Multivariate Statistical Analysis Mid Term November 14, 2011 2 pages, 16 problems, 100 points

- 1. Suppose that a sample covariance matrix $\mathbf{S} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, calculate its generalized variance and total sample variance. (6%)
- 2. Assume that a ample covariance matrix $\mathbf{S} = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}$, calculate the cosine of the angle between the two deviation vectors $\mathbf{d}_1 = \mathbf{y}_1 \overline{x}_1 \mathbf{1}$ and $\mathbf{d}_2 = \mathbf{y}_2 \overline{x}_2 \mathbf{1}$.

of the angle between the two deviation vectors $\mathbf{d}_1 = \mathbf{y}_1 - x_1 \mathbf{I}$ and $\mathbf{d}_2 = \mathbf{y}_2 - x_2 \mathbf{I}$. (6%)

- 3. Verify that $\lambda_1 = 9$, $\lambda_2 = 9$, $\lambda_3 = 18$ and $\mathbf{e}'_1 = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}$, $\mathbf{e}'_2 = \begin{bmatrix} 1/3\sqrt{2} & -1/3\sqrt{2} & -4/3\sqrt{2} \end{bmatrix}$, $\mathbf{e}'_3 = \begin{bmatrix} 2/3 & -2/3 & 1/3 \end{bmatrix}$ are the eigenvalues and eigenvectors of the sample covariance matrix given in Problem 2. (6%)
- 4. Compute the major axes and directions formed by the ellipsoid $(\mathbf{x} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu}) = c^2$, where $\mathbf{x}' = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$, $\boldsymbol{\mu}' = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$, $\boldsymbol{\Sigma} = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}$, and *c* is a positive real constant. Use the results of Problem 3.

(6%)

- 5. Find the major axes and directions of the ellipsoid which contains 95% of the probability for multivariate normal distribution $N_3(\mu, \Sigma)$, where μ , Σ have been defined in Problem 4. Use the results of Problem 3. (6%)
- 6. Set up a null hypothesis $H_0: \mu = \mu_0$ and an alternative hypothesis $H_1: \mu \neq \mu_0$, with $\mu_0' = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ for multivariate normal distribution $N_3(\mu, \Sigma)$. Determine if the Hotelling's T^2 test can or can not reject the null hypothesis at the level of significance level $\alpha = 0.05$. Suppose that the sample size is 43, the sample mean $\overline{\mathbf{x}}' = \begin{bmatrix} 0.5 & 0.5 & -0.5 \end{bmatrix}$, and the sample covariance matrix **S** has been given in

Problem 2. You may apply
$$\mathbf{S}^{-1} = \frac{1}{162} \begin{bmatrix} 14 & 4 & -2 \\ 4 & 14 & 2 \\ -2 & 2 & 17 \end{bmatrix}$$
 (6%)

- 7. Find the major axes and directions of the Hotelling's 95% T^2 confidence region for Problem 6. (6%)
- 8. Determine the 95% simultaneous T^2 confidence intervals for Problem 6. (6%)
- 9. Determine the 95% Bonferroni simultaneous confidence intervals for Problem 6. Note that if your *t* corresponding to the desired degrees of freedom can not be found directly in the table, use the following linear interpolation formula to get an approximate value: $t = t_1 + m(v - v_1)$, $m = (t_2 - t_1)/(v_2 - v_1)$, where t_1 and t_2 are the two *t* values corresponding to degrees of freedom v_1 and v_2 , respectively,

with v_1 and v_2 being the two v values in the table and closest to the desired v. (6%)

- 10. Determine the lower control limit (LCL) and the 95% upper control limit (LCL) of the T^2 control chart for future observation which is based on a sample of size n = 43 from a multivariate normal population. Assume that the sample mean is $\bar{\mathbf{x}}' = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ and the sample covariance matrix is the S given in Problem 2. (6%)
- 11. Given that a random vector **X** follows $N_3(\mu, \Sigma)$, with μ , Σ have been defined in Problem 4. Find the probability distribution of $\mathbf{a}'\mathbf{X}$ for $\mathbf{a}'=\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$. (6%)
- 12. Let **X** be $N_3(\mu, \Sigma)$ with $\mu' = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Which of the

following random samples are independent? Explain. (a) X_1 and X_2 (3%) (b) (X_1, X_2) and X_3 (3%)

13. Let x have an exponential density $p(x) = \begin{cases} \theta e^{-\theta x}, x \ge 0\\ 0, x < 0 \end{cases}$. Suppose that n random samples $x_1, ..., x_n$ are drawn. Find the maximum-likelihood estimate $\hat{\theta}$ for θ .

- 14. Assume a null hypothesis $H_0: \theta = \theta_0$ for the random number in Problem 13. Find the likelihood ratio Λ in terms of $\theta_0 / \hat{\theta}$. (6%)
- data $\mathbf{X} = \begin{bmatrix} 2 & 6 \\ 4 & 4 \\ & 8 \end{bmatrix}$ with missing components, use the 15. Given the

prediction-estimation algorithm (the EM algorithm) to estimate μ and Σ . Determine the initial estimate and iterate to find the *first* revised estimates. (8%)

16. Given the fact that if a random variable x is $N(\mu, \sigma^2)$, then $\frac{(n-1)s^2}{\sigma^2}$ follows χ^2_{n-1} Use distribution. the probability statement $\Pr\left\{\chi_{n-1}^{2}\left(\frac{\alpha}{2}\right) < \frac{(n-1)s^{2}}{\sigma^{2}} < \chi_{n-1}^{2}\left(1-\frac{\alpha}{2}\right)\right\} = 1-\alpha \text{ to find the confidence interval for}$

the population variance σ^2 . (8%)

(6%)