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Questions

~What is the concept of the Principal
Components?

~What are the objectives of the
Principal Components?




Concept of Principal Components
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Principal Component Analysis

- Explain the variance-covariance
structure of a set of variables
through a few linear combinations of
these variables

~ Objectives
—Data reduction
— Interpretation

~Does not need normality assumption
in general
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Questions

~How to find the Principal Components
for a Random vector with a known
probability distribution? (Result 8.1)

~What is the relationship between the
sum of all eigenvalues and the trace
of the covariance matrix? (Result 8.2)

~ How to calculate the proportion of
total population variance due to the
kth principal component?
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Questions

~What is the relationship between the
ith principal component and the ith
variable? (Result 8.3)

-~ What is the geometric interpretation
of the principal components?

» How to find the principal components
for a standardized random vector?
(Result 8.4)

Questions

~What are the principal components
for a diagonal covariance matrix?

~What are the principal components
for the special covariance matrix

Principal Components
Random vector X'=|X, X, - X, |has

the covariance matrix X
Linear combination:Y, =a X, i=12,--, p
Var(Y,)=a,Xa,, Cov(Y, Y,)=aZXa,
First principal component :
a,X that maximizes Var(a,X) subject toa.a, =1
ith principal component :
a X that maximizes Var(a,X) subject toa,a, =1
and Cov(a,X, a,X) =0for k <i u

o? p0'2 po
2 2
x=|”7 “ pe
p0'2 p0'2 o?
Result 8.1

Covariance matrix X of random vector X

is with eigenvalue - eigenvector pairs (4, e; )
where 4, > 4, >---> 4, >0

The ith principal component is given by
Y,=eX, i=12-,p, with

Var(Y,) =eXe, = 4,,
Cov(Y,Y,)=eXe, =0,i 2k

If some A, are equal, the choice of corresponding

i=1, 2,...,p

e, and hence Y; are not unique w2
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Proof of Result 8.1

a'Xa
max

=0 q'q

=/, attained whena =e,

2a

ee, =1, thus max 2 —— =), =e,Xe, = Var(Y,)
a# aa

a'Xa

max
ale;...e, a'a

a=e. e Xe., =4, =Var(l,)

=2 k=12, p-1

Cov(Y,,Y,)=eXe, =e, A e, =0foranyi =k
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Result 8.2
Covariance matrix X of random vector
X= [Xl X, - Xp]is with eigenvalue -

eigenvector pairs (4,,e, ), where 4, > 1, >---> 4, >0
The ith principal component is given by
Y,=e¢X, i=12--,p, then

p
Ou+0y,+to,, =y Var(X,)
i=1

P
=h+A,++ A, =) Var(Y))

i=1 14

Proof of Result 8.2
L=PAP, A=diagih, X A, |
P=[e, e, - e] PP=PP=I
Oy +0y+t0, = Zp:Var(Xi) = tr(Z:)

_ t(PAP) = tr(A P'P)=tr(A)
:/11+/12+---+/1p:iVar(Yi)

i=1
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Proportion of Total Variance due to
the kth Principal Component

Proportion of total

population variance B A
due to the kth principal | 4 +4, ++--+ 4,
component

16




Result 8.3

Y, = e, X are the principal components obtained
from the covariance matrix X, then

_ea’ k=12,

Pr.x, = 1
o
ke

...,p

are the correlation coefficients between Y; and

Proof of Result 8.3
a,=[0 - 01 0 - O]sothat X, =a,X
Cov(X,,Y)=Cov(a,X,e,X)=2a,Xe = le,
Var(Y;)=4,, Var(X,)=o0,,
_ Cov(X,.)Y))  Ae,
Prox, = Jvar()\Var(x,) 4 Jo.

:\/Zefk i k=12 p

O ik
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variabIeXk.Heree;z[e,.1 e, eip]isthe
eigenvector of X corresponding to the eigenvalue
AAIso, X=X, X, - X,]
Example 8.1
X'=[X, X, X,| hasthecovariance matrix
1 -2 0
X=/-2 5 0/ whoseeigenvalue-eigenvector
0 0 2
pairs are

2,=583, e =[0.383 -0.924 0]
2,=2.00, e,=[0 0 1]
4, =017, e =[0.924 0.383 0]

19

Example 8.1

Principal components
Y, =¢,X =0.383X, -0.924.X,
Y,=e,X=2X,
Y, =e,X =0.924.X, +0.383X,
Verification
Var(Y,) = (0.383)*Var(X,)
+2(0.383)(-0.924) Cov(X,, X,) + (-0.924) Var(X,)
=5.83=1,
Cov(;,Y,) =0.383Cov(X,, X;)-0.924Cov(X,, X;)=0

20
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Example 8.1
Oy +0,+0,;=8=583+2.00+0.17=4+4,+ 4,
#:0.73’ &:0.98
At 2+ 2 At 2+ 2
P enyA  0.383,0.583
X \/6711 \/1
ep 4 —0.92440583
Pyx, = = =-0.998
V02 V5
2
A

Py, x, = Pr,x, = 0, Py, x, = =
V033

=0.925

Geometrical Interpretation
X:N,(nX)

X is with eigenvalue - eigenvector pairs (4, e, )

constant probability density ellipsoid

(x-p)E?(x-p)=¢?

¢ = (eux-R)f 4 (e, (x-p)f -+ e, (x-n)f
A A A"

Principal components of x-p: y, =e,(x-p)

i=12,---,p

2 1 2 1 2 1 2

==Yy —
ﬂiyl 2 Y2 &pyp

Geometric Interpretation

A5
A

Standardized Variables

Z = \i/O'T,i’ i=1,2,-,p
Jo. 0 - 0
R S RS I G
0 0 o,
1 p, - opy
Cov(z) =V mvPi—p=| P2 LT P
Py Py L
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Result 8.4
z=z, z, - z,| withCov(Z)=p
(4. e,): eigenvalue - eigenvector pairs of p
A22222, >0
The ith principal component of Z:
Y=eZ=eV'(X-p), i=12,-,p

3 Var(r) = Y Var(z) = p

pY,-,Zk:eik\/Z’ i,k:112,...,p

25

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)
population variance y)

Example 8.2

1 4 1 04
E = , p =
{4 100} {0.4 1 }

Eigenvalue - eigenvector pairs for X :
2,=100.16, e, =[0.040 0.999]
2,=0.84, e,=[0.999 —0.040]
Eigenvalue - eigenvector pairs for p :

A =1+p=14, e =[0.707 0.707]
2, =1-p=0.6, e,=[0.707 —-0.707]

27

o z_k, kzl,z,...’p
due to the kth principal p
component

Example 8.2

Principal components for X : ! =0.992
A+,

¥, =0.040.X, +0.999.X,
Y, =0.999.X, —0.040.X,

Principal components for p : A =0.7
p

Y, =0.707Z, +0.707Z, = 0.707(X, — 11,) + 0.0707(X,, — 11,)
Y, =0.707Z,-0.707Z, = 0.707(X, — 14,) — 0.0707(X,, — 11,)

Prn=eh =083T, py ,, =e,4 =0.837

28




Principal Components for Diagonal
Covariance Matrix

Gy 0 - 0
0 0
¥ : 0-:22 N : ,el.=[0 ... 010 - O]

p

Xe,=0.e, Y =e;.X =X,

p=1pe =le, T =elz'Z=Zi

X:N,(u,X), constant density ellipsoid is
a right ellipsoid for X

and a sphere for Z

29
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Principal Components for a Special
Covariance Matrix

Principal Components for a Special
Covariance Matrix

1 1 —(i-1)

ST YD JG-Di

i=2,-p

the last p —1components collectively contribute
very little to the total variance and can be neglected
when pisnearl

31

o’ po’ - po’ 1 p - p
02 0-2 cee 02 p 1 . p
Y= P: o p: o=l :
pc’  po’ o’ L P 1
1 1 1
(oo }
P P P
/12_/13_“2/117:1_p
Outline

~ Introduction
~ Popular Principal Components

~Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
~Large Sample Inferences

~ Monitoring Quality with Principal
Components

32
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Questions

~What are the sample principal
components?

~How to compute the sample principal
components?

» How to decide the number of
principal components required?

»What is the geometric interpretation
of the sample principal components?

33

Questions

~How to compute the sample principal
components for standardized random
vectors?

~What does it mean for an unusually
small value for the last eigenvalue
from either the sample covariance or
correlation matrix?

Sample Principal Components
X, ,X,, -, X, :nindependent drawings from some
p —dimensional population with mean p and
covariance matrix X
sample mean x, sample covariance matrix S
first sample principal component a'lxj :

max a,Sa, subjecttoaa, =1

ith sample principal componenta x ; :

maxaSa, subjecttoaa =1 and aSa, =0

35

Sample Principal Components
S= {sik}is with eigenvalue - eigenvector pairs
(i.6) ik=12-p
ith sample principal component of observation x :
P = €X =8y, + X, ++ 8,
W2y 222,20
sample variance(y,) = ik
sample covariance(y,,,) =0, i#k

. P PoA R é A
Total sample variance=) s, =>4, 7 =—"
i=L i=1 ' S




Example 8.3

Socioeconomic variables for 61 tracts in Madison, Wisconsin.
X, : total population (thousands)
X, : professional degree (percent)
X5 :employed age over 16 (percent)
X, : government employment (percent)
X5 : median home value ($10,000s)
X'=[447 396 7142 2691 1.64]

3.397

-1.102 9.673
S=| 4306 -1513 55.626

—2.078 10.953 -28.937 89.067

0.027 1203 -0.044 0.957 0.319 a7

Example 8.3

Coefficients for the Principal Compuonents
(Carrelation Coclficients in Parentheses)

Wariable | & 0,0 E-.{r;_. Wl & &y €
Tutal population | —00349-22)  AOT1024) [IRE.2] 0977 fIlJE‘K
Profession 0.105(.35) 1.1 300 26) —.961 v —n.13v
Lmployment (%) I {1492 - 68) 0.464(.73) 1M =091 0003
Gowernment ) ~ )

employment (%} | 1.863(.93) (1.480¢.32) {1153 0030 0.007
Medium home . -

value 0.009(.16) NOELLTY - 0125 nos2 0989
Vvariance (A,): 07402 30,67 837 247 08
Cumulative

pereentage of i . .

tetal variance | 617 LR o al 994 1000

38

Scree Plot to Determine Number of
Principal Components

39

Example 8.4: Pained Turtles

natural logarithms of the measured carapace
length, width, and weight of 24 male pained turtles
sample mean vector :
x=[4.725 4.478 3.703]
sample covariance matrix

11.072 8.019 8.160
S=10"° 8.019 6.417 6.005

8.160 6.005 6.773

40

2010/12/21

10



Example 8.4

COEFFICIENTS FOR PRINCIPAL COMPONENTS
{Correlation Coefficients in Parentheses)

Variable e(r ) € e

In (length} 683 {.99) -.159 =713
In (width) S10(.97) —.594 622
In (height) 523 (97) .788 324
Variance (A;): 2330 X 107 60 x 107 36 x 1077
Cumulative '

percentage of total

variance 96.1 98.5 100

a1

2010/12/21

Example 8.4: Scree Plot

il
)
i
|

20k

10—

Example 8.4: Principal Component

» One dominant principal component

—Explains 96% of the total
variance

» Interpretation

5, =0.683In(length) +0.510 In(width) +0.523In(height)

= In[(length)®** (width)**° (height)** |
= In(volume of a box with adjusted dimension)

43
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Standardized Variables

x/'i_fi .
z,= \/: , i=12-,p, Z:{z,i}
2 —D’“Z(X/ X) 2:1Z'1=0

: n
- I VI

1 I S1o 1 SZP

S. =2 22= Jousa ' o Asayls, 7R
sl.p Sz./’ 1

45

Principal Components
z,,2,,, z, are standardized observations
with sample covariance matrix R
(ii € ): eigenvalue - eigenvector pairs of R
h2A222,20
The ith principal component of z:
y,=ez, i=12-p
sample variance (3,) = ii, sample covariance(p,, »,) =0,i = k

total sample variance=tr(R) = p

ryuzk :éik\/ﬂTil i,k:]_, 2’-~.,p

46

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)
sample variance

due to the kth sample principal
component

:ﬁ’ k=12 p
p

a7

Example 8.5: Stocks Data

- Weekly rates of return for five stocks
- X;: JP Morgan
- X,: Citibank
- X;: Wells Fargo
- X,z Royal Dutch Shell
- X;: ExxonMobil

48

2010/12/21

12



2010/12/21

Example 8.5
x'=[0.0011 0.0007 0.0016 0.0040 0.0040]
1
0632 1
R=[0511 0574 1
0.115 0322 0183 1
0.155 0.213 0.146 0.683 1

Jy=2437, & =[0469 0532 0465 0.387 0.361]

4, =1.407, &,=[-0368 —0.236 -0.315 0.585 0.606]
J3=0501, &;=[-0.604 —-0.136 0.772 0.093 —0.109]
4, =0400, &, =[0.363 —0.629 0.289 -0.381 0.493]
Js=0255 &;=[0.384 —0496 0.071 0595 —0.498] .

Example 8.5

First two principal components:
Py =&,z =0.469z, +0.532z, + 0.465z; +0.387z, +0.361z
P, =€,z =—-0.3682 —0.2362, —0.315z5 +0.585z, +0.606z;

Ath 479
p
y, - roughly equally weighted sum (index) of the five stocks

(general stock - market component, or, market component)
¥, - contrast banking stocks and the oil stocks
(industry component)

50

Example 8.6

» Body weight (in grams) for n=150
female mice were obtained after
the birth of their first 4 litters

x'=[39.88 45.08 48.11 49.95]
1
07501 1
“10.6329 06925 1
0.6363 0.7386 0.6625 1

51

Example 8.6

A, =3.085 1,=0382, 1,=0342, 1, =0217
A ~1+(p—1)F =1+ (4—-1)x0.6854 = 3.056
b

R Ay~ Ay << /{1
=e,z=0.49z +0.52z, +0.49z, + 0.50z,

52
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Comment

~ An unusually small value for the last
eigenvalue from either the sample
covariance or correlation matrix can
indicate an unnoticed linear
dependency of the data set

»One or more of the variables is
redundant and should be deleted

» Example: x, =x; + x, + x5

53
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Outline

~ Introduction
~Popular Principal Components

~Summarizing Sample Variation by
Principal Components

- Graphing the Principal Components
~Large Sample Inferences

~Monitoring Quality with Principal
Components

Questions

- Why to check the normality of the
first few principal components?

~ How to pinpoint suspect observation?

55

Check Normality and
Suspect Observations

- Construct scatter diagram for pairs of
the first few principal components

~Make Q-Q plots from the sample
values generated by each principal
component

~ Construct scatter diagram and Q-Q
plots for the last few principal
components

56
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Example 8.7: Turtle Data

$, = 0.683(x, —4.725) +0.510(x, — 4.478)
+0.523(x, —3.703)

$, =—0.159(x, —4.725) — 0.594(x, — 4.478)
+0.788(x, —3.703)

, =—0.713(x, — 4.725) +0.622(x, — 4.478)
+0.324(x, —3.703)

57

Example 8.7

58
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Questions

-What are the large sample
distribution for eigenvalues and
eigenvectors?

» How to determine the confidence
interval for an eigenvalue?

» What is the approximate distribution
for estimated eigenvectors?

- How to test for equal correlation
structure?

60
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Large Sample Distribution for
Eigenvalues and Eigenvectors
S is with eigen values):'zlﬁ41 ipJand

eigenvectorse,, e,,---, e,

LetA = diag{ﬂ,l, A, } /;'s are eigenvalues of X
— /n(h—1): approximately N,(0,2A%)

P ﬂ/ )
LetE, =4 —F—e.e,

= (A= 2)

k=i

= (&, —e,):approximately N, (0,E,)

A isindependent of the elements of associated €,

Confidence Interval for A;
A, N(4,,222 | n) for n large

100(1— er)% confidence interval for 4, :

4 << 4

I+z(al2\2in ' 1-z(al2)V21n

62

Approximate Distribution of
Estimated Eigenvectors

Jn(e, —e,): approximate N, (0, E,)
E, can be approximated by

Y N T
E =) €&

63

Example 8.8
Stock price data : Ng(p, X)
X has distinct eigenvalues 4; > 4, >---> 45 >0
n =103 large
J, =0.0014, z(0.025)=1.96
95% confidence interval

00014  _ J < 0.0014 or
1+1.964/2/103  ~ 1-1.964/2/103"
0.0011< 4, <0.0019

2010/12/21
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Testing for Equal Correlation

1 p “en p
1 ...
Ho:p=po=/..) _— p Hyip#p,
p p “ee 1
I 5 p-1Fh-a-r’]
r=——>r, r= : ~ L
‘ p—l;:" p(p ;Zk: " p—(p-2)(-7)°

i#k

Reject H, in favor of H, if

(gn ,:;) {ZZ(’% r) _VZ(Vk_”) >7((p+1) 2)/2(0‘)

65

Example 8.9

1
0.7501 1
0.6329 0.6925 1
0.6363 0.7386 0.6625 1
6731, 7, =0.7271, r, = 0.6626, 7, = 0.6791, 7 = 0.6855

Example 8.6, female mice data R =

r1:

0.
ZZ r, —7) =0.01277, Z 7, —7 ) =0.00245, 7 = 2.1329
k i<k

T= (lLl)z [0.01277 - (2.1329)(0.00245)| =11.4
(1-0.6855)
> 72 (0.05) =11.07

(4+1)(4-2)12

The evidence against H,, is strong, but not overwhelming

66
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Questions

~How to monitor a stable process
using the first two principal
components?

~ How to monitor a stable process
using the 72 chart from the principal
components?

~How to control future values by
principal components?

68
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Questions

»Why avoiding Computation with
Small Eigenvalues?

69

Monitoring Stable Process: Part 1

The values of the first two principal components
should be stable for a process stable over time
Construct the quality ellipse for the first two

principal components when » large:
~2 ~2

73 < x5 (@)

70

Example 8.10
Police Department Data

Variable [ € [= ‘A

é—c
Appearances overtime {1} 046 —.048 629 = ﬁ-l", 432
Extraordinary event {x,) | 039 985 -077 =151 007
Holdover hours {x5) — 658 207 582 250 -39
COA houss {x,) 734 169 503 397 213
Meeting hours (X<} —. 155 A7 081 i&h 784
R | 2770226 1429206 628129 221138 99324

*First two sample cmponents explain 82%
of the total variance

71

Example 8.10:
Principal Corn_pone;nts

Period n ¥i2 ¥ Yis Yis
1 2044.9 588.2 425.8 -180.1  —209.8
2 -2143.7 —686.2 883.6 ~565.9  —441.5
3 -177.8 —464.6 707.5 736.3 38.2
4 ~2186.2 450.5 —=184.0 4437  ~3253
5 —878.6 —545.7 115.7 296.4 4375
6 5632 —1045.4 281.2 6205 142.7
7 403.1 66.8 340.6 ~135.5 521.2
8 ~1988.9 —801.8  —1437.3 —148.8 61.6
9 1328 563.7 1253 68.2 611.5
10 —2787.3 ~213.4 7.8 1694 =2023
i1 283.4 3936.9 ~0.9 2762 —159.6
12 761.6 256.0  —2153.6 ~418.8 282
13 —448.3 2447 9665  —11423 182.6
14 2366.2 -1193.7 ~165.5 2706  —3449
15 1917.8 —~782.0 -82.9 -196.8 —-89.9
16 2187.7 -3738 170.1 —84.1 —250.2

72
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Example 8.10:
95% Control Ellipse

s | |
g | I
|
|

£l

Monitoring Stable Process: Part 2
X:N,(n L), Ezlel e, - epJ

X_H:Zp:(x_")leiei :Zp:Yiei

Example 8.11
T2 Chart for Unexplained Data

i=1 i=1
EI(X_u_Ylel_YZeZ):[O 0 % Yp}:[o 0 Y(Z)}
2 2 y?
Y' E’l Y, :73+i+...+7p:/1/2
(2)=Y(2).Y, (2) p-2
(2)*1(2) AG 14 Ap
~2 ~2 ~2
Yis V; Vi
T/.ZZ%B+,+4+---+ 2 UCL=42,(a)
A A !
4 P
74
Example 8.12
Control Ellipse for Future Values
............ él é} & é" &
Appearances overtime {x;) 049 629 304 479 30
Extraordinary event (x,}) | 007 =178 939 —.260 =212
Holdover hours (x:) : —.662 582 -89 —.158 -437
COA hours (x,) | 731 1503 -.123 ~.336 =291
Meeting hours (x:) | -.159 081 - 058 —-.752 432

A I 2964.749.9 6729951 396,596.5 1944010 92,7603

*Example 8.10 data after dropping out-of-control case

19



Example 8.12
99% Prediction Ellipse

77
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Avoiding Computation with Small
Eigenvalues

dlij = (ij _i_j/jlél _)’;jzéZ)(ij _i_)’}jlél _j;jZéZ)
= (ij X - )A’jzéz)]::ﬁ'(ij —X— )8 - f’_;zéz)

P
=" 7% :approximate cy;
k=3
gz_lndz_ z_i"(dz_gz)z_zz
= ZU—CV, S = ZU/‘ o) =2cyv
n j=1 I’l—lj:l
2 —\2
7Sd72 y szi(du)
2d;} s

dZ

C =

78
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