:
hetl] 55 >
2 63 83
85 13¢
( 93 4

Example 4.9

A [}
..

e

L ]

L ]

L ]
L ]

S, e . :
. ——

Histogram of MidTerm Scores of
Students of This Course in 2006

50~59 60~69 70~79 80~89 90~99

Q-Q Plot of MidTerm Scores of
Students of This Course in 2006

n = 33, ro = 0.946652

2010/9/30
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Example 4.10 Radiation Data of
Closed-Door Microwave Oven

Measurement of Straightness

i(‘x(j) _f)(qU) -q)

V., =

0 . -
\/Z (x — x)° \/Z O q)°

J=1

Reject the normality hypothesis at level of
significance « if 7, falls below the appropriate

valuein Table 4.2

Table 4.2 Q-Q Plot Correlation
Coefficign_t__Te_st

Sample size

Example 4.11

For data from Example 4.9, x =0.770,g =0

10 10

> (x) %)) =8584, - (x, ~xf =8.472

j=1 j=1

10

> g}, =8.795, 1r,=0.99

j=1

n=10, a=0.10

1, > 0.9351= Do not reject normality hypothesis

2010/9/30
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Evaluating Bivariate Normality

Check if roughly 50% of sample observations
liein the ellipse given by
fall x such that (x - X)'S *(x - X) < #2(0.5)}

Example 4.12

al profits % assets

X sales X
Company (millions of dollars) (millions of dollars) (millions of dollars)

General Motors
Ford

Exxon

IBM

General Electric

102

Example 4.12

_ {62.309} {10,005.20 255.76} s

X = , S= x10
2927 255.76 14.30

72(0.5)=1.39
, |x—62309]|| 0.000184 -0.003293 | x, —62.309 "
d°= ' x10
x,—2927 ||-0.003293 0.128831 | x,—2927
[x,,x, ] =[126.974,4224] = d* = 4.34 >1.39
Seven out of 10 observations are with ¢° <1.39
Greater than 50% = reject bivariate normality
However, sample size (n =10) is too small to reach the conclusion

103

Chi-Square Plot

d* = (x—x)S*(x—Xx) :squared distance
Order the squared distance djj) <d) <---<d(,
qcvp((j—%)/n) :lOO(j—%)/n quantile of the

chi-square distribution with p degrees of freedom

o1
Graphall (g, ,((; —E)/n),d(zj))

The plot should resemble a straight line through
the origin having slopel

o1 1
Note that q..,,((j ~3)/n) = 2,0=() -1

104

2010/9/30

26



Example 4.13 Chi-Square Plot
for Example 4.12

Example 4.13 Chi-Square Plot
for Example 4.12

Chi-Square Plot for Computer
Generated 4-variate Normal Data

Outline

~ Assessing the Assumption of
Normality

~ Detecting Outliers and Cleaning Data

~ Transformations to Near Normality

2010/9/30
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Steps for Detecting Outliers
~» Make a dot plot for each variable

- Make a scatter plot for each pair of
variables

~ Calculate the standardized values.
Examine them for large or small
values

~ Calculated the squared statistical
distance. Examine for unusually
large values. In chi-square plot,
these would be points farthest from
the origin.

Outline

~ Assessing the Assumption of
Normality

~ Detecting Outliers and Cleaning Data
~ Transformations to Near Normality

Questions

~ How to transform sample counts,
proportion, and correlation, such that
the new variable is more near to a
univariate normal distribution?

» What is Box and Cox’s univariate
transformation?

- How to extend Box and Cox’s
transformation to the multivariate
case?

Questions

~How to deal with data including large
negative values?

2010/9/30
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Helpful Transformation to
Near Normality

Original Scale Transformed Scale

Counts, y \/;

Proportions, p

logit(p) = % Iog(lj}ﬁj

Correlations, r . 1, (1+r
Flsher5z(r):EIog 1r
—-r

Box and Cox’s
Univariate Transformations

2
x" -1
x(z)_{ P A#=0

Inx, A=0
Choose A to maximize

() = —gm{%i()& —WJ ]+(/”L—1)Z’i:|nxj

=

_ 1 n
X =23 )
n j:]_

Example 4.16 /(L) vs. A

Example 4.16 Q-Q Plot

2010/9/30
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Transforming Multivariate

Observations
Ay Ay,e++, A, power transformations for

the p characteristics
Select 4, to maximize

n

2
0,(2)= _Zm[iz(xj;) —x,?’J } (1-1)>Inx,
j=1

Jj=1

j=1
. (h) () (4,)
X« [xll 1 x37-1 - x;," =1
J 3 7
A A
Zl 2 [7 117

More Elaborate Approach

21,/12,---,/1}” : power transformations for

the p characteristics
Select . = [ﬂl,iz,m,/lp}to maximize

Ny 2y, )= —gln\sm\ +3 (4 -1 Inx,

S(A) is computed from

)1 ) )
T e U
J

A 4 A,

Example 4.17 Original Q-Q Plot for
Open-Door Data

Ve e

Example 4.17 Q-Q Plot of
Transformed Open-Door Data

n
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Example 4.17 Contour Plot of
¢(4,,4,) for Both Radiation Data

Transform for Data Including
Large Negative Values

{x+1y-alra x20,2%0

oy _ log(x+1) x>0,1=0

Aexr1P afi2-2) x<0,422
—log(~x+1) x<0,A=2
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