2010/9/30

Multivariate Normal Distribution

Shyh-Kang Jeng
Department of Electrical Engineering/
Graduate Institute of Communication/

Graduate Institute of Networking and
Multimedia

Outline

» Introduction

» The Multivariate Normal Density
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Outline

» Introduction

» The Multivariate Normal Density
and Its Properties

- Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of ¥ and
S

- Large-Sample Behavior of X and S

Questions

» What is the univariate normal
distribution?

» What is the multivariate normal
distribution?

» Why to study multivariate normal
distribution?

Multivariate Normal Distribution

- Generalized from univariate normal
density

~ Base of many multivariate analysis
techniques

» Useful approximation to “true”
population distribution

» Central limit distribution of many
multivariate statistics

» Mathematical tractable
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Outline

» Introduction

- The Multivariate Normal Density
and Its Properties

» Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of X and
S

» Large-Sample Behavior of X and S

Questions

» What is the formula for the
probability density function of a
univariate normal distribution?

» What are the probability meaning of
parameters px and o?

» How much probability are in the
intervals (u-o, uto) and (u-20, u+20)?

» How to look up the accumulated
univariate normal probability in Table
1, Appendix?

Questions

» What is the Mahalanobis distance for
univariate normal distribution?

- What is the Mahalanobis distance for
multivariate normal distribution?

» What are the symbol for and the
formula of the probability density of
a p-dimensional multivariate normal
distribution?

Questions

» What are the possible shapes in a
surface diagram of a bivariate
normal density?

» What is the constant probability
density contour for a p-dimensional
multivariate normal distribution?

» What are the eigenvalues and
eigenvectors of the inverse of £?
(Result 4.1)

Questions

» What is the region that the total
probability inside equals 1-a?

- What is the probability distribution
for a linear combination of p random
variables with the same
multivariate-normal distribution?
(Result 4.2)

» How to find the marginal distribution

of a multivariate-normal distribution
by Result 4.2?

Questions

» What is the probability distribution
for a random vector obtained by
multiplying a matrix to a random
vector of p random variables with the
same multivariate-normal
distribution? (Result 4.3)

 What is the probability distribution of
a random vector of multivariate
normal distribution plus a constant
vector? (Result 4.3)
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Questions

- Given the mean and covariance
matrix of a multivariate random
vector, and the random vector is
partitioned, how to find the mean
and covariance matrix of the two
parts of the partitioned random
vector? (Result 4.4)

Questions

» What are the if-and-only-if conditions
for two multivariate normal vectors
X, and X, to be independent? (Result
4.5)

« If two multivariate normal vectors X;
and X, are independent, what will be
the probability distribution of the
random vector partitioned into X;
and X,? (Result 4.5)

Questions

» A random vector X is partitioned into
X, and X,, then what is the
conditional probability distribution od
X, given X, = x,? (Result 4.6)

» What is the probability distribution
for the square of the Mahalanobis
distance for a multivariate normal
vector? (Result 4.7)

Questions

- How to find the value of the
Mahalanobis distance for a
multivariate normal vector when the
probability inside the corresponding
ellipsoid is specified? (Result 4.7)

Questions

» What is the shape of a chi-square
distribution curve?

- How to look up the accumulated
chi-square probability from Table 3,
Appendix?

» What is the joint distribution of two
random vectors which are two linear
combinations of n different
multivariate random vectors? (Result
4.8)

Univariate Normal Distribution

N(u,0%)

f(x)= 71 elemioli2 o o oo
2o

2

18
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Table 1, Appendix

Square of Distance
(Mahalanobis distance)

[x‘“] — (=)o) =)
(02

v

(x—p)=*(x—p)

p-dimensional Normal Density
N,(nX)

l —(x—p)EY(x-p)/2
f(X) — e (I (x)
(Zﬁ)p/Z 2,‘|1/2
—o<x, <o, i=12,-,p
x is a sample from random vector
X'=[X,, X, -, X,]

Example 4.1 Bivariate Normal

=E(X,), 1, = E(X,)
oy, = Var(X,), o, = Var(X,)

P2 =0y, /(\/(7711\/0'722): Corr(X,, X,)

Oy Op - 1 Op —Op
= { Tl ————
Oy Op 01,0, =01 | =01, Oy

2 _ 2
01105 — 01, = 0110, (1= pp)

Example 4.1 Squared Distance

(x—p)E*(x—p)

L B S
BT 611622(1_9122)

|: O _Plzx/?n@:l{x1_ﬂ1}
~ P \/0-711\/0-722 On

2 2
_ 1 [xilul] +[x2ﬂ2] Zplz[xiﬂl][xzﬂz]
17/7122 \VOou V02 On VO

Example 4.1 Density Function
1

Jn)= 2710110, (1_/0122)
_ 1 X 2 X, —Hy 2
X 2(1—pfz)[(\/<7uj [ EJ
_ YMTH | X T
B ot
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Example 4.1 Bivariate Distribution

Oy = O, Py =0

Example 4.1 Bivariate Distribution

Oy = Oy, P, = 0.75
26

Contours

Constant probability density contour
= {all xsuch that (x—p)' L *(x-p) = * }
=surface of an ellipsoid centered at p
axes:+c[Ae,
Xe,=Ade, i=12,---,p

Result 4.1

X : positive definite
Ye=le=X"e =%e

(A,e) for £ = (1/4,e) for &*
X positive definite

28

Example 4.2 Bivariate Contour

Bivariatenormal, o,, =0,
eigenvalues and eigenvectors

A =0y, +0y,, 91':[%’%]

.1 -1
A, =0 — 0y, € Z[ﬁ’ﬁ]

Example 4.2 Positive Correlation

30
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Probability Related to
Squared Distance

Solid ellipsoid of x valuessatisfying

(x—p) 7 (x-p) < 7, (@)
has probability 1- «

Probability Related to
Squared Distance

A A

/'f: ﬁ
[

- -

Result 4.2

X:N,(n,X)=
aX=aX +a,X,++a,X,:
N(a'p,a'Xa)
a'X:N(a'p,a'Xa)foreverya—=
X mustbe N, (n, X)

Example 4.3 Marginal Distribution
X=[X, X, X, "N, (nX)
a'=[10,---,0], a' X=X,
ap=y, aXa=oy
a'’X:N(a'p,a'Xa)=N(u,0,)
Marginal distribution of X, in X:

N(u;0;)

Result 4.3

X:N,(nX)

ayX;+--+a,,X,
anX;++a, X
AX=| 1 TN (AR, AZAY)

a X, +-+a,X,
X+d:N,(p+d,X)

Proof of Result 4.3: Part 1

Any linear combination b’ (AX) = a'X,
a=A'b=
(b'A)X: N((b'A)p,(b'A)X(A'D))
=
b'(AX): N(b'(Ap),b' (AX A")b)
valid foreveryb = AX: N (Ap,AZA")
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Proof of Result 4.3: Part 2
a'(X+d)=a'X+a'd
a'X:N(a'p,a'Xa)
a'X+a'd:N(a'n+a'd,a'Xa)
aisarbitrary =
X+d:N,(p+d,X)

Example 4.4 Linear Combinations

X: NS("!E)
Xl
L |=AX

X-x,] [1 -1 0
= X

X,-x,| |0 1 -1
X,

Ap:[!ﬁ_#z}
Hy — M

0y —20;, +0y, O+ 03 =0y~ 0'13:|

AEA'=[

Oy + 0y =0y — O3 Op =205, +0y
AX:N,(Ap,AXA")
can be verified withY, = X, - X,, ¥, = X, - X,

Result 4.4
X:Np(p,):)
(ﬁ) M X, | Ep
X=| —— , p=l—-—-1 Y= — + ——
X, R, L, | Zy
((p—g)x1)

=X 1N, (0, Iy)

Proof :Set A :[ I | 0 Jin Result 4.3
(gxp) (9xq) (9x(p—q))

39

Example 4.5 Subset Distribution

X:Ns(n, X)
X o o
X1=|: zj|,u1:|:,uz:|, le:{ 22 24j|
X, Hy Oy Oy
el e =)
Hy | O Oy

40

Result 4.5

(@) X, X, :independent, Cov(X,,X,)= 0

(41x1) (g2x1) (a1%42)

Xl By Zu | le
O~ [ Ny |~ | == + -
X2 2 Z21 | 222

= X,, X, :independent if and only if X,, =0
(©) Xy 1Ny (1, 2y), X, 1N, (5, X5, ) independent

X, my Z, | 0
- :Nq1+q2 D + D
X, L 0 | Xy “

=

Example 4.6 Independence

X Ny(n,X)
4 10

Xr=|1 30
00 2

X,, X, :not independent

X,
X, = {Xl} and X, are independent

2

(X, isindependent of X, and also X,)

a2
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Result 4.6
[ X, 1
X=|-——|:N,(n,L), p=|-——|
| X, K,
le | E12
L=l-—— + ———|, [E4|>0=
_221 | x,

conditional distribution of X, given X, =x, is
normal with mean = p, + £, X} (x, —p,) and
covariance=X,, — X, X%,

Proof of Result 4.6
{ | R O 53
A=|——— + ———— |

X;-m - E122'; (X, - P‘z)}

X, —n,
joint normal with covariance
211 - 2"12):‘2):'21 | 0
ATA'=| ———————— + -

Proof of Result 4.6

X, —p, —Z,Z50 (X, —p,) and X, —p, are independent
A, Bindependent = P(4| B) = P(4,B)/ P(B) = P(4)
X =y =5 (X, — 1) =X, — 1y — E, 5 (X, — 1) |
X, =X,)=
SX =1~ T (X, — 1) = X — 1y — 2T (X, — 1))
X, -y — 2,55 (X, —n,) N, (0,2, —Z,E,%,)
X, givenX, =x, :
N, (1 + T (X, — 1), Ty — T X5 E5,)

Example 4.7 Conditional Bivariate

x o, O
bl o)
X2 H, [ |01, Op

show that

2
o o,
F(x1x,) =Ny + =2 (x, — i), 00, ——2)
2 Oy

a6

Example 4.1 Density Function
1

Jn)= 2710110 (1_/0122)
_ 1 X 2 X~ Hy 2
exp{ 2(1_p122)[( \/GTJ +[ ~ J
_ YK | X
o e

Example 4.7

1 i MM 2+ X~ Hy 272p MM X ]
2(17p122) \/5711 \/0'722 . \/0-711 \/0-722
_ 1 O _ ’ l(xz_/[z)z
- 20—11(1_p122)(x1 # 2 O IUZ)] +2 Op
271:/01,05, (1—/7122) = m\/ 0'11(1—,0122)\/277‘722
SO lx) = f %) f(x,)

1 (-t (o)) P 26733 (1p)

) \/EV 0'11(1*p122) ‘

a8
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Result 4.7 2 Distribution
X:N,(n,X), [Z[>0 X, N(u,02), X, :N(u,,02),
@ (X-p) T (X-p): 12 X, N, 02); 7, = H
(b) The probability inside the solid ellipsoid vV
R 2 ) 2 [x, ﬂ"] , v.degrees of freedom (d.f.)
{x:(X-p)'27(X-p) < g, (@)}isl-«, o;
2 1 AV 2
where y; (o) denotes the upper (100a)th s (zz)—{z”zr(v/z)(l ) e 712 4250
percentile of the y; distribution 0, 20
(Gamma distribution with @ =v/2)

x? Distribution Curves Table 3, Appendix

Proof of Result 4.7 (a) Proof of Result 4.7 (b)

(X W =) = 32X (K1) _ .
h Pl(X—u)'E_l(X—p)SCZJ is the probability
[ (X~ u)} 222 Z=A(X-p):N,(0,AZA) assigned to the ellipsoid by X: N, (u, X)

&% (X —p)' (X —p) new random variable
AZA'= ez/?/Z [ﬁ;&e"el{ji \/% \/}J:l distributed by }(i

e / R

7, ,, Pl(x-pyz 1(X—u)Sz§(a)]=1—a
Z:N@OD,(X-p)Z(X-p) :Z:l:zf 2
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Result 4.8
X, X,, -+, X, : mutually independent
X;:N,(n; X
V=X +6,X, ++¢,X, :Np[ic/.pj,(icf)ﬁj
= =
V, =b X, +b,X, +---+b,X, and V, and V, are joint normal

(Z‘UZ‘)Z (b'c)Z
with covariance matrix | /= ”
oz (QpHE
=

Proof of Result 4.8

X=X, X, XN, (1, Ey)

m L0 - 0
SHES R

", 00 - %
A{Zi Zi Zﬂ'Ax{zj:NZF(Ap,AEXA')

block diagonal terms of AZ A": (ief)z, (ibf)i‘.

j=1 j=L

off —diagonaltermsof AZ A" (3 ¢;b,)T
j1

56

Example 4.8 Linear Combinations

X, X,, X;, X, :independent identical N, (p, X)

W e S

1] L1 0 2]
a'X,:N(a'p,a'Xa)
a'n=3a,—a,+a,

a'Ya=3a’ +a’ +2a’ -2a,a, +2a,a,

Example 4.8 Linear Combinations

1 1 1 1
A\ :§X1+§X2 +EX3+EX4 1Ny (py, Zy,)

6
4
By, =D =2n= L J
2]
. 3 -11
= )E=E=-1 1 0
= 1 0 2
4
V, =X, +X, +X,-3X,, Cov(V,,V,)=(D c,p)E=0

j=1
58

Outline

» Introduction

» The Multivariate Normal Density
and Its Properties

- Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of ¥ and
S

. Large-Sample Behavior of X and S

Questions

» What are random samples?
» What is the likelihood?

» How to estimate the mean and
variance of a univariate normal
distribution by the maximum-
likelihood technique? (point
estimates)

» What is the multivariate normal
likelihood?

10
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Questions

- What is the trace of a matrix?

» How to compute the quadratic form
using the trace of the matrix? (Result
4.9)

- How to express the trace of a matrix
by its eigenvalues? (Result 4.9)

r Result 4.10

Questions

- How to estimate the mean and
covariance matrix of a multivariate
normal vector? (Result 4.11)

» What is the invariance property of
the maximum likelihood estimates?

» What is the sufficient statistics?

<

Multivariate Normal Likelihood

X, X,, -+, X, :random sample from N, (u, X)
{Joint density of} 1 *’Zﬂxﬁu)'z’l(x,fu)/z
=—:--2:¢ =
X11X2|"'1X, (2 ) Z)1/2

as a function of pand X for fixed x, x,,--+, X

npl2
T

n

n

= likelihood
Maximum likelihood estimation
Maximum likelihood estimates

64

Trace of a Matrix
k
A =l j=t(A) = a,; cisascalar

(kxk) pary

(@) tr(cA) =ctr(A)

(b) tr(A £B) =tr(A) + tr(B)
(c) tr(AB) = tr(BA)

(d) tr(BAB) = tr(A)

(e) tr(AA") = i Zk: a;

i=1 j=1

Result 4.9

A .k x k symetric matrix
X : k x1vector
(@) x'Ax = tr(x' Ax) = tr(Axx')

(b) tr(A) = zk; A,

66

11
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Proof of Result 4.9 (a)

B:mxkmatrix, C:kxmmatrix
tr(BC) = tr(CB)

 tr(BC) = i (i bc;; J

i=1 \_j=1

tr(CB) = i[icﬂbﬁj - i{i bﬁcﬁj ~ tr(BC)

=1 \i=1 i=1 \_j=1

= tr(x' Ax) = tr((Ax)x') = tr(Axx')

Proof of Result 4.9 (b)
A=P'AP, P'P=1
A =diag{ly, Ay, A }
tr(A) = tr(P'AP)
k
=tr(APP") =tr(A) =>4,

i=1

Likelihood Function
Z(x/ —p)'):‘.’l(xj —u):tr E’lé(x/—prj —u)’

n
Jj=1
n

> (x, —nx, -n)

<.
Ii
N

=30, ), %)+ s )

,tr{x’]fi(x, —=)x, 7?)4!1(?7‘1)(}7]1)'\]“/2

(V=1

1 .
(2”)71[7/2‘2‘11/2

Result 4.10

B : px p symmetric positive definite matrix
b : positive scalar

b
=] B]
for all positive definite ( X ; with equality
pxp

1 e—tr(Z’lB)IZ < ib (Zb)pbe—bp

holding only for £ = (1/25)B

Proof of Result 4.10

tr(): IB): tr[(): IBMZ)BM]:U[BME 1B1/2]
7, -eigenvalues of BY>X'B"?, all positive

» P
(= *B)=Yn. [=B/=]]n =B/
i=1 i=1

b
p
’]. y
ﬁe w(E=B)2 _ [lr_l[ hlJ g;wz _ ‘ l‘,, lﬁ[mhe—n,/z
)y B| B|

i=1

b _-nl2 i
" = B

upper bound is attained when X = (1/2b)B such that BY2X*B? = 21

hasa maximum (2b) e atyp =2b - %e"‘(”“‘” 2 1 (2b)" et

Result 4.11 Maximum Likelihood
Estimators of p and

X, X;, -+, X, :random sample from N (u, X)
=X
£-13(x -X)x,-X)=""1s

n5a n

12
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Proof of Result 4.11

Exponent of L(p,X):

_;t{z-{g(x,_x)(xj_x)ﬂ_;n(x_u)'z-l(x—m

J=1

Invariance Property

6 : maximum likelihood estimator of @

h(é) : maximum likelihood estimator of 4(6)
Examples:

==X 1 Ayl
. . {2 {g)()ﬂ MLE of w'Z "p a =n
M ey MLE of /o, =[5,
R R _ N 1 n _
3Z=72(xj—iXxj—x)=n S O-ii:7Z(in_Xi)2:MLEOf Var(X))
nj=1 n j=1
Sufficient Statistics Outline
Joint density of » Introduction
X, Xy, X, » The Multivariate Normal Density
e e and Its Properties
_ 1 e"{z @(X’"Xx””%”("")("")ﬂu » Sampling from a Multivariate
(2,,)"1”22"’2 Normal Distribution and Maximum

depends on the whole set of observations
X;,X,, -, X, through xand S

~.xand S are sufficient statistics of a multivariate
normal population

Likelihood Estimation

» The Sampling Distribution of x¥ and
S

- Large-Sample Behavior of X and S

Questions

» What is the distribution of sample
mean for multivariate normal
samples?

» What is the distribution of sample
covariance matrix for multivariate
normal samples?

Distribution of Sample Mean

X,, X,, -+, X, rrandom sample from N, (n, X)
Univariatecase: p =1
X :N(u,0%1n)
Multivariate case :
X:N,(nX/n)
cf.Result 4.8

78

13
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Sampling Distribution of S
X,, X;,++, X, : random sample from N, (u, X)
Univariatecase: p =1

(n-1)s? =Z":(X/ —)?)2 oty

j=1
(n-1)s? =GZZZf, oz, :N(0,0?)
j=1
Multivariate case :
Z,=X,-X:N,(0,%)

(n-DS = z Z,.Z'/ : Wishart distribution 7, , ((n-1)S | X)

=

Wishart Distribution

A (r-p-2)/2 -ufax]2

(“)Izljl“(;(n—i))

anl(A | Z) =
217(n—l)/27z_p(p—1)/4‘2

A : positive definite
Properties :
AW, (A |E), A:T, (A, |X)=

Al + AZ : meﬁm2 (Al + A2 | Z)
AW (A|Z)= CAC: W, (CAC|CEC')

80

Outline

» Introduction

» The Multivariate Normal Density
and Its Properties

» Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of ¥ and
S

» Large-Sample Behavior of X and S

Questions

- What is the univariate central limit
theorem?

- What is the law of large numbers, for
the univariate case and the
multivariate case? (Result 4.12)

- What is the multivariate central limit
theorem? (Result 4.13)

Questions

» What is the limit distribution for the
square of statistical distance?

Univariate Central Limit Theorem

X :determined by a large number of independent
causes ¥, v,,---,V,
¥, :random variables having approximately
the same variability
X=V+Vy+-+V,
= X has a nearly normal distribution
X is also nearly normal for large sample size

84

14
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Result 4.12 Law of Large Numbers

Y, Y,.---,Y, :independent observations froma
population (may not be normal) with £(Y;) = u

=
= Y+Y,+--+Y . -
7 =L convergesin probability
n
tou

That is, for any prescribed ¢ > 0,
Pl-e<Y-u<gl—>lasn— oo

Result 4.12 Multivariate Cases

X,,X,, -+, X, independent observations from
population (may not be multivariate normal)
with mean E(X;)=p =

X converges in probability top

S converges in probability to X

Result 4.13 Central Limit Theorem

X,, X,, -+, X, :independent observation froma
population with mean p and finite
covariance X
= +/n(X —p) is approximately N,(0,%)
for large samplesize n >> p
(quite good approximation for moderate » when
the parent population is nearly normal)

Limit Distribution of
Statistical Distance

X :nearly N, (n, 12‘.) for large samplesize n >> p
n

n(X—p) £ (X —p) :approximately y>
for large n-p
S close to X with high probability when
nis large
2 n(X—p)'S™ (X —p):approximately 2

for large n-p

88

Outline

» Assessing the Assumption of
Normality

» Detecting Outliers and Cleaning Data
» Transformations to Near Normality

Questions

» How to determine if the samples
follow a normal distribution?

» What is the Q-Q plot? Why is it
valid?

- How to measure the straightness in a
Q-Q plot?

15
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Questions

- How to use Result 4.7 to check if the
samples are taken from a
multivariate normal population?

» What is the chi-square plot? How to
use it?

Q-Q Plot
Xy € Xg <o+ < x, - Observations on X,
Letx; be distict and » moderate to large, e.g., n > 20

Portion of x <x_,, :j/n—)(j—%)/n

P i—1/2
FIZ < g = [ e s = 1

2z n

Plot (qm VX0 )to seeif they are approximately

linear, since x ,, ~ oy, ;, + w if the data are from
a normal distribution

Example 4.9

Ordered

} revbhabilit laveal
observations Probability levels

Standard normal
u iles g

Example 4.9

94

Histogram of MidTerm Scores of
Students of This Course in 2006

R

50~59 60~69 079 80~89. 9099

Q-Q Plot of MidTerm Scores of
Students of This Course in 2006

9%

n =33, ry, = 0.946652

16
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Example 4.10 Radiation Data of
Closed-Door Microwave Oven

.

Measurement of Straightness
Z’::(x(j) _f)(Q(j) -q)

I”Q = - = -
\/Z (x() -x)’° \/z(%) -q)*

=

Reject the normality hypothesis at level of
significance « if 7, falls below the appropriate

valuein Table 4.2

Table 4.2 Q-Q Plot Correlation
Coefficient Test

Sample size

Example 4.11

For data from Example 4.9, x =0.770,4 =0

10

10
Z(xm _75)7(;) =8.584, Z;,(xm _75)2 =8.472
=

Jj=1

10
;q(?f) =8.795, 7, =0.994

n=10, «=0.10
1, >0.9351= Do not reject normality hypothesis

100

Evaluating Bivariate Normality

Check if roughly 50% of sample observations
liein the ellipse given by
{all x such that (x-X)'S *(x —X) < #2(0.5)}

Example 4.12

X profits
ars)  (millions of dollars) (milli

2.946

17
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Example 4.12

_ | 62.309 10,005.20 255.76 5
¥ { 2927 } > { 25576 14.30 }10
72(0.5)=1.39
- {xl - 62.309“ 0.000184 - 0.003293}?1 - 62.309} 10°5
x,—2927 ||-0.003293 0.128831 | x,—2927
[x,,x, ] =[126.974,4224] = d* = 4.34>1.39
Seven out of 10 observations are with 42 <1.39
Greater than 50% = reject bivariate normality
However, sample size (n =10) is too small to reach the conclusion

103

Chi-Square Plot

d® = (x—x)S™(x—X) :squared distance

Order the squared distance dj) <dj, <---<d,
4., (( j—%)/n) -100( j—%)/nquantile of the

chi -square distribution with p degrees of freedom
Graphall (g, , ((/ 7%) In).d2,)

The plot should resemble a straight line through
the origin having slope 1

Note that qc“p((j—%)/n) = 220 j—%)/n)

104

Example 4.13 Chi-Square Plot
for Example 4.12

Example 4.13 Chi-Square Plot
for Example 4.12

Chi-Square Plot for Computer
Generated 4-variate Normal Data

Outline

» Assessing the Assumption of
Normality

» Detecting Outliers and Cleaning Data
» Transformations to Near Normality

18



2010/9/30

Steps for Detecting Outliers
» Make a dot plot for each variable

» Make a scatter plot for each pair of
variables

r Calculate the standardized values.
Examine them for large or small
values

» Calculated the squared statistical
distance. Examine for unusually
large values. In chi-square plot,
these would be points farthest from
the origin.

Outline

- Assessing the Assumption of
Normality

- Detecting Outliers and Cleaning Data
» Transformations to Near Normality

Questions

» How to transform sample counts,
proportion, and correlation, such that
the new variable is more near to a
univariate normal distribution?

» What is Box and Cox’s univariate
transformation?

» How to extend Box and Cox’s
transformation to the multivariate
case?

Questions

» How to deal with data including large
negative values?

Helpful Transformation to
Near Normality

Original Scale Transformed Scale

Counts, y \/;

Proporti 5 ;
roportions, p logit() :%Iog(lpA]
-p

. 1 1+r
Fisher's ==log| —
20 2 g[l— rj

Correlations, r

Box and Cox’s
Univariate Transformations

-1
x(ﬂ):{ 7 A#0

Inx, A=0
Choose A to maximize

19
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Example 4.16 ¢ (\) vs. A

Example 4.16 Q-Q Plot

Transforming Multivariate
Observations

Ay Ay, A, - power transformations for
the p characteristics
Select 4, to maximize

2
0 ()= —Zln{iZ(xﬁ,f) —FJ }(ﬁ—l)Zln X,
=)

=
— l n
(1) _ (1)
X == 2%
=
(h) _ () _ ) _
x(i‘)'—[x’l 1 X7 1 X, 1
= - - -
A A
j,l 2 P 117

More Elaborate Approach

A4y Ay, A, - power transformations for
the p characteristics
Selecth = [ﬂi,iz,-~-,ﬁ,p}to maximize
n 2 <
Wy 20, 2,)= ~Inis() +3 (4 -1 Inx,
k=1 j=1
S(1) is computed from
xﬁf) -1 x‘%?) -1 P |

xMr= Jp

! A % 4,

Example 4.17 Original Q-Q Plot for
Open-Door Data

Example 4.17 Q-Q Plot of
Transformed Open-Door Data
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Example 4.17 Contour Plot of Transform for Data Including
2(4,,4,) for Both Radiation Data Large Negative Values
{w+1y -2 ¥>0,4%0
o = log(x+1) x>0,4=0
Tl oafie-2) x<0,422
—|Og(—x+1) x<0,4=2
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