Principal Components

Shyh-Kang Jeng

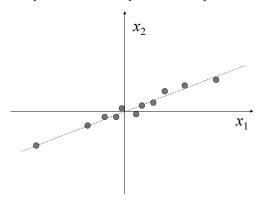
Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking and Multimedia

1

Outline

- → Introduction
- → Popular Principal Components
- → Summarizing Sample Variation by Principal Components
- → Graphing the Principal Components
- → Large Sample Inferences
- Monitoring Quality with Principal Components

2


Outline

- → Introduction
- → Popular Principal Components
- → Summarizing Sample Variation by Principal Components
- → Graphing the Principal Components
- → Large Sample Inferences
- → Monitoring Quality with Principal Components

Questions

- → What is the concept of the Principal Components?
- → What are the objectives of the Principal Components?

Concept of Principal Components

Principal Component Analysis

- → Explain the variance-covariance structure of a set of variables through a few linear combinations of these variables
- → Objectives
 - Data reduction
 - Interpretation
- → Does not need normality assumption in general

6

Outline

- → Introduction
- → Popular Principal Components
- → Summarizing Sample Variation by Principal Components
- → Graphing the Principal Components
- → Large Sample Inferences
- → Monitoring Quality with Principal Components

Questions

- → How to find the Principal Components for a Random vector with a known probability distribution? (Result 8.1)
- →What is the relationship between the sum of all eigenvalues and the trace of the covariance matrix? (Result 8.2)
- How to calculate the proportion of total population variance due to the kth principal component?

Questions

- →What is the relationship between the ith principal component and the kth variable? (Result 8.3)
- → What is the geometric interpretation of the principal components?
- → How to find the principal components for a standardized random vector? (Result 8.4)

9

Questions

- → What are the principal components for a diagonal covariance matrix?
- →What are the principal components for the special covariance matrix

$$\Sigma = \begin{bmatrix} \sigma^2 & \rho \sigma^2 & \cdots & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 & \cdots & \rho \sigma^2 \\ \vdots & \vdots & \ddots & \vdots \\ \rho \sigma^2 & \rho \sigma^2 & \cdots & \sigma^2 \end{bmatrix}$$

10

Principal Components

Random vector $\mathbf{X}' = \begin{bmatrix} X_1 & X_2 & \cdots & X_p \end{bmatrix}$ has

the covariance matrix Σ

Linear combination : $Y_i = \mathbf{a}_i \mathbf{X}, i = 1, 2, \dots, p$

 $Var(Y_i) = \mathbf{a}_i \mathbf{\Sigma} \mathbf{a}_i$, $Cov(Y_i, Y_k) = \mathbf{a}_i \mathbf{\Sigma} \mathbf{a}_k$

First principal component:

 $\mathbf{a}_{i}\mathbf{X}$ that maximizes $Var(\mathbf{a}_{i}\mathbf{X})$ subject to $\mathbf{a}_{i}\mathbf{a}_{i}=1$ *i*th principal component:

 $\mathbf{a}_{i}\mathbf{X}$ that maximizes $\operatorname{Var}(\mathbf{a}_{i}\mathbf{X})$ subject to $\mathbf{a}_{i}\mathbf{a}_{i}=1$ and $\operatorname{Cov}(\mathbf{a}_{i}\mathbf{X}, \mathbf{a}_{k}\mathbf{X})=0$ for k < i

Result 8.1

Covariance matrix Σ of random vector \mathbf{X}

is with eigenvalue - eigenvector pairs $(\lambda_i, \mathbf{e}_i)$,

where
$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$$

The *i*th principal component is given by

$$Y_i = \mathbf{e}_i \mathbf{X}, \quad i = 1, 2, \dots, p, \quad \text{with}$$

$$Var(Y_i) = \mathbf{e}_i \mathbf{\Sigma} \mathbf{e}_i = \lambda_i, \quad i = 1, 2, \dots, p$$

$$Cov(Y_i, Y_k) = \mathbf{e}_i \mathbf{\Sigma} \mathbf{e}_k = 0, i \neq k$$

If some λ_i are equal, the choice of corresponding

 \mathbf{e}_i and hence Y_i are not unique

Proof of Result 8.1

$$\max_{\mathbf{a} \neq 0} \frac{\mathbf{a}' \mathbf{\Sigma} \mathbf{a}}{\mathbf{a}' \mathbf{a}} = \lambda_1 \text{ attained when } \mathbf{a} = \mathbf{e}_1$$

$$\mathbf{e}_1 \mathbf{e}_1 = 1, \text{ thus } \max_{\mathbf{a} \neq 0} \frac{\mathbf{a}' \mathbf{\Sigma} \mathbf{a}}{\mathbf{a}' \mathbf{a}} = \lambda_1 = \mathbf{e}_1 \mathbf{\Sigma} \mathbf{e}_1 = \text{Var}(Y_1)$$

$$\max_{\mathbf{a} \perp \mathbf{e}_1, \dots, \mathbf{e}_k} \frac{\mathbf{a}' \mathbf{\Sigma} \mathbf{a}}{\mathbf{a}' \mathbf{a}} = \lambda_{k+1}, k = 1, 2, \dots, p-1$$

$$\mathbf{a} = \mathbf{e}_{k+1}, \mathbf{e}_{k+1}' \mathbf{\Sigma} \mathbf{e}_{k+1} = \lambda_{k+1} = \text{Var}(Y_{k+1})$$

$$\text{Cov}(Y_i, Y_k) = \mathbf{e}_i' \mathbf{\Sigma} \mathbf{e}_k = \mathbf{e}_i' \lambda_k \mathbf{e}_k = 0 \text{ for any } i \neq k$$

Proof of Result 8.2

$$\Sigma = \mathbf{P} \Lambda \mathbf{P}', \quad \Lambda = diag \{ \lambda_1, \lambda_2, \dots, \lambda_p \}$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_p \end{bmatrix}, \quad \mathbf{P} \mathbf{P}' = \mathbf{P}' \mathbf{P} = \mathbf{I}$$

$$\sigma_{11} + \sigma_{22} + \cdots + \sigma_{pp} = \sum_{i=1}^p \mathrm{Var}(X_i) = \mathrm{tr}(\mathbf{\Sigma})$$

$$= \mathrm{tr}(\mathbf{P} \Lambda \mathbf{P}') = \mathrm{tr}(\Lambda \mathbf{P}' \mathbf{P}) = \mathrm{tr}(\Lambda)$$

$$= \lambda_1 + \lambda_2 + \cdots + \lambda_p = \sum_{i=1}^p \mathrm{Var}(Y_i)$$

15

Result 8.2

Covariance matrix Σ of random vector $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & \cdots & X_p \end{bmatrix}$ is with eigenvalue-eigenvector pairs $(\lambda_i, \mathbf{e}_i)$, where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ The *i*th principal component is given by

$$Y_i = \mathbf{e}_i^{'} \mathbf{X}, \quad i = 1, 2, \dots, p,$$
 then

$$\sigma_{11} + \sigma_{22} + \dots + \sigma_{pp} = \sum_{i=1}^{p} \operatorname{Var}(X_i)$$

$$= \lambda + \lambda + \dots + \lambda = \sum_{i=1}^{p} \operatorname{Var}(Y_i)$$

$$= \lambda_1 + \lambda_2 + \dots + \lambda_p = \sum_{i=1}^p \operatorname{Var}(Y_i)$$

Proportion of Total Variance due to the *k*th Principal Component

Proportion of total population variance due to the *k*th principal component
$$= \frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

Result 8.3

 $Y_i = \mathbf{e}_i^{\mathsf{T}} \mathbf{X}$ are the principal components obtained from the covariance matrix Σ , then

$$\rho_{Y_i,X_k} = \frac{e_{ik}\sqrt{\lambda_i}}{\sqrt{\sigma_{kk}}}, \quad i,k=1,2,\cdots,p$$

are the correlation coefficients between Y_i and variable X_k . Here $\mathbf{e}_i = \begin{bmatrix} e_{i1} & e_{i2} & \cdots & e_{ip} \end{bmatrix}$ is the eigenvector of Σ corresponding to the eigenvalue λ_i . Also, $\mathbf{X}' = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}$

17

Example 8.1

$$\mathbf{X}' = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}$$
 has the covariance matrix $\mathbf{\Sigma} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \end{bmatrix}$, whose eigenvalue-eigenvector

pairs are

$$\lambda_1 = 5.83, \quad \mathbf{e}_1 = \begin{bmatrix} 0.383 & -0.924 & 0 \end{bmatrix}$$

$$\lambda_2 = 2.00, \quad \mathbf{e}_2 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$\lambda_1 = 0.17, \quad \mathbf{e}_1' = \begin{bmatrix} 0.924 & 0.383 & 0 \end{bmatrix}$$

Proof of Result 8.3

$$\mathbf{a}_{k}' = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \text{ so that } X_{k} = \mathbf{a}_{k}' \mathbf{X}$$

$$\operatorname{Cov}(X_{k}, Y_{i}) = \operatorname{Cov}(\mathbf{a}_{k}' \mathbf{X}, \mathbf{e}_{i}' \mathbf{X}) = \mathbf{a}_{k}' \mathbf{\Sigma} \mathbf{e}_{i} = \lambda_{i} e_{ik}$$

$$\operatorname{Var}(Y_{i}) = \lambda_{i}, \quad \operatorname{Var}(X_{k}) = \sigma_{kk}$$

$$\rho_{Y_{i}, X_{k}} = \frac{\operatorname{Cov}(X_{k}, Y_{i})}{\sqrt{\operatorname{Var}(Y_{i})} \sqrt{\operatorname{Var}(X_{k})}} = \frac{\lambda_{i} e_{ik}}{\sqrt{\lambda_{i}} \sqrt{\sigma_{kk}}}$$

$$= \frac{\sqrt{\lambda_{i}} e_{ik}}{\sqrt{\sigma_{kk}}} \quad i, k = 1, 2, \cdots, p$$

18

Example 8.1

Principal components

$$Y_1 = \mathbf{e}_1 \mathbf{X} = 0.383 X_1 - 0.924 X_2$$

$$Y_2 = \mathbf{e}_2 \mathbf{X} = X_3$$

$$Y_3 = \mathbf{e}_3 \mathbf{X} = 0.924 X_1 + 0.383 X_2$$

Verification

$$Var(Y_1) = (0.383)^2 Var(X_1)$$

+ 2(0.383)(-0.924)
$$\operatorname{Cov}(X_1, X_2) + (-0.924)^2 \operatorname{Var}(X_2)$$

= 5.83 = λ ,

$$Cov(Y_1, Y_2) = 0.383 Cov(X_1, X_3) - 0.924 Cov(X_2, X_3) = 0$$

Example 8.1

$$\sigma_{11} + \sigma_{22} + \sigma_{33} = 8 = 5.83 + 2.00 + 0.17 = \lambda_1 + \lambda_2 + \lambda_3$$

$$\frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3} = 0.73, \quad \frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} = 0.98$$

$$\rho_{Y_1, X_1} = \frac{e_{11}\sqrt{\lambda_1}}{\sqrt{\sigma_{11}}} = \frac{0.383\sqrt{0.583}}{\sqrt{1}} = 0.925$$

$$\rho_{Y_1, X_2} = \frac{e_{12}\sqrt{\lambda_1}}{\sqrt{\sigma_{22}}} = \frac{-0.924\sqrt{0.583}}{\sqrt{5}} = -0.998$$

$$\rho_{Y_2, X_1} = \rho_{Y_2, X_2} = 0, \quad \rho_{Y_2, X_3} = \frac{\sqrt{\lambda_2}}{\sqrt{\sigma_{22}}} = 1$$

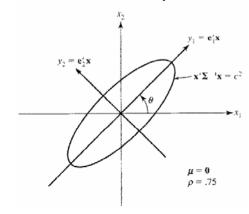
Geometrical Interpretation

 $\mathbf{X}: N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

 Σ is with eigenvalue-eigenvector pairs $(\lambda_i, \mathbf{e}_i)$ constant probability density ellipsoid

$$(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) = c^2$$

$$c^{2} = \frac{1}{\lambda_{1}} \left(\mathbf{e}_{1}(\mathbf{x} - \boldsymbol{\mu}) \right)^{2} + \frac{1}{\lambda_{2}} \left(\mathbf{e}_{2}(\mathbf{x} - \boldsymbol{\mu}) \right)^{2} + \dots + \frac{1}{\lambda_{p}} \left(\mathbf{e}_{p}(\mathbf{x} - \boldsymbol{\mu}) \right)^{2}$$


Principal components of $\mathbf{x} - \mathbf{\mu} : y_i = \mathbf{e}_i^{\mathsf{T}} (\mathbf{x} - \mathbf{\mu})$

$$i=1,2,\cdots,p$$

$$c^{2} = \frac{1}{\lambda_{1}} y_{1}^{2} + \frac{1}{\lambda_{2}} y_{2}^{2} + \dots + \frac{1}{\lambda_{p}} y_{p}^{2}$$

22

Geometric Interpretation

Standardized Variables

$$Z_i = \frac{X_i - \mu_i}{\sqrt{\sigma_{ii}}}, \quad i = 1, 2, \dots, p$$

$$\mathbf{Z} = \mathbf{V}^{-1/2} (\mathbf{X} - \boldsymbol{\mu}), \mathbf{V}^{1/2} = \begin{bmatrix} \sqrt{\sigma_{11}} & 0 & \cdots & 0 \\ 0 & \sqrt{\sigma_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\sigma_{pp}} \end{bmatrix}$$

$$\operatorname{Cov}(\mathbf{Z}) = \mathbf{V}^{-1/2} \mathbf{\Sigma} \mathbf{V}^{1/2} = \mathbf{\rho} = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{12} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1p} & \rho_{2p} & \cdots & 1 \end{bmatrix}$$

Result 8.4

$$\mathbf{Z}' = \begin{bmatrix} Z_1 & Z_2 & \cdots & Z_p \end{bmatrix}$$
 with Cov(\mathbf{Z}) = $\mathbf{\rho}$ (λ_1, \mathbf{e}_i): eigenvalue - eigenvector pairs of $\mathbf{\rho}$

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_p \ge 0$$

The *i*th principal component of \mathbf{Z} :

$$Y_i = \mathbf{e}_i \mathbf{Z} = \mathbf{e}_i \mathbf{V}^{-1/2} (\mathbf{X} - \mathbf{\mu}), \quad i = 1, 2, \dots, p$$

$$\sum_{i=1}^{p} \operatorname{Var}(Y_i) = \sum_{i=1}^{p} \operatorname{Var}(Z_i) = p$$

$$\rho_{Y_i,Z_k} = e_{ik}\sqrt{\lambda_i}, \quad i,k=1,2,\cdots,p$$

Example 8.2

$$\Sigma = \begin{bmatrix} 1 & 4 \\ 4 & 100 \end{bmatrix}, \quad \mathbf{\rho} = \begin{bmatrix} 1 & 0.4 \\ 0.4 & 1 \end{bmatrix}$$

Eigenvalue-eigenvector pairs for Σ :

$$\lambda_1 = 100.16, \quad \mathbf{e}_1 = \begin{bmatrix} 0.040 & 0.999 \end{bmatrix}$$

$$\lambda_2 = 0.84, \quad \mathbf{e}_2 = \begin{bmatrix} 0.999 & -0.040 \end{bmatrix}$$

Eigenvalue - eigenvector pairs for ρ :

$$\lambda_1 = 1 + \rho = 1.4, \quad \mathbf{e}_1 = \begin{bmatrix} 0.707 & 0.707 \end{bmatrix}$$

$$\lambda_2 = 1 - \rho = 0.6$$
, $\mathbf{e}_2 = \begin{bmatrix} 0.707 & -0.707 \end{bmatrix}$

Proportion of Total Variance due to the *k*th Principal Component

$$=\frac{\lambda_k}{p}, \quad k=1,2,\cdots,p$$

26

Example 8.2

Principal components for
$$\Sigma$$
: $\frac{\lambda_1}{\lambda_1 + \lambda_2} = 0.992$

$$Y_1 = 0.040X_1 + 0.999X_2$$

$$Y_2 = 0.999X_1 - 0.040X_2$$

Principal components for
$$\rho$$
: $\frac{\lambda_1}{p} = 0.7$

$$Y_1 = 0.707Z_1 + 0.707Z_2 = 0.707(X_1 - \mu_1) + 0.0707(X_2 - \mu_2)$$

$$Y_2 = 0.707Z_1 - 0.707Z_2 = 0.707(X_1 - \mu_1) - 0.0707(X_2 - \mu_2)$$

$$\rho_{Y_1,Z_1} = e_{11}\sqrt{\lambda_1} = 0.837, \quad \rho_{Y_1,Z_2} = e_{12}\sqrt{\lambda_1} = 0.837$$

Principal Components for Diagonal Covariance Matrix

$$\Sigma = \begin{bmatrix} \sigma_{11} & 0 & \cdots & 0 \\ 0 & \sigma_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{pp} \end{bmatrix}, \mathbf{e}_{i} = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\Sigma \mathbf{e}_i = \sigma_{ii} \mathbf{e}_i, \quad Y_i = \mathbf{e}_i \mathbf{X} = X_i$$

$$\rho = \mathbf{I}, \quad \rho \mathbf{e}_i = 1\mathbf{e}_i, \quad Y_i = \mathbf{e}_i \mathbf{Z} = Z_i$$

 $\mathbf{X}: N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, constant density ellipsoid is

a right ellipsoid for **X** and a sphere for **Z**

29

Principal Components for a Special Covariance Matrix

$$\Sigma = \begin{bmatrix} \sigma^2 & \rho \sigma^2 & \cdots & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 & \cdots & \rho \sigma^2 \\ \vdots & \vdots & \ddots & \vdots \\ \rho \sigma^2 & \rho \sigma^2 & \cdots & \sigma^2 \end{bmatrix}, \mathbf{\rho} = \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{bmatrix}$$

$$\lambda_1 = 1 + (p-1)\rho, \mathbf{e}_1 = \begin{bmatrix} \frac{1}{\sqrt{p}} & \frac{1}{\sqrt{p}} & \cdots & \frac{1}{\sqrt{p}} \end{bmatrix}$$

$$\lambda_2 = \lambda_3 = \dots = \lambda_p = 1 - \rho$$

30

Principal Components for a Special Covariance Matrix

$$\mathbf{e}'_{i} = \begin{bmatrix} \frac{1}{\sqrt{(i-1)i}} & \cdots & \frac{1}{\sqrt{(i-1)i}} & \frac{-(i-1)}{\sqrt{(i-1)i}} & 0 & \cdots & 0 \end{bmatrix}$$

$$i=2,\cdots,p$$

$$Y_1 = \mathbf{e}_1 \mathbf{Z} = \frac{1}{\sqrt{p}} \sum_{i=1}^{p} Z_i, \quad \frac{\lambda_1}{p} = \rho + \frac{1 - \rho}{p}$$

the last p-1 components collectively contribute very little to the total variance and can be neglected when ρ is near 1

1

Outline

- **→** Introduction
- → Popular Principal Components
- → Summarizing Sample Variation by Principal Components
- → Graphing the Principal Components
- → Large Sample Inferences
- Monitoring Quality with Principal Components

Questions

- → What are the sample principal components?
- How to compute the sample principal components?
- ✦How to decide the number of principal components required?
- →What is the geometric interpretation of the sample principal components?

33

→ How to compute the sample principal components for standardized random vectors?

Questions

→What does it mean for an unusually small value for the last eigenvalue from either the sample covariance or correlation matrix?

34

Sample Principal Components

 \mathbf{x}_1 , $\mathbf{x}_2, \dots, \mathbf{x}_n$: n independent drawings from some p – dimensional population with mean $\mathbf{\mu}$ and covariance matrix $\mathbf{\Sigma}$ sample mean $\overline{\mathbf{x}}$, sample covariance matrix \mathbf{S} first sample principal component $\mathbf{a}_1\mathbf{x}_j$:

$$\max_{\mathbf{a}_1} \mathbf{a}_1 \mathbf{S} \mathbf{a}_1$$
 subject to $\mathbf{a}_1 \mathbf{a}_1 = 1$

*i*th sample principal component $\mathbf{a}_i \mathbf{x}_i$:

$$\max_{\mathbf{a}_i} \mathbf{a}_i \mathbf{S} \mathbf{a}_i$$
 subject to $\mathbf{a}_i \mathbf{a}_i = 1$ and $\mathbf{a}_i \mathbf{S} \mathbf{a}_k = 0$

35

Sample Principal Components

 $S = \{s_{ik}\}$ is with eigenvalue - eigenvector pairs

$$(\hat{\lambda}_i, \hat{\mathbf{e}}_i)$$
, $i, k = 1, 2, \dots, p$

ith sample principal component of observation \mathbf{x} :

$$\hat{y}_i = \hat{\mathbf{e}}_i \mathbf{x} = \hat{e}_{i1} x_1 + \hat{e}_{i2} x_2 + \dots + \hat{e}_{ip} x_p$$

$$\hat{\lambda}_1 \ge \hat{\lambda}_2 \ge \dots \ge \hat{\lambda}_p \ge 0$$

sample variance(\hat{y}_k) = $\hat{\lambda}_k$

sample covariance $(\hat{y}_i, \hat{y}_k) = 0, \quad i \neq k$

Total sample variance =
$$\sum_{i=1}^{p} s_{ii} = \sum_{i=1}^{p} \hat{\lambda}_{i}$$
, $\hat{r}_{\hat{y}_{i},x_{k}} = \frac{\hat{e}_{ik} \sqrt{\hat{\lambda}_{i}}}{\sqrt{s_{kk}}}$

Example 8.3

Socioeconomic variables for 61 tracts in Madison, Wisconsin.

 X_1 : total population (thousands)

 X_2 : professional degree (percent)

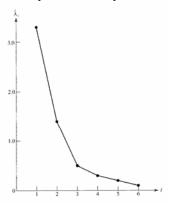
 X_3 : employed age over 16 (percent)

 X_4 : government employment (percent)

 X_5 : median home value (\$10,000s)

 $\overline{\mathbf{x}}' = \begin{bmatrix} 4.47 & 3.96 & 71.42 & 26.91 & 1.64 \end{bmatrix}$

$$\mathbf{S} = \begin{bmatrix} 3.397 \\ -1.102 & 9.673 \\ 4.306 & -1.513 & 55.626 \\ -2.078 & 10.953 & -28.937 & 89.067 \\ 0.027 & 1.203 & -0.044 & 0.957 & 0.319 \end{bmatrix}$$


Coefficients for the Principal Components (Correlation Coefficients in Parentheses)

Variable	$\hat{\mathbf{e}}_1(r_{\hat{\mathbf{y}}_1\mathbf{y}_l})$	$\hat{\mathbf{e}}_2(r_{\hat{\mathbf{v}}_2\mathbf{v}_p})$	ĉ ₃	ê.,	ê _s
Total population	-0.039(22)	0.071(.24)	0.188	0.977	-0.058
Profession	0.105(.35)	0.130(.26)	-0.961	0.171	-0.139
Employment (%)	-0.492(68)	0.864(.73)	0.046	-0.091	0.005
Government employment (%)	0.863(.95)	0.480(.32)	0.153	-0.030	0.007
Medium home value	0.009(.16)	0.015(.17)	-0.125	0.082	0.989
Variance $(\hat{\lambda}_i)$: Cumulative	107.02	39.67	8.37	2.87	0.15
percentage of total variance	67.7	92.8	98.J	99.9	1.000

Example 8.3

38

Scree Plot to Determine Number of Principal Components

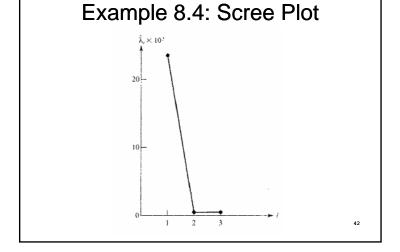
Example 8.4: Pained Turtles

natural logarithms of the measured carapace length, width, and weight of 24 male pained turtles sample mean vector:

$$\bar{\mathbf{x}} = \begin{bmatrix} 4.725 & 4.478 & 3.703 \end{bmatrix}$$

sample covariance matrix

$$\mathbf{S} = 10^{-3} \begin{bmatrix} 11.072 & 8.019 & 8.160 \\ 8.019 & 6.417 & 6.005 \\ 8.160 & 6.005 & 6.773 \end{bmatrix}$$

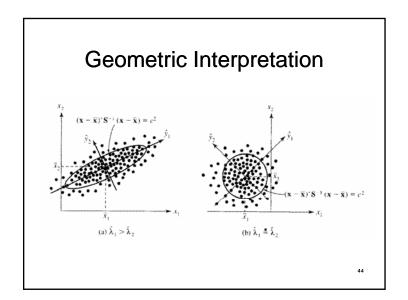

U

Example 8.4

COEFFICIENTS FOR PRINCIPAL COMPONENTS (Correlation Coefficients in Parentheses)

Variable	$\hat{\mathbf{e}}_{t}(r_{\hat{y}_1,x_k})$	$\hat{\mathbf{e}}_2$	ê ₃
In (length)	.683 (.99)	159	713
ln (width)	.510 (.97)	594	.622
ln (height)	.523 (.97)	.788	.324
Variance $(\hat{\lambda}_i)$: Cumulative	23.30×10^{-3}	.60 × 10 ⁻²	.36 × 10 ⁻³
percentage of total variance	96.1	98.5	100

41



Example 8.4: Principal Component

- →One dominant principal component
 - -Explains 96% of the total variance
- → Interpretation

 $\hat{y}_1 = 0.683 \ln(length) + 0.510 \ln(width) + 0.523 \ln(height)$

- $= \ln \left[(length)^{0.683} (width)^{0.510} (height)^{0.523} \right]$
- $= \ln(volume \text{ of a box with adjusted dimension})$

Standardized Variables

$$z_{ji} = \frac{x_{ji} - \overline{x}_i}{\sqrt{s_{ii}}}, \quad i = 1, 2, \dots, p, \quad \mathbf{Z} = \{z_{ji}\}$$

$$\mathbf{z}_{j} = \mathbf{D}^{-1/2} (\mathbf{x}_{j} - \overline{\mathbf{x}}), \quad \overline{\mathbf{z}} = \frac{1}{n} \mathbf{Z}' \mathbf{1} = 0$$

$$\mathbf{S}_{z} = \frac{1}{n-1} \mathbf{Z}' \mathbf{Z} = \begin{bmatrix} 1 & \frac{S_{12}}{\sqrt{S_{11}} \sqrt{S_{22}}} & \cdots & \frac{S_{1p}}{\sqrt{S_{11}} \sqrt{S_{pp}}} \\ \frac{S_{12}}{\sqrt{S_{11}} \sqrt{S_{22}}} & 1 & \cdots & \frac{S_{2p}}{\sqrt{S_{22}} \sqrt{S_{pp}}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{S_{1p}}{\sqrt{S_{11}} \sqrt{S_{pp}}} & \frac{S_{2p}}{\sqrt{S_{22}} \sqrt{S_{pp}}} & \cdots & 1 \end{bmatrix} = \mathbf{R}$$

Proportion of Total Variance due to the *k*th Principal Component

47

Principal Components

 $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ are standardized observations with sample covariance matrix \mathbf{R}

 $(\hat{\lambda}_i, \hat{\mathbf{e}}_i)$: eigenvalue - eigenvector pairs of **R**

$$\hat{\lambda}_1 \ge \hat{\lambda}_2 \ge \dots \ge \hat{\lambda}_p \ge 0$$

The *i*th principal component of z:

$$\hat{y}_i = \mathbf{e}_i \mathbf{z}, \quad i = 1, 2, \dots, p$$

sample variance $(\hat{y}_i) = \hat{\lambda}_i$, sample covariance $(\hat{y}_i, \hat{y}_k) = 0, i \neq k$ total sample variance = tr(**R**) = p

$$r_{y_i,z_k} = \hat{e}_{ik} \sqrt{\hat{\lambda}_i}, \quad i,k=1,2,\cdots,p$$

46

Example 8.5: Stocks Data

- → Weekly rates of return for five stocks
 - $-X_I$: JP Morgan
 - X₂: Citibank
 - X₃: Wells Fargo
 - X₄: Royal Dutch Shell
 - X₅: ExxonMobil

Example 8.5 $\bar{\mathbf{x}}' = \begin{bmatrix} 0.0011 & 0.0007 & 0.0016 & 0.0040 & 0.0040 \end{bmatrix}$

$$\mathbf{R} = \begin{bmatrix} 1 \\ 0.632 & 1 \\ 0.511 & 0.574 & 1 \\ 0.115 & 0.322 & 0.183 & 1 \\ 0.155 & 0.213 & 0.146 & 0.683 & 1 \end{bmatrix}$$

 $\hat{\lambda}_1 = 2.437$, $\hat{\mathbf{e}}_1' = \begin{bmatrix} 0.469 & 0.532 & 0.465 & 0.387 & 0.361 \end{bmatrix}$

 $\hat{\lambda}_2 = 1.407$, $\hat{\mathbf{e}}_2' = \begin{bmatrix} -0.368 & -0.236 & -0.315 & 0.585 & 0.606 \end{bmatrix}$

 $\hat{\lambda}_3 = 0.501$, $\hat{\mathbf{e}}_3 = \begin{bmatrix} -0.604 & -0.136 & 0.772 & 0.093 & -0.109 \end{bmatrix}$

 $\hat{\lambda}_4 = 0.400, \quad \hat{\mathbf{e}}_4' = \begin{bmatrix} 0.363 & -0.629 & 0.289 & -0.381 & 0.493 \end{bmatrix}$

 $\hat{\lambda}_5 = 0.255, \quad \hat{\mathbf{e}}_5' = \begin{bmatrix} 0.384 & -0.496 & 0.071 & 0.595 & -0.498 \end{bmatrix}$

Example 8.5

First two principal components:

$$\hat{y}_1 = \hat{\mathbf{e}}_1' \mathbf{z} = 0.469 z_1 + 0.532 z_2 + 0.465 z_3 + 0.387 z_4 + 0.361 z_5$$

$$\hat{y}_2 = \hat{\mathbf{e}}_2' \mathbf{z} = -0.368z_1 - 0.236z_2 - 0.315z_3 + 0.585z_4 + 0.606z_5$$

$$\frac{\hat{\lambda}_1 + \hat{\lambda}_2}{n} = 77\%$$

 \hat{y}_1 : roughly equally weighted sum (index) of the five stocks (general stock - market component, or, market component)

 \hat{y}_2 : contrast banking stocks and the oil stocks (industry component)

50

Example 8.6

→ Body weight (in grams) for n=150 female mice were obtained after the birth of their first 4 litters

$$\bar{\mathbf{x}}' = \begin{bmatrix} 39.88 & 45.08 & 48.11 & 49.95 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 1 \\ 0.7501 & 1 \\ 0.6329 & 0.6925 & 1 \\ 0.6363 & 0.7386 & 0.6625 & 1 \end{bmatrix}$$

51

Example 8.6

$$\begin{split} \hat{\lambda}_1 &= 3.085, \quad \hat{\lambda}_2 = 0.382, \quad \hat{\lambda}_3 = 0.342, \quad \hat{\lambda}_4 = 0.217 \\ \hat{\lambda}_1 &\approx 1 + (p-1)\bar{r} = 1 + (4-1) \times 0.6854 = 3.056 \\ \hat{\lambda}_2 &\approx \hat{\lambda}_3 \approx \hat{\lambda}_4 << \hat{\lambda}_1 \\ \hat{y}_1 &= \hat{\mathbf{e}}_1 \mathbf{z} = 0.49z_1 + 0.52z_2 + 0.49z_3 + 0.50z_4 \\ \frac{\hat{\lambda}_1}{p} &= 0.76 \end{split}$$

Comment

- ♣ An unusually small value for the last eigenvalue from either the sample covariance or correlation matrix can indicate an unnoticed linear dependency of the data set
- →One or more of the variables is redundant and should be deleted
- \Rightarrow Example: $x_4 = x_1 + x_2 + x_3$

53

Questions

- →Why to check the normality of the first few principal components?
- → How to pinpoint suspect observation?

55

Outline

- → Introduction
- → Popular Principal Components
- → Summarizing Sample Variation by Principal Components
- → Graphing the Principal Components
- → Large Sample Inferences
- Monitoring Quality with Principal Components

54

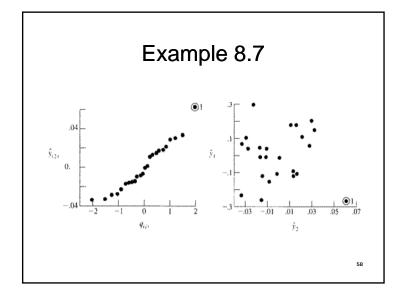
Check Normality and Suspect Observations

- → Construct scatter diagram for pairs of the first few principal components
- → Make Q-Q plots from the sample values generated by each principal component
- → Construct scatter diagram and Q-Q plots for the last few principal components

Example 8.7: Turtle Data

$$\hat{y}_1 = 0.683(x_1 - 4.725) + 0.510(x_2 - 4.478)$$

$$+ 0.523(x_3 - 3.703)$$


$$\hat{y}_2 = -0.159(x_1 - 4.725) - 0.594(x_2 - 4.478)$$

$$+ 0.788(x_3 - 3.703)$$

$$\hat{y}_3 = -0.713(x_1 - 4.725) + 0.622(x_2 - 4.478)$$

$$+ 0.324(x_3 - 3.703)$$

57

Outline

- → Introduction
- → Popular Principal Components
- → Summarizing Sample Variation by Principal Components
- → Graphing the Principal Components
- → Large Sample Inferences
- → Monitoring Quality with Principal Components

Questions

- → What are the large sample distribution for eigenvalues and eigenvectors?
- → How to determine the confidence interval for an eigenvalue?
- → What is the approximate distribution for estimated eigenvectors?
- → How to test for equal correlation structure?

U

Large Sample Distribution for Eigenvalues and Eigenvectors

S is with eigen values $\hat{\lambda}' = \begin{bmatrix} \hat{\lambda}_1 & \cdots & \hat{\lambda}_p \end{bmatrix}$ and eigenvectors $\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \cdots, \hat{\mathbf{e}}_p$

Let $\Lambda = diag\{\lambda_1, \dots, \lambda_p\}, \lambda_i$'s are eigenvalues of Σ

 $\Rightarrow \sqrt{n}(\hat{\lambda} - \lambda)$: approximately $N_p(\mathbf{0}, 2\Lambda^2)$

Let
$$\mathbf{E}_i = \lambda_i \sum_{\substack{k=1\\k \neq i}}^p \frac{\lambda_k}{(\lambda_k - \lambda_i)^2} \mathbf{e}_k \mathbf{e}_k'$$

 $\Rightarrow \sqrt{n}(\hat{\mathbf{e}}_i - \mathbf{e}_i)$: approximately $N_p(\mathbf{0}, \mathbf{E}_i)$

 $\hat{\lambda}_i$ is independent of the elements of associated $\hat{\mathbf{e}}_i$ 61

Confidence Interval for λ_i

 $\hat{\lambda}_i : N(\lambda_i, 2\lambda_i^2 / n)$ for n large

$$P\left[\frac{\left|\hat{\lambda}_{i} - \lambda_{i}\right|}{\lambda_{i}\sqrt{\frac{2}{n}}} \le z(\frac{\alpha}{2})\right] = 1 - \alpha$$

 $100(1-\alpha)\%$ confidence interval for λ_i :

$$\frac{\hat{\lambda}_i}{1 + z(\alpha/2)\sqrt{2/n}} \le \lambda_i \le \frac{\hat{\lambda}_i}{1 - z(\alpha/2)\sqrt{2/n}}$$

62

Approximate Distribution of Estimated Eigenvectors

 $\sqrt{n}(\hat{\mathbf{e}}_i - \mathbf{e}_i)$: approximate $N_p(\mathbf{0}, \mathbf{E}_i)$

 \mathbf{E}_i can be approximated by

$$\hat{\mathbf{E}}_{i} = \hat{\lambda}_{i} \sum_{\substack{k=1\\k\neq i}}^{p} \frac{\hat{\lambda}_{k}}{\left(\hat{\lambda}_{k} - \hat{\lambda}_{i}\right)^{2}} \hat{\mathbf{e}}_{k} \hat{\mathbf{e}}_{k}'$$

$$\hat{e}_{ik}:N(e_{ik},\hat{E}_{i,kk}/n)$$

Example 8.8

Stock price data : $N_5(\mu, \Sigma)$

 Σ has distinct eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_5 > 0$

n = 103 large

$$\hat{\lambda}_1 = 0.0014, \quad z(0.025) = 1.96$$

95% confidence interval

$$\frac{0.0014}{1+1.96\sqrt{2/103}} \le \lambda_1 \le \frac{0.0014}{1-1.96\sqrt{2/103}}, \text{ or }$$

$$0.0011 \le \lambda_1 \le 0.0019$$

Testing for Equal Correlation

$$H_0: \mathbf{\rho} = \mathbf{\rho}_0 = \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{bmatrix}, \quad H_1: \mathbf{\rho} \neq \mathbf{\rho}_0$$

$$\overline{r}_{k} = \frac{1}{p-1} \sum_{\substack{i=1\\i\neq k}}^{p} r_{ik}, \quad \overline{r} = \frac{2}{p(p-2)} \sum_{k} \sum_{i < k} r_{ik}, \quad \hat{\gamma} = \frac{(p-1)^{2} \left[1 - (1-\overline{r})^{2}\right]}{p - (p-2)(1-\overline{r})^{2}}$$

Reject H_0 in favor of H_1 if

$$T = \frac{(n-1)}{(1-\bar{r})^2} \left[\sum_{k} \sum_{i \le k} (r_{ik} - \bar{r})^2 - \hat{\gamma} \sum_{k=1}^p (\bar{r}_k - \bar{r})^2 \right] > \chi^2_{(p+1)(p-2)/2}(\alpha)$$

65

Example 8.9

Example 8.6, female mice data
$$\mathbf{R} = \begin{bmatrix} 1 \\ 0.7501 & 1 \\ 0.6329 & 0.6925 & 1 \\ 0.6363 & 0.7386 & 0.6625 & 1 \end{bmatrix}$$

$$\begin{aligned} & \overline{r}_1 = 0.6731, \, \overline{r}_2 = 0.7271, \, \overline{r}_3 = 0.6626, \, \overline{r}_4 = 0.6791, \, \overline{r} = 0.6855 \\ & \sum_k \sum_{i < k} (r_{ik} - \overline{r})^2 = 0.01277, \, \sum_{k=1}^4 (\overline{r}_k - \overline{r})^2 = 0.00245, \, \hat{\gamma} = 2.1329 \\ & T = \frac{(150 - 1)}{(1 - 0.6855)^2} [0.01277 - (2.1329)(0.00245)] = 11.4 \end{aligned}$$

$$> \chi^2_{(4+1)(4-2)/2}(0.05) = 11.07$$

The evidence against H_0 is strong, but not overwhelming

44

Outline

- **→** Introduction
- → Popular Principal Components
- → Summarizing Sample Variation by Principal Components
- → Graphing the Principal Components
- → Large Sample Inferences
- → Monitoring Quality with Principal Components

7

Questions

- How to monitor a stable process using the first two principal components?
- → How to monitor a stable process using the T² chart from the principal components?
- → How to control future values by principal components?

Questions

→ Why avoiding Computation with Small Eigenvalues?

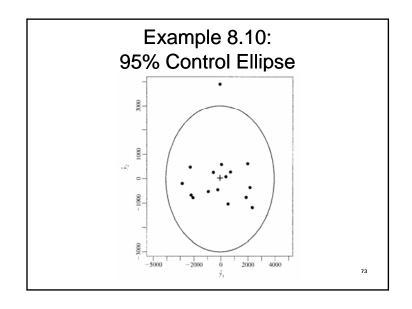
69

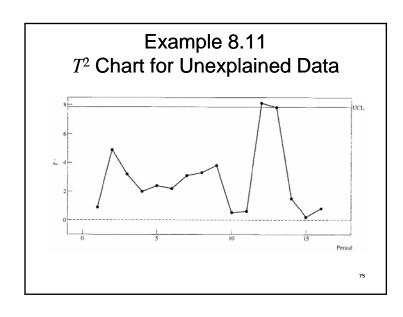
Example 8.10 Police Department Data

Variable	$\hat{\mathbf{e}}_{\scriptscriptstyle \mathrm{I}}$	$\hat{\mathbf{e}}_2$	$\hat{\mathbf{e}}_3$	$\hat{\mathbf{e}}_4$	ê ₅
Appearances overtime (x_1)	.046	048	.629	643	.432
Extraordinary event (x_2)	.039	.985	077	151	007
Holdover hours (x_3)	658	.107	.582	.250	392
COA hours (x_4)	.734	.069	.503	.397	213
Meeting hours (x_5)	155	.107	.081	.586	.784
Â	2,770,226	1,429,206	628,129	221,138	99,824

*First two sample cmponents explain 82% of the total variance

Monitoring Stable Process: Part 1


The values of the first two principal components should be stable for a process stable over time Construct the quality ellipse for the first two principal components when n large:

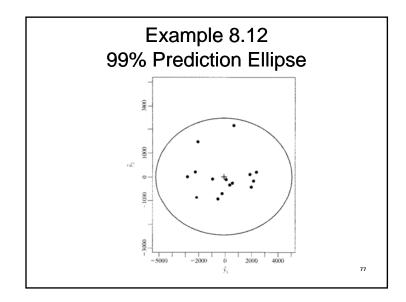

$$\frac{\hat{y}_1^2}{\hat{\lambda}_1} + \frac{\hat{y}_2^2}{\hat{\lambda}_2} \le \chi_2^2(\alpha)$$

70

Example 8.10: Principal Components

Period	\hat{y}_{t1}	\hat{y}_{j2}	\hat{y}_{j3}	ŷ _{j 4}	\hat{y}_{js}
1	2044.9	588.2	425.8	-189.1	-209.8
2	-2143.7	-686.2	883.6	-565.9	-441.5
3	-177.8	-464.6	707.5	736.3	38.2
4	-2186.2	450.5	-184.0	443.7	-325.3
5	878.6	-545.7	115.7	296.4	437.5
6	563.2	-1045.4	281.2	620.5	142.7
7	403.1	66.8	340.6	-135.5	521.2
8	-1988.9	-801.8	-1437.3	-148.8	61.6
9	132.8	563.7	125.3	68.2	611.5
10	-2787.3	-213.4	7.8	169.4	-202.3
11	283.4	3936.9	-0.9	276.2	-159.6
12	761.6	256.0	-2153.6	-418.8	28.2
13	-498.3	244.7	966.5	-1142.3	182.6
14	2366.2	-1193.7	-165.5	270.6	-344.9
15	1917.8	-782.0	-82.9	-196.8	-89.9
16	2187.7	-373.8	170.1	-84.1	-250.2

Monitoring Stable Process: Part 2


$$\begin{split} \mathbf{X} : N_{p}(\mathbf{\mu}, \mathbf{\Sigma}), \quad \mathbf{E} &= \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{p} \end{bmatrix} \\ \mathbf{X} - \mathbf{\mu} &= \sum_{i=1}^{p} (\mathbf{X} - \mathbf{\mu})' \mathbf{e}_{i} \mathbf{e}_{i} = \sum_{i=1}^{p} Y_{i} \mathbf{e}_{i} \\ \mathbf{E}' (\mathbf{X} - \mathbf{\mu} - Y_{1} \mathbf{e}_{1} - Y_{2} \mathbf{e}_{2}) &= \begin{bmatrix} 0 & 0 & Y_{3} & \cdots & Y_{p} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \mathbf{Y}_{(2)} \end{bmatrix} \\ \mathbf{Y}_{(2)}^{'} \mathbf{\Sigma}_{\mathbf{Y}_{(2)}, \mathbf{Y}_{(2)}}^{-1} \mathbf{Y}_{(2)} &= \frac{Y_{3}^{2}}{\lambda_{3}} + \frac{Y_{4}^{2}}{\lambda_{4}} + \cdots + \frac{Y_{p}^{2}}{\lambda_{p}} : \chi_{p-2}^{2} \\ T_{j}^{2} &= \frac{\hat{y}_{j3}^{2}}{\hat{\lambda}_{3}} + \frac{\hat{y}_{j4}^{2}}{\hat{\lambda}_{4}} + \cdots + \frac{\hat{y}_{jp}^{2}}{\hat{\lambda}_{p}}, \quad \mathbf{UCL} &= \chi_{p-2}^{2}(\alpha) \end{split}$$

74

Example 8.12 Control Ellipse for Future Values

	$\hat{\mathbf{e}}_1$	$\hat{\mathbf{e}}_2$	$\hat{\mathbf{e}}_3$	$\hat{\mathbf{e}}_4$	ê ₅
Appearances overtime (x_1)	.049	.629	.304	.479	.530
Extraordinary event (x_2)	.007	078	.939	260	212
Holdover hours (x_3)	662	.582	089	158	437
COA hours (x_4)	.731	:503	123	336	291
Meeting hours (x_5)	159	.081	058	752	.632
$\hat{\lambda}_i$	2,964,749.9	672,995.1	396,596.5	194,401.0	92,760,3

*Example 8.10 data after dropping out-of-control case

Avoiding Computation with Small Eigenvalues

$$\begin{split} d_{Uj}^2 &= \left(\overline{\mathbf{x}}_j - \overline{\mathbf{x}} - \hat{y}_{j1} \hat{\mathbf{e}}_1 - \hat{y}_{j2} \hat{\mathbf{e}}_2 \right) \left(\overline{\mathbf{x}}_j - \overline{\mathbf{x}} - \hat{y}_{j1} \hat{\mathbf{e}}_1 - \hat{y}_{j2} \hat{\mathbf{e}}_2 \right) \\ &= \left(\overline{\mathbf{x}}_j - \overline{\mathbf{x}} - \hat{y}_{j1} \hat{\mathbf{e}}_1 - \hat{y}_{j2} \hat{\mathbf{e}}_2 \right) \hat{\mathbf{E}} \hat{\mathbf{E}}' \left(\overline{\mathbf{x}}_j - \overline{\mathbf{x}} - \hat{y}_{j1} \hat{\mathbf{e}}_1 - \hat{y}_{j2} \hat{\mathbf{e}}_2 \right) \\ &= \sum_{k=3}^p \hat{y}_{jk}^2 : \text{approximate } c \chi_v^2 \\ \overline{d}_U^2 &= \frac{1}{n} \sum_{j=1}^n d_U^2 = c v, \quad s_{d^2}^2 = \frac{1}{n-1} \sum_{j=1}^n \left(d_{Uj}^2 - \overline{d}_U^2 \right)^2 = 2c^2 v \\ c &= \frac{s_{d^2}^2}{2 \overline{d}_U^2}, \quad v = 2 \frac{\left(\overline{d}_U^2 \right)^2}{s_{d^2}^2} \end{split}$$