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Questions

» What is the concept of the Principal
Components?

- What are the objectives of the
Principal Components?

Concept of Principal Components

X2

Principal Component Analysis

» Explain the variance-covariance
structure of a set of variables
through a few linear combinations of
these variables

» Objectives
—Data reduction
— Interpretation

r Does not need normality assumption
in general
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Questions

- How to find the Principal Components
for a Random vector with a known
probability distribution? (Result 8.1)

» What is the relationship between the
sum of all eigenvalues and the trace
of the covariance matrix? (Result 8.2)

» How to calculate the proportion of
total population variance due to the
kth principal component?

Questions

» What is the relationship between the
ith principal component and the kth
variable? (Result 8.3)

» What is the geometric interpretation
of the principal components?

Questions

» What are the principal components
for a diagonal covariance matrix?

» What are the principal components
for the special covariance matrix

) e v po_z paz
» How to find the principal components po? 0% o po?
for a standardized random vector? == R
(Result 8.4) po? po? e o
Principal Components Result 8.1

Randomvector X'=|X, X, - X, |has
the covariance matrix
Linear combination:¥, =a X, i=12,-,p
Var(¥,)=a,Xa,, Cov(Y,Y,)=aXa,
First principal component :
a,X that maximizes Var(a,X) subject toa.a, =1
ith principal component :
a,X that maximizes Var(a,X) subject toaja, =1
and Cov(a,X, a,X) =0 for k <i u

Covariance matrix X of random vector X

is with eigenvalue - eigenvector pairs (4, e, ),

where 4, > 4, >.>2 >0

The ith principal component is given by

Y,=eX, i=12-,p, with

Var(Y)=eXe, =1, i=12-p
Cov(Y,Y,)=eXe, =0,i#k

If some 4, are equal, the choice of corresponding

e, and hence Y, are not unique 2
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Proof of Result 8.1

aza .
max =/, attained whena=e,
a#0 a'a

Xa

eje, =1, thus max > == =} =e,Xe, = Var(Y,)

a0 q'q

max A k=12, p-1

ale,...e, a'a
=€, e;c+12ek+l = Ay =Var(y,,)
Cov(Y,Y,) =eXe, =e,Ae, =0foranyi=k

13

Result 8.2
Covariance matrix X of random vector
X= [X1 X, - Xj,]is with eigenvalue-

eigenvector pairs (4,,e, ) where , > 4, >---> 1, >0
The ith principal component is given by
Y,=eX, i=12-,p, then

P
O +0y++0,, =Y Var(X))
i=1

Y
= A+ A+ A, =Y Var(Y)
-1

14

Proof of Result 8.2
L=PAP', A=diagih, A, 4, |
P=le, ¢, - e, PP=PP=I

Oy +t0oy+to,, = zp:Val’(Xl.) = tr(Z)
i=1
=tr(PAP)=tr(AP'P)=1tr(A)

P
=h+A++4, =) Var(Y)

i=1

Proportion of Total Variance due to
the kth Principal Component

Proportion of total

population variance B A,
due to the kth principal | 4 + 4, +-+ 4,
component

16

Result 8.3

Y, = e,X are the principal components obtained
from the covariance matrix X, then

_ah k=12,

Pyx, = '
Ok

e p

are the correlation coefficients between ¥; and
variable X,.Heree, = [e[1 e, - e[p]is the
eigenvector of X corresponding to the eigenvalue
AAlso,X=[x, X, - Xx,]

Proof of Result 8.3
a,=[0 - 010 0]sothat X, =a, X
Cov(X,,Y)=Cov(a,X,eX) =2, Xe, = Le,
Var(Y,)=4,, Var(X,)=0,
_ Cov(X,,Y) _ Aey
Pr = JVar(r) Var(x,) Ao,

s i1a

Ok

18
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Example 8.1
X'=[X, X, X,]| hasthecovariance matrix
1 -2 0
X=|-2 5 0}, whoseeigenvalue-eigenvector
0 0 2

pairsare

2,=583, ¢ =[0383 -0924 0]
2,=200, e,=[0 0 1]
2,=017, e, =[0.924 0383 0]

Example 8.1

Principal components
Y, =¢,X=0.383X, -0.924X,
Y, =e, X=X,
Y, =e,X =0.924X, +0.383X,
Verification
Var(Y,) = (0.383)*Var(X,)
+2(0.383)(-0.924) Cov(X,, X,) +(-0.924)* Var(X,)
=5.83=4
Cov(Y,,Y,) =0.383Cov(X,, X;)—-0.924Cov(X,, X;) =0

20

Example 8.1

0,,+0,+0,,=8=5.83+2.00+017=4+4,+ 4,
A _o73 _Ath g

R R N
_eyy/A 03830583 0.925
Py x, = = N1 =
Nl 1
_epJA -0.92440583 0,998
Pr.x, = - \/* -
\O2 5
A
Py, x, = Pr,x, = 0, Py, x, = % =1
33 2

Geometrical Interpretation
X:N,(nX)

X is with eigenvalue - eigenvector pairs (4, e, )

constant probability density ellipsoid

(x-p)y =3 (x-p)=c?

¢ = (e (x-p)f + (e (x-p)f oo, (x-)f
A 2 A,

Principal components of x-p: y, =e;(x-p)

i=12,--,p

N +...+iy§

ATk 4, 2

Geometric Interpretation

Standardized Variables

ZI:M, i=12,p
O-Ll
\ou o - 0
a2 172 Op v 0
Z=V(X-p) V¥ = i
0 0 - o,
1 p, - py,

Cov(Z) =V V2EV¥2 =p = Pre 1 o P

plp pr 1 24
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Result 8.4
Z=z, z, - z,| withCov(Z)=p
(4., ): eigenvalue - eigenvector pairs of p
W=Az21,20
The ith principal component of Z:
Y,=eZ=eV'*(X-p) i=12-p

SVar(y) =Y var(z) = p

Py :em/fi, ik=12-p

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)

population variance y)
o =2k k=12 p
due to the kth principal p

component

26

Example 8.2

Z{l 4 } p{ 1 0.4}

4 100 04 1
Eigenvalue - eigenvector pairs for X :
2,=100.16, e, =[0.040 0.999]
2,=0.84, e,=[0.999 -0.040]
Eigenvalue - eigenvector pairs for p :

A =1+p=14, e =[0.707 0.707]
2,=1-p=06, e,=[0.707 -0.707]

Example 8.2

Principal components for X A _ 0.992
A+,

¥, =0.040X, +0.999.X,

Y, =0.999.X, —-0.040X,

A:OJ

Principal components for p: =
p

Y,=0.707Z,+0.707Z, = 0.707(X, — 1) +0.0707(X, — 11,)
Y, =0.707Z, —0.707Z, = 0.707(X, — 14,) - 0.0707(X, — 11,)

Prs =yl =0837, p, , =e,\[4 =0.837

28

Principal Components for Diagonal
Covariance Matrix

oy 0 e 0
0 0.

=, 2 €=[0 010 - 0
0 0 o

r

Ye =0, Y =eX=X,

p=1, pe =le, Y =eZ=2

X: N, (m,X), constant density ellipsoid is
a right ellipsoid for X

and a sphere for Z

Principal Components for a Special
Covariance Matrix

2 2 2

CE N o
S

30
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Principal Components for a Special
Covariance Matrix

_ 1 . 1 -@i-1) 0
" WGE=D)i JE-Di J@E-Di

i=2,p
Y, =e,Z=— ZZI, £:p+l_—p
f P P
the last p —1components collectively contribute
very little to the total variance and can be neglected

when pis nearl

Outline

» Introduction
r Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
» Large Sample Inferences

» Monitoring Quality with Principal
Components

32

Questions

» What are the sample principal
components?

- How to compute the sample principal
components?

» How to decide the number of
principal components required?

r What is the geometric interpretation
of the sample principal components?

33

Questions

» How to compute the sample principal
components for standardized random
vectors?

» What does it mean for an unusually
small value for the last eigenvalue
from either the sample covariance or
correlation matrix?

34

Sample Principal Components
X, ,X,, -, X, :nindependent drawings from some
p —dimensional population with mean p and
covariance matrix X

sample mean X, sample covariance matrix S

first sample principal component a'lxj. :
maxa,Sa, subjecttoaja, =1
ith sample principal component a;.x/ :

maxaSa, subjecttoaa, =1 and aSa, =0

Sample Principal Components

S = {s, }is with eigenvalue - eigenvector pairs

(i.e) k=12 p

ith sample principal component of observation x:

P =X =&yX +E,yX, + 48X,

hzlyz2],20

sample variance(p,) = ik

sample covariance(y,, »,) =0, i#k
P PooA o A_

Total sample variance =) s, = 2/1 \/7‘
i=1 i=1
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Example 8.3

Socioeconomic variables for 61 tracts in Madison, Wisconsin.
X, : total population (thousands)
X, : professional degree (percent)
X :employed age over 16 (percent)
X, : government employment (percent)
X5 : median home value ($10,000s)
X'=[447 396 7142 2691 1.64]

3.397

-1.102 9.673
S=| 4306 -1513 55.626

—2.078 10.953 -28.937 89.067

0.027 1203 -0.044 0.957 0.319 a7

Example 8.3

Cuefficients for the Principal Components
{ Correlation Coetficients in Parcnlheses)

Vi eir, 0 w5 £ s
) .
Total population BOTIC 0. ]88 nyiF -0
Profession DM 20} —0.900 L E A
Emplayment {%:} —ILAY2[ — R} nse4(.73) 6 LR | 00
Ciovernment . n _
employment (%) nAS 930 {(1.450¢.32) w132 -3 Tl
Medium home . o _
valug | ou00s(16) WU 0IE 2 D969
Varianes | 4,): | 107412 WsT 537 287 nis
| Fars @] W 1000

38

Scree Plot to Determine Number of
Principal Components

Example 8.4: Pained Turtles

natural logarithms of the measured carapace
length, width, and weight of 24 male pained turtles
sample mean vector :
x=[4.725 4.478 3.703]
sample covariance matrix

11.072 8.019 8.160
$=10"7° 8.019 6.417 6.005

8.160 6.005 6.773

39 40
Example 8.4 Example 8.4: Scree Plot
it
COEFFICIENTS FOR PRINCIPAL COMPONENTS 4
(Correlation Coefficients in Parentheses) !
Variable i é;ir;__“} 3 e s
In (length) | 683 (,09) ~.159 -713
In (width) ‘. S10(.97) —.594 622
In (height) | 52397 788 324
Variance (A,): [ 2330 %107 60 x 107 36 x 107 I
Cumulative |
percentage of total | [
variance 96.1 98.5 100
P o
a1 I a2
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Example 8.4: Principal Component

- One dominant principal component

—Explains 96% of the total
variance

» Interpretation
», =0.683In(length) +0.510 In(width) + 0.523In(height)

=In [(length)O.GHB (Width)omo (height) 0_523]
= In(volume of a box with adjusted dimension)

Geometric Interpretation

Standardized Variables

_ XX

z, = , i=12,-, p, Z:{Z,,}

z,=DV2(x, %), Z:%Z'l =0

1 S12 S1p
V11 S22 V1145 pp

1 S1p 1 Sap

\
§.= 7= VS S22 V2245 =R

n-1 p

S1p Sap 1

_JSMJSW NS22+/Spp

Principal Components
z,.2,,--, z, are standardized observations
with sample covariance matrix R
(ii,éi): eigenvalue- eigenvector pairs of R
A2Ayz22,20
The ith principal component of z:
yi=ez, i=12,-,p
sample variance (3,) = /i‘, sample covariance(p,, »,) =0,i # k
total sample variance = tr(R) = p

L =éik\/zi k=12 p

a6

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)
sample variance

due to the kth sample principal |
component

Example 8.5: Stocks Data

» Weekly rates of return for five stocks
- X;: JP Morgan
- X,: Citibank
- X;: Wells Fargo
- X,: Royal Dutch Shell
- X;: ExxonMobil

a8
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Example 8.5 Example 8.5

i':[0.00ll 0.0007 0.0016 0.0040 0.0040]
1

First two principal components:
Py = 6,2 =0.469z, +0.532z, + 0.465z3 +0.387z, +0.361z5

0632 1
R=|0511 0574 1 P, = 6z = —0.368z; —0.236z, — 0.315z, + 0.585z, +0.606z;
0115 0322 0183 1 F
0155 0213 0.146 0683 1 At 79
. . b4
A =2431, jl:[o'%g 0532 0465 0.387 0.361] 1 : roughly equally weighted sum (index) of the five stocks
{2 =1407, f’? =[-0.368 -0235 -0315 0585 0.606] (general stock - market component, or, market component)
{320'501’ e?:[_0‘604 -0136 0772 0093 -0.109] 7, : contrast banking stocks and the oil stocks
2, =0400, &,=[0.363 -0.629 0.289 -0.381 0.493] (industry component)
J5=0255 &;=[0.384 —0.496 0071 0595 —0.498] . o
Example 8.6 Example 8.6
» Body weight (in grams) for =150 A A . A
female mice were obtained after 4, =3.085 1,=0382, 1,=0342, 4,=0217
the birth of their first 4 litters A, ~1+(p-1)F =1+ (4—1)x0.6854 = 3.056
x'=[39.88 45.08 48.11 49.95] L adnd<<i
1 7, =&z =049z +052z, +0.49z, + 0.50z,
0.7501 1 j1
_ 212076
0.6329 0.6925 1 p
0.6363 0.7386 0.6625 1
Comment Outline
» An unusually small value for the last » Introduction
eigenvalue from either the sample - Popular Principal Components
covariance or correlation matrix can . Summarizing Sample Variation by
indicate an unnoticed linear Principal Components

dependency of the data set

» One or more of the variables is
redundant and should be deleted

- Example: x, = x; + x, + x5

» Graphing the Principal Components
» Large Sample Inferences

» Monitoring Quality with Principal
Components
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Questions

- Why to check the normality of the
first few principal components?

- How to pinpoint suspect observation?

Check Normality and
Suspect Observations

» Construct scatter diagram for pairs of
the first few principal components

- Make Q-Q plots from the sample
values generated by each principal
component

r Construct scatter diagram and Q-Q
plots for the last few principal
components

Example 8.7: Turtle Data Example 8.7

, = 0.683(x, —4.725) +0.510(x, — 4.478) ) o o
+0.523(x, —3.703) N .

$, =—0.159(x, — 4.725) —0.594(x, — 4.478) b o~ IR "
+0.788(x, —3.703) " s oo b

5 ==0.713(x, - 4.725) +0.622(x, — 4.478) Lo i Pl o
+0.324(x, —3.703) S somnomemd

Outline Questions

» Introduction
» Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
» Large Sample Inferences

» Monitoring Quality with Principal
Components

» What are the large sample
distribution for eigenvalues and
eigenvectors?

- How to determine the confidence
interval for an eigenvalue?

= What is the approximate distribution
for estimated eigenvectors?

» How to test for equal correlation
structure?

10
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Large Sample Distribution for

Eigenvalues and Eigenvectors Confidence Interval for A,
S is with eigen values}:':[il ipJand

A, :N(4,,22% | n) for n large
eigenvectors e, €,, -+, €

)2
(A

LetA= diag{ﬂi, A, } A;'s are eigenvalues of X a
R Pl'—=<5z(2) |=1-«
= /n (k1) :approximately N, (0,2A°) }”\F 2
' n

p A :
LetE. =1 ) —F* _e e,
i ,,,:zi;(/lk—ﬂ,i)z k™ k

= n(e, —e,):approximately N, (0, E,)

100(1- )% confidence interval for 4, :

A, A
e <A< -
l+z(a/2N2/n ' 1-z(al2)N2/n

/i is independent of the elements of associated €, .

62

Approximate Distribution of
Estimated Eigenvectors Example 8.8

- . Stock price data : N5(p, X)
vn(e, —e. ):approximate N (0,E, o
n( ! ’) PP P( ’) X has distinct eigenvalues 4; > 4, >---> 45 >0

E, can be approximated by n =103 large

J, =0.0014, z(0.025)=1.96

" NP 2
_ (PP
E, = }%‘z €€ 95% confidence interval

% (’Ik _’Ii)z 00014 __, 00014
6. N(e,, E,- ) 1+1.96+/2/103 1-1.96+/2/103
' 0.0011< 4 <0.0019
Testing for Equal Correlation Example 8.9
1 p - p 1
Ho;p:poz’? 1 p H,:p#p, Example 8.6, female mice data R = 07501~ 1

: 06329 06925 1
o p 1 0.6363 0.7386 0.6625 1
7 =0.6731, 7, = 0.7271, 7, = 0.6626, 7, = 0.6791, 7 = 0.6855

1 2 . (p-1p-a-7]
H=——>7V, r=———m— Ty, = _ 4 N
k p—l% * p(p-2) Zklzk: w7 p—(p-2)1-7)? ;2(“ -7y =0.01277, ;(4 —7f =0.00245, 7 = 2.1329
Reject H, in favor of H, if T = 0535y (1(‘:’%;51;)2 [0.01277 - (2.1329)(0.00245)|=11.4
n—1 . R e
7=t ,)2 DD = =72 (R =PV > Xy (@) >7%  (0.05)=1107
Q-7 | T = (e

The evidence against H,, is strong, but not overwhelming

66

11
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Outline

» Introduction
» Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
» Large Sample Inferences

» Monitoring Quality with Principal
Components

Questions

» How to monitor a stable process
using the first two principal
components?

» How to monitor a stable process
using the T2 chart from the principal
components?

» How to control future values by
principal components?

68

Questions

» Why avoiding Computation with
Small Eigenvalues?

Monitoring Stable Process: Part 1

The values of the first two principal components
should be stable for a process stable over time
Construct the quality ellipse for the first two

principal components when » large :
A2 ~2
FrEr@

2

70

Example 8.10
Police Department Data

Variable €, € e, e, €;

Appearances overtime (%) | 046 -8 629 —643 4R

Extraordinary even 85 =07 —.151 -7
ialdover ho 107 582 250 -3yl
COA ho D68 503 397 -213
Meeting hours 107 81 586 T84

A 12770226 1429206 628129 221.13% 99,524

*First two sample cmponents explain 82%
of the total variance "

Example 8.10:
___Principal Components

Period ¥ ¥ ¥ ¥ s
1 2044.9 4258 ~189.1 -2098
2 21437 B30 —565.9 -441.5
3 -177.8 707.5 7363 382
4 2186.2 —=184.0 4437 -3253
5 878.6 1157 2064 4375
] 563.2 2812 £20.5 1427
7 403.1 3406 -135.5 521.2
8 -1988.9 -1437.3 ~148.58 6l.6
9 132.8 125.3 68.2 611.5

10 =2787.3 78 169.4 =202.3
it 283.4 3936.9 -0.9 2762 —159.6
12 T61.6 2560 ~2153.6 ~4188 282
13 —498.3 2447 966.5 —11423 182.6
14 2366.2 =1193.7 -165.5 270.6 ~3449
15 1917.8 —T82.0 -82.9 =196.8 —-89.9

16 21877 -3738 170.1 —B4.1 250.2

12
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Example 8.10:
95% Control Ellipse

Monitoring Stable Process: Part 2
X:N,(nX), E=le, e, - e,]

X*H:i(xfll)'e;ei :iYiei
1

i=1 i=

E'(X-p-Ye,-Ye,)=[0 0 v - v}=[o 0 Y,}
g .7 S
Y(Z)Ev(z)v"(z)Y(z) _Z+Z+H.+TZ ’ Z[’—z
~2 ~2 ~2
Yis Yy Vi
TP="L4+ L4158 UCL= 42 ,(a)
_ A A 4,
Example 8.11 Example 8.12
T? Chart for Unexplained Data Control Ellipse for Future Values
. S S S S
Appearances overlime (x;) | Ay 620 o 'JJJ-I. ATY o EU_
Extraordinary event (x.) | 007 - 078 939 260 =212
Holdover hours (x;) | —.662 582 = 189 - 158 -437
L COA hours (x;) | 731 e
/\J}H/ \ I ~ E".“.‘.".’gm'“rl‘.'i‘,l;.“ —7;1;.‘.{ — .u_ht i 058 “uz 1_.(\_1_
/ f )\.L_..JfH..-H.U 672,995.1 .l‘sl.h.5‘_!!!..5_}.‘3:1.:-1.1.}.1.:0_2_-_1?.-12."
\J
*Example 8.10 data after dropping out-of-control case
Example 8.12 Avoiding Computation with Small
99% Prediction Ellipse Eigenvalues
:J dlij:(ij_i_j;jlél_j}jZéZ)‘(ij_i_};jlél_j;jzéZ)
4 /\ I :(ij_i_j;jlél_j}jZéZ)‘EEl(ij_i_j}jlél_j;ﬂéz)
| . p
£ , =" 7% :approximate cy]
i . * J2 2 _ 2 _ 2 F2\¢ _ 2
\ . | a: _;;du =ev, sh=— /:l(dw—dy) —2c%y
i 2 -2\
g ' =L, 2 dlz/)
T 2d;; Cye

13



