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QuestionsQuestions

How to represent a sample of size How to represent a sample of size nn
from a from a pp--variate population?variate population?
What is the geometrical What is the geometrical 
representation of sample mean and representation of sample mean and representation of sample mean and representation of sample mean and 
deviation?  deviation?  
How to calculate lengths and angles How to calculate lengths and angles 
of deviation vectors?of deviation vectors?
What is the geometric meaning of What is the geometric meaning of 
the correlation coefficient?   the correlation coefficient?   
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Geometrical Interpretation of Geometrical Interpretation of 
Sample Mean and DeviationSample Mean and Deviation
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Lengths and Angles of Lengths and Angles of 
Deviation VectorsDeviation Vectors

 

   ikkjk

n

j
ijiki

n

j
iiijiii

nsxxxx

nsxxL
i













1

'

1

2'2
d

dd

dd

1313

   

ik

kkii

ik
ik

ik

n

j
iji

n

j
iji

ik

j

r
ss

s

xxxx

LL
ki
















cos

cos

cos

1

2

1

2

1

dd

Example 3.4Example 3.4




















]'2,0,2[,]'1,3,2[

53

31

14

''

21 dd

X

1414
































1189.0

189.01
,

3/83/2

3/23/14

189.0

32

38,314

2211

12
12

122
'
1

222
'
2111

'
1

RS

dd

dddd

n

ss

s
r

s

ss

OutlineOutline
The Geometry of the SampleThe Geometry of the Sample
Random Samples and the Expected Random Samples and the Expected 
Values of the Sample Mean and Values of the Sample Mean and 
Covariance MatrixCovariance MatrixCovariance MatrixCovariance Matrix
Generalized VarianceGeneralized Variance
Sample Mean, Covariance, and Sample Mean, Covariance, and 
Correlation as Matrix OperationsCorrelation as Matrix Operations
Sample Values of Linear Sample Values of Linear 
Combinations of Variables Combinations of Variables 

1515

Questions

What are random samples?
What is the geometric interpretation 
of randomness?
R lt 3 1Result 3.1

Random MatrixRandom Matrix
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Random SampleRandom Sample

Row vectors Row vectors XX11’’, , XX22’’, , ……, , XXnn’’
represent independent represent independent 
observations from a common joint observations from a common joint 
distribution with density function distribution with density function 

1818

distribution with density function distribution with density function 
ff((xx)=)=ff((xx11, , xx22, …, , …, xxpp))

Mathematically, the joint density Mathematically, the joint density 
function of function of XX11’’, , XX22’’, , ……, , XXnn’’ isis
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Random SampleRandom Sample
Measurements of a single trial, such Measurements of a single trial, such 
as as XXjj’’==[[XXj1j1,X,Xj2j2,…,X,…,Xjpjp]], will usually be , will usually be 
correlatedcorrelated
The measurements from different The measurements from different 

1919

trials must be independenttrials must be independent
The independence of measurements The independence of measurements 
from trial to trial may not hold when from trial to trial may not hold when 
the variables are likely to drift over the variables are likely to drift over 
timetime

Geometric Interpretation of Geometric Interpretation of 
Randomness Randomness 

Column vector Column vector YYkk’’=[=[XX1k1k,,XX2k2k,…,,…,XXnknk]] regarded regarded 
as a point in as a point in nn dimensionsdimensions
The location is determined by the joint The location is determined by the joint 
probability distribution probability distribution ff((yykk)) = = ff((xx1k1k, , xx2k2k,…,,…,xxnknk))

2020

p yp y ff((yykk)) ff(( 1k1k 2k2k nknk))

For a random sample, For a random sample, ff((yykk)=)=ffkk((xx1k1k))ffkk((xx2k2k)…)…ffkk((xxnknk))

Each coordinate Each coordinate xxjkjk contributes equally to contributes equally to 
the location through the same marginal the location through the same marginal 
distribution distribution ffkk((xxjkjk))

Result 3.1Result 3.1
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Some Other EstimatorsSome Other Estimators
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Questions

How to define a generalized sample 
variance?
What is the geometric interpretation 
of a generalized sample variance for of a generalized sample variance for 
bivariate cases?
What is the geometric interpretaion 
of a generalized sample variance for 
multivariate cases? 

Questions
What is the equation for points 
within a constant statistical within a constant statistical 
distance distance cc from the sample from the sample 
mean?mean?mean?mean?
Example 3.8
Result 3.2
Example 3.9
Examples causing zero generalized 
variance

Questions

Example 3.10
Result 3.3
Result 3.4
Generalized Sample Variance of Generalized Sample Variance of 
Standardized VariablesStandardized Variables
Example 3.11Example 3.11
Total Sample VarianceTotal Sample Variance

Generalized Sample VarianceGeneralized Sample Variance

 publishinglargest  16for  employeeper 

 profits and Employees :3.7 Example

  Variance Sample dGeneralize  S
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487.26

67.12343.68
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Geometric Interpretation for Geometric Interpretation for 
Bivariate CaseBivariate Case
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Generalized Sample Variance for Generalized Sample Variance for 
Multivariate CasesMultivariate Cases
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Interpretation in Interpretation in 
pp--space Scatter Plotspace Scatter Plot

Equation for points within a Equation for points within a 
constant distance constant distance cc from the from the 
sample meansample mean
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Example 3.8: Scatter PlotsExample 3.8: Scatter Plots
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Example 3.8: Sample Mean and Example 3.8: Sample Mean and 
VarianceVariance--Covariance MatricesCovariance Matrices
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Example 3.8: Example 3.8: 
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
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Example 3.8: Example 3.8: 
MeanMean--Centered EllipseCentered Ellipse
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Example 3.8: Example 3.8: 
SemiSemi--major and Semimajor and Semi--minor Axes minor Axes 
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Example 3.8:Example 3.8:
Scatter Plots with Major AxesScatter Plots with Major Axes
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Result 3.2Result 3.2

The generalized variance is zero The generalized variance is zero 
when the columns of the following when the columns of the following 
matrix are linear dependentmatrix are linear dependent
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Example 3.9Example 3.9
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Examples Cause Zero Examples Cause Zero 
Generalized VarianceGeneralized Variance

Example 1Example 1
––Data are test scoresData are test scores
–– Included variables that are sum of Included variables that are sum of 

othersothers
e g  algebra score and geometry score e g  algebra score and geometry score 

4545

––e.g., algebra score and geometry score e.g., algebra score and geometry score 
were combined to total math scorewere combined to total math score

––e.g., class midterm and final exam e.g., class midterm and final exam 
scores summed to give total pointsscores summed to give total points

Example 2Example 2
––Total weight of chemicals was included Total weight of chemicals was included 

along with that of each componentalong with that of each component

Example 3.10Example 3.10
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Result 3.3Result 3.3

If the sample size is less than or If the sample size is less than or 
equal to the number of variables   equal to the number of variables   
(            ) then |(            ) then |SS| = 0 for all | = 0 for all 
samplessamples

pn 
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Proof of Result 3.3Proof of Result 3.3

 1most at  ofn combinatiolinear  a is )(col

 vectorsrow remaining

 theofn combinatiolinear  a is )''(row1
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0  || matrix, by   a is  Since

  .1  toequalor  than less

 i.e., ,1  toequalor  than less  thusis  ofrank  The

 vectorsrow of  transposeoft independenlinear 
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Result 3.4Result 3.4
Let the Let the pp by by 11 vectors vectors xx11, , xx22, …, , …, xxnn, where , where xxjj’’
is the is the jjth row of the data matrix th row of the data matrix XX, be , be 
realizations of the independent random realizations of the independent random 
vectors vectors XX11, , XX22, , ……, , XXnn. . 
If the linear combination If the linear combination aa’’XX has positive has positive 

5050

If the linear combination If the linear combination aa XXjj has positive has positive 
variance for each nonvariance for each non--zero constant zero constant 
vector vector aa, then, provided that , then, provided that pp < < nn, , SS has has 
full rank with probability 1 and |full rank with probability 1 and |SS| > 0| > 0
If, with probability 1, If, with probability 1, aa’’XXjj is a constant is a constant cc
for all for all jj, then |, then |SS| = 0| = 0

Proof of Part 2 of Result 3.4Proof of Part 2 of Result 3.4
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Generalized Sample Variance of Generalized Sample Variance of 
Standardized VariablesStandardized Variables
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Example 3.11Example 3.11
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Total Sample VarianceTotal Sample Variance

67.12343.68

43.6804.252
 :3.7 Example

 vectorsresidual  theofn orientatio  thetoattention  no Pays

  Variance Sample Total 2211
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 :3.9 Example
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Questions

How to compute sample mean by 
matrix operation?
How to compute sample covariance 
matrix by matrix operation?matrix by matrix operation?
How to compute sample correlation 
coefficient matrix by matrix 
operation?

Sample Mean as Matrix OperationSample Mean as Matrix Operation
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Covariance as Matrix OperationCovariance as Matrix Operation
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Covariance as Matrix OperationCovariance as Matrix Operation
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Covariance as Matrix OperationCovariance as Matrix Operation
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Sample Standard Deviation MatrixSample Standard Deviation Matrix
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Questions

Result 3.5
Result 3.6

Result 3.5Result 3.5
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