Comparison of Several Multivariate Means

Shyh-Kang Jeng

Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking and Multimedia

1

Outline

- → Introduction
- → Comparison of Univariate Means
- → Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

2

Outline

- Comparing Several Multivariate Population Means (One-Way MANOVA)
- → Simultaneous Confidence Intervals for Treatment Effects
- → Testing for Equality of Covariance Matrices
- ⋆Two-Way ANOVA
- Two-Way Multivariate Analysis of Variance

Outline

- → Profile Analysis
- *ANOVA for Repeated Measures
- → Repeated Measures Designs and Growth Curves
- → Perspectives and Strategy for Analyzing Multivariate Models

Outline

- Introduction
- → Comparison of Univariate Means
- → Paired Comparisons and a Repeated Measures Design
- → Comparing Mean Vectors from Two Populations
- → Comparison of Several Univariate Population Mean (One-Way ANOVA)

.

Introduction

→ Extend previous ideas to handle problems involving the comparison of several mean vectors

6

Outline

- → Introduction
- → Comparison of Univariate Means
- → Paired Comparisons and a Repeated Measures Design
- → Comparing Mean Vectors from Two Populations
- → Comparison of Several Univariate Population Mean (One-Way ANOVA)

Questions

- What is the paired comparison?
- → How to design experiments for paired comparison?
- *How to test if the population means of paired groups are different?
- →How to compute the confidence interval for the difference of population means of paired groups?

Questions

- How to compare population means of two populations without paired experiments?
- In such a case, how to estimate the common variance?

9

Paired Comparisons

- Measurements are recorded under different sets of conditions
- → See if the responses differ significantly over these sets
- Two or more treatments can be administered to the same or similar experimental units
- → Compare responses to assess the effects of the treatments

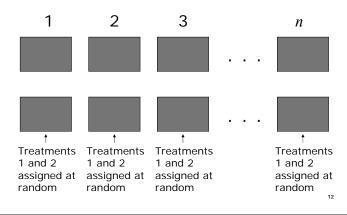
1

Scenarios

- →To test if the differences are significant between
 - Teaching using Power Point vs. using chalks and blackboard only
 - Drug vs. placebos
 - Processing speed of MP3 player model I of brand A vs. model G of brand B
 - Performance of students going to cram schools vs. those not

10

Experiment Design for Paired Comparisons



Single Response (Univariate) Case

$$D_j = X_{j1} - X_{j2}, j = 1, 2, \dots, n$$

$$D_i: N(\delta, \sigma_d^2)$$

$$t = \frac{\overline{D} - \delta}{s_d / \sqrt{n}} : t_{n-1}$$

Reject $H_0: \delta = 0$ in favor of $H_1: \delta \neq 0$ if $|t| > t_{n-1}(\alpha/2)$ 100(1- α)% confidence interval for δ

$$\overline{d} - t_{n-1}(\alpha/2) \frac{s_d}{\sqrt{n}} \le \delta \le \overline{d} + t_{n-1}(\alpha/2) \frac{s_d}{\sqrt{n}}$$

13

Assumptions Concerning the Structure of Data

 $X_{11}, X_{12}, \cdots, X_{1n_1}$: random sample from univariate population with mean μ_1 and variance σ_1^2 $X_{21}, X_{22}, \cdots, X_{2n_2}$: random sample from univariate population with mean μ_2 and variance σ_2^2 $X_{11}, X_{12}, \cdots, X_{1n_1}$ are independent of $X_{21}, X_{22}, \cdots, X_{2n_2}$ Further assumptions when n_1 and n_2 small: Both populations are univariate normal $\sigma_1^2 = \sigma_2^2$

5

Comparing Means from Two Populations

- Without explicitly controlling for unitto-unit variability, as in the paired comparison case
- →Experimental units are randomly assigned to populations
- Applicable to a more general collection of experimental units

14

Pooled Estimate of Population Variance

$$\sum_{j=1}^{n_1} (x_{j1} - \overline{x}_1)(x_{j1} - \overline{x}_1) \approx (n_1 - 1)\sigma^2$$

$$\sum_{j=1}^{n_2} (x_{j2} - \overline{x}_2)(x_{j2} - \overline{x}_2) \approx (n_2 - 1)\sigma^2$$

$$S_{pooled}^2 = \frac{\sum_{j=1}^{n_1} (x_{j1} - \overline{x}_1)(x_{j1} - \overline{x}_1) + \sum_{j=1}^{n_2} (x_{j2} - \overline{x}_2)(x_{j2} - \overline{x}_2)}{n_1 + n_2 - 2}$$

$$= \frac{n_1 - 1}{n_1 + n_2 - 2} S_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_2^2$$

t-Statistics for Comparing Two Populations

$$X_{11}, X_{12}, \dots, X_{1n_1} : N(\mu_1, \sigma^2)$$

$$X_{21}, X_{22}, \dots, X_{2n_2} : N(\mu_2, \sigma^2)$$

$$\overline{X}_1 - \overline{X}_2 = \frac{1}{n_1} X_{11} + \dots + \frac{1}{n_1} X_{1n_1} - \frac{1}{n_2} X_{21} + \dots - \frac{1}{n_2} X_{2n_2}$$

$$: N(\mu_1 - \mu_2, \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \sigma^2)$$

$$\Rightarrow t = \left(\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)\right) / \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} s_{pooled}^2$$

Test of Hypothesis

Reject $H_0: \mu_1 - \mu_2 = \delta_0$ in favor of $H_1: \mu_1 - \mu_2 \neq \delta_0$

if
$$\left| \frac{\overline{x}_1 - \overline{x}_2 - \delta_0}{s_{pooled} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \right| > t_{n_1 + n_2 - 2} \left(\frac{\alpha}{2}\right)$$

18

Outline

- Introduction
- → Comparison of Univariate Means
- → <u>Paired Comparisons and a Repeated</u> <u>Measures Design</u>
- → Comparing Mean Vectors from Two Populations
- → Comparison of Several Univariate Population Mean (One-Way ANOVA)

Questions

- How to make paired comparison for multivariate data?
- How to use the contrast matrix to carry out paired comparison for multivariate data?
- →What is the repeated measures?
- →How to test for equality of treatments in a repeated measures?

Example 6.1: Effluent Data from Two Labs

	Commerc	cial lab	State lab of hygiene		
Sample j	x_{1j1} (BOD)	x_{1j2} (SS)	x_{2j1} (BOD)	x_{2j2} (SS)	
1	6	27	25	15	
2	6	23	28	13	
3	18	64	36	22	
4	8	44	35	29	
5	11	30	15	31	
6	34	75	44	64	
7	28	26	42	30	
8	71	124	54	64	
9	43	54	34	56	
10	33	30	29	20	
11	20	14	39	21	

Source: Data courtesy of S. Weber.

21

Result 6.1

$$D_{j1} = X_{1j1} - X_{2j1}$$

$$D_{j2} = X_{1j2} - X_{2j2}$$

$$\vdots \qquad \vdots$$

$$D_{jp} = X_{1jp} - X_{2jp}$$

$$\mathbf{D}_{j} = \left[D_{j1}, D_{j2}, \dots, D_{jp}\right]$$

$$\mathbf{D}_{j} : N_{p}(\boldsymbol{\delta}, \boldsymbol{\Sigma}_{d}), \quad j = 1, 2, \dots, n$$

$$T^{2} = n(\overline{\mathbf{D}} - \boldsymbol{\delta}) \mathbf{S}_{d}^{-1} (\overline{\mathbf{D}} - \boldsymbol{\delta}) : \frac{(n-1)p}{(n-p)} F_{p,n-p}$$

$$\overline{\mathbf{D}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{D}_{j}, \quad \mathbf{S}_{d} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{D}_{j} - \overline{\mathbf{D}}) (\mathbf{D}_{j} - \overline{\mathbf{D}})$$

Multivariate Extension: Notations

 X_{1i1} = variable 1 under treatment 1

 $X_{1/2}$ = variable 2 under treatment 1

: :

 X_{1jp} = variable p under treatment 1

 X_{2j1} = variable 1 under treatment 2

 X_{2j2} = variable 2 under treatment 2

: :

 X_{2jp} = variable p under treatment 2

22

Test of Hypotheses and Confidence Regions

 $\mathbf{d}_{j} = [d_{j1}, d_{j2}, \dots, d_{jp}]$: observed differences

Reject $H_0: \mathbf{\delta} = 0$ in favor of $H_1: \mathbf{\delta} \neq 0$ if

$$T^{2} = n\overline{\mathbf{d}}'\mathbf{S}_{d}^{-1}\overline{\mathbf{d}} > \frac{(n-1)p}{n-p}F_{p,n-p}(\alpha)$$

Confidence regions: $(\overline{\mathbf{d}} - \boldsymbol{\delta}) \mathbf{S}_d^{-1} (\overline{\mathbf{d}} - \boldsymbol{\delta}) \leq \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$

$$\delta_i: \overline{d}_i \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{d_i}^2}{n}}, \quad \delta_i: \overline{d}_i \pm t_{n-1} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{s_{d_i}^2}{n}}$$

Example 6.1: Check Measurements from Two Labs

$$\overline{\mathbf{d}} = \begin{bmatrix} \overline{d}_1 \\ \overline{d}_2 \end{bmatrix} = \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}, \quad \mathbf{S}_d = \begin{bmatrix} 199.26 & 88.38 \\ 88.38 & 418.61 \end{bmatrix}$$

$$T^2 = 11 \begin{bmatrix} -9.36 & 13.27 \end{bmatrix} \begin{bmatrix} 0.0055 & -0.0012 \\ -0.0012 & 0.0026 \end{bmatrix} \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}$$

$$= 13.6 > \frac{2 \times 10}{9} F_{2.9}(0.05) = 9.47$$
Reject $H = S = 0$

Reject $H_0: \delta = 0$

 $\delta_1 : -9.36 \pm \sqrt{9.47} \sqrt{199.26/11} \text{ or } (-22.46, 3.74)$

 $\delta_2: 13.27 \pm \sqrt{9.47} \sqrt{418.61/11} \text{ or } (-5.71, 32.25)$

Both includes zero

2

Repeated Measures Design for Comparing Measurements

- → q treatments are compared with respect to a single response variable
- Each subject or experimental unit receives each treatment once over successive periods of time

27

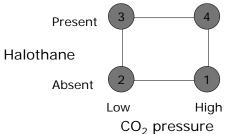
Alternative View

$$\begin{aligned}
\mathbf{\bar{x}}' &= \left[\overline{x}_{11}, \overline{x}_{12}, \dots, \overline{x}_{1p}, \overline{x}_{21}, \overline{x}_{22}, \dots, \overline{x}_{2p} \right] \\
\mathbf{S} &= \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{bmatrix} \\
\mathbf{C}_{(p \times 2p)} &= \begin{bmatrix} 1 & 0 & \cdots & 0 & | & -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & | & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & | & 0 & 0 & \cdots & -1 \end{bmatrix} \\
\mathbf{d}_{j} &= \mathbf{C} \mathbf{x}_{j}, \quad \overline{\mathbf{d}} &= \mathbf{C} \overline{\mathbf{x}}, \quad \mathbf{S}_{d} &= \mathbf{C} \mathbf{S} \mathbf{C}', \quad T^{2} &= n \overline{\mathbf{x}}' \mathbf{C}' (\mathbf{C} \mathbf{S} \mathbf{C}')^{-1} \mathbf{C} \overline{\mathbf{x}}
\end{aligned}$$

26

Example 6.2: Treatments in an Anesthetics Experiment

 19 dogs were initially given the drug pentobarbitol followed by four treatments



Example 6.2: Sleeping-Dog Data

	to the End of	Treat	ment	
Dog	1	2	3	4
1	426	609	556	600
2	253	236	392	395
3	359	433	349	357
4	432	431	522	600
5	405	426	513	513
6	324	438	507	539
7	310	312	410	456
8	326	326	350	504
9	375	447	547	548
10	286	286	403	422
11	349	382	473	497
12	429	410	488	547
13	348	377	447	514
14	412	473	472	446
15	347	326	455	468
16	434	458	637	524
17	364	367	432	469
18	420	395	508	531
19	397	556	645	625

29

Test for Equality of Treatments in a Repeated Measures Design

 $\mathbf{X}: N_q(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathbf{C}: \text{contrast matrix}$

Test of H_0 : $\mathbf{C}\boldsymbol{\mu} = 0$ vs. H_1 : $\mathbf{C}\boldsymbol{\mu} \neq 0$

Reject H_0 if

$$T^{2} = n\left(\mathbf{C}\overline{\mathbf{x}}\right)^{-1}\left(\mathbf{C}\mathbf{S}\mathbf{C}\right)^{-1}\mathbf{C}\overline{\mathbf{x}} > \frac{(n-1)(q-1)}{(n-q+1)}F_{q-1,n-q+1}(\alpha)$$

31

Contrast Matrix

$$\mathbf{X}_{j} = \begin{bmatrix} X_{j1} \\ X_{j2} \\ \vdots \\ X_{jq} \end{bmatrix}, \quad j = 1, 2, \dots, n \quad \boldsymbol{\mu} = E(\mathbf{X}_{j})$$

$$\begin{bmatrix} \mu_1 - \mu_2 \\ \mu_1 - \mu_3 \\ \vdots \\ \mu_1 - \mu_q \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_q \end{bmatrix} = \mathbf{C} \boldsymbol{\mu}$$

30

Example 6.2: Contrast Matrix

$$(\mu_3 + \mu_4) - (\mu_1 + \mu_2) =$$
(Halothane contrast)
 $(\mu_1 + \mu_3) - (\mu_2 + \mu_4) =$ (CO₂ contrast)
 $(\mu_1 + \mu_4) - (\mu_2 + \mu_3) =$ (H – CO₂ interaction)

 $\mathbf{C} = \begin{vmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{vmatrix}$

Example 6.2: Test of Hypotheses

$$\overline{\mathbf{x}} = \begin{bmatrix} 368.21 \\ 404.63 \\ 479.26 \\ 502.89 \end{bmatrix}, \mathbf{S} = \begin{bmatrix} 2819.29 \\ 3568.42 & 7963.14 \\ 2943.49 & 5303.98 & 6851.32 \\ 2295.35 & 4065.44 & 4499.63 & 4878.99 \end{bmatrix}$$

$$\mathbf{C}\overline{\mathbf{x}} = \begin{bmatrix} 209.31 \\ -60.05 \\ -12.79 \end{bmatrix}, \mathbf{CSC'} = \begin{bmatrix} 9432.32 & 1098.92 & 927.62 \\ 1098.92 & 5195.84 & 914.54 \\ 927.62 & 914.54 & 7557.44 \end{bmatrix}$$

$$T^2 = n(\mathbf{C}\overline{\mathbf{x}})'(\mathbf{CSC'})^{-1}(\mathbf{C}\overline{\mathbf{x}}) = 116$$

$$\frac{(n-1)(q-1)}{(n-q+1)} F_{q-1,n-q+1}(0.05) = 10.94$$

Outline

Introduction

Reject H_0 : $\mathbf{C}\boldsymbol{\mu} = 0$

- → Comparison of Univariate Means
- → Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- → Comparison of Several Univariate Population Mean (One-Way ANOVA)

Example 6.2: Simultaneous Confidence Intervals

Contrast of halothane influence

$$(\overline{x}_3 + \overline{x}_4) - (\overline{x}_1 + \overline{x}_2) \pm \sqrt{\frac{18(3)}{16}} F_{3,16}(0.05) \frac{\mathbf{c}_1 \mathbf{S} \mathbf{c}_1}{19} = 209.31 \pm 73.70$$

CO, pressure influence

$$-60.05 \pm \sqrt{10.94} \sqrt{\frac{5195.84}{19}} = -60.5 \pm 54.70$$

H - CO₂"interaction"

$$-12.79 \pm \sqrt{10.94} \sqrt{\frac{7557.44}{19}} = -12.79 \pm 65.97$$

34

Questions

- How to compare mean vectors from two populations, not forming paired comparison groups?
- → How to pool covariance matrices from two populations?
- →How to find simultaneous confidence intervals for comparing mean vectors from two populations?

Questions

→ What is the multivariate Behrens-Fisher problem and how to solve it?

37

Assumptions Concerning the Structure of Data

 $\mathbf{X}_{11}, \mathbf{X}_{12}, \cdots, \mathbf{X}_{1n_1}$: random sample from p – variate population with mean vector $\mathbf{\mu}_1$ and covariance $\mathbf{\Sigma}_1$ $\mathbf{X}_{21}, \mathbf{X}_{22}, \cdots, \mathbf{X}_{2n_2}$: random sample from p – variate population with mean vector $\mathbf{\mu}_2$ and covariance $\mathbf{\Sigma}_2$ $\mathbf{X}_{11}, \mathbf{X}_{12}, \cdots, \mathbf{X}_{1n_1}$ are independent of $\mathbf{X}_{21}, \mathbf{X}_{22}, \cdots, \mathbf{X}_{2n_2}$ Further assumptions when n_1 and n_2 small: Both populations are multivariate normal $\mathbf{\Sigma}_1 = \mathbf{\Sigma}_2$

9

Comparing Mean Vectors from Two Populations

- →Populations: Sets of experiment settings
- Without explicitly controlling for unitto-unit variability, as in the paired comparison case
- → Experimental units are randomly assigned to populations
- →Applicable to a more general collection of experimental units

38

Pooled Estimate of Population Covariance Matrix

$$\sum_{j=1}^{n_1} (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) \approx (n_1 - 1) \Sigma$$

$$\sum_{j=1}^{n_2} (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2) (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2) \approx (n_2 - 1) \Sigma$$

$$\mathbf{S}_{pooled} = \frac{\sum_{j=1}^{n_1} (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) (\mathbf{x}_{j1} - \overline{\mathbf{x}}_1) + \sum_{j=1}^{n_2} (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2) (\mathbf{x}_{j2} - \overline{\mathbf{x}}_2)}{n_1 + n_2 - 2}$$

$$= \frac{n_1 - 1}{n_1 + n_2 - 2} \mathbf{S}_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} \mathbf{S}_2$$

Result 6.2

$$\mathbf{X}_{11}, \mathbf{X}_{12}, \cdots, \mathbf{X}_{1n_1} : N_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$$

$$\mathbf{X}_{21}, \mathbf{X}_{22}, \cdots, \mathbf{X}_{2n_2} : N_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$$

$$\Rightarrow T^2 = \left[\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right] \left[\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \mathbf{S}_{pooled}\right]^{-1}$$

$$\left[\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right]$$

is distributed as

$$\frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)} F_{p, n_1 + n_2 - p - 1}$$

41

Wishart Distribution

$$w_{n-1}(\mathbf{A} \mid \mathbf{\Sigma}) = \frac{|\mathbf{A}|^{(n-p-2)/2} e^{-\text{tr}[\mathbf{A}\mathbf{\Sigma}^{-1}]/2}}{2^{p(n-1)/2} \pi^{p(p-1)/4} |\mathbf{\Sigma}|^{(n-1)/2} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n-i)\right)}$$

A: positive definite

Properties:

$$\mathbf{A}_{1}: W_{m_{1}}(\mathbf{A}_{1} \mid \boldsymbol{\Sigma}), \quad \mathbf{A}_{2}: W_{m_{2}}(\mathbf{A}_{2} \mid \boldsymbol{\Sigma}) \Rightarrow$$

$$\mathbf{A}_{1} + \mathbf{A}_{2}: W_{m_{1}+m_{2}}(\mathbf{A}_{1} + \mathbf{A}_{2} \mid \boldsymbol{\Sigma})$$

$$\mathbf{A}: W_{m}(\mathbf{A} \mid \boldsymbol{\Sigma}) \Rightarrow \mathbf{C}\mathbf{A}\mathbf{C}': W_{m}(\mathbf{C}\mathbf{A}\mathbf{C}' \mid \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}')$$

43

Proof of Result 6.2

$$\begin{split} \overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} &= \frac{1}{n_{1}} \mathbf{X}_{11} + \dots + \frac{1}{n_{1}} \mathbf{X}_{1n_{1}} - \frac{1}{n_{2}} \mathbf{X}_{21} + \dots - \frac{1}{n_{2}} \mathbf{X}_{2n_{2}} \\ &: N_{p}(\mathbf{\mu}_{1} - \mathbf{\mu}_{2}, \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \mathbf{\Sigma}) \\ &(n_{1} - 1) \mathbf{S}_{1} : W_{n_{1} - 1}(\mathbf{\Sigma}), \quad (n_{2} - 1) \mathbf{S}_{2} : W_{n_{2} - 1}(\mathbf{\Sigma}) \\ &(n_{1} - 1) \mathbf{S}_{1} + (n_{2} - 1) \mathbf{S}_{2} : W_{n_{1} + n_{2} - 2}(\mathbf{\Sigma}) \\ &T^{2} &= \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)^{-1/2} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2})\right] \mathbf{S}_{pooled}^{-1} \\ &\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)^{-1/2} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2})\right] \\ &= N_{p}(0, \mathbf{\Sigma})' \left[\frac{W_{n_{1} + n_{2} - 2}(\mathbf{\Sigma})}{n_{1} + n_{2} - 2}\right]^{-1} N_{p}(\mathbf{0}, \mathbf{\Sigma}) : \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p, n_{1} + n_{2} - p - 1} \right. \end{split}$$

Test of Hypothesis

Reject
$$H_0: \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = \boldsymbol{\delta}_0$$
 in favor of $H_1: \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 \neq \boldsymbol{\delta}_0$
if $T^2 = (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - \boldsymbol{\delta}_0) \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \mathbf{S}_{pooled} \right]^{-1} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - \boldsymbol{\delta}_0)$
 $> \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1} F_{p, n_1 + n_2 - p - 1}(\alpha)$
Note $E(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2$
 $Cov(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2)$
 $= Cov(\overline{\mathbf{X}}_1) - Cov(\overline{\mathbf{X}}_1, \overline{\mathbf{X}}_2) - Cov(\overline{\mathbf{X}}_2, \overline{\mathbf{X}}_1) + Cov(\overline{\mathbf{X}}_2)$
 $= Cov(\overline{\mathbf{X}}_1) + Cov(\overline{\mathbf{X}}_2) = \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \boldsymbol{\Sigma}$

Example 6.3: Comparison of Soaps Manufactured in Two Ways

$$n_1 = n_2 = 50$$

$$\overline{\mathbf{x}}_1 = \begin{bmatrix} 8.3 \\ 4.1 \end{bmatrix}, \quad \mathbf{S}_1 = \begin{bmatrix} 2 & 1 \\ 1 & 6 \end{bmatrix}, \quad \overline{\mathbf{x}}_2 = \begin{bmatrix} 10.2 \\ 3.9 \end{bmatrix}, \quad \mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$

$$\mathbf{S}_{pooled} = \frac{49}{98} \mathbf{S}_1 + \frac{49}{98} \mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}, \quad \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 = \begin{bmatrix} -1.9 \\ 0.2 \end{bmatrix}$$

Eigenvalues and eigenvectors of S_{pooled} :

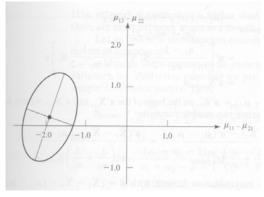
$$\lambda_1 = 5.303, \quad \mathbf{e}_1 = \begin{bmatrix} 0.290 & 0.957 \end{bmatrix}'$$

$$\lambda_2 = 1.697, \quad \mathbf{e}_1 = \begin{bmatrix} 0.957 & -0.290 \end{bmatrix}'$$

$$\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1} F_{p, n_1 + n_2 - p - 1}(0.05) = 0.25$$

$$\sqrt{\lambda_1}\sqrt{0.25} = 1.15, \quad \sqrt{\lambda_2}\sqrt{0.25} = 0.65$$

Example 6.3



Result 6.3: Simultaneous Confidence Intervals

$$c^{2} = \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p, n_{1} + n_{2} - p - 1}(\alpha)$$

$$\mathbf{a}'(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) \pm c \sqrt{\mathbf{a}'\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \mathbf{S}_{pooled} \mathbf{a}$$

will cover $\mathbf{a}'(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$ for all \mathbf{a}

In particular, $\mu_{1i} - \mu_{2i}$ will be covered by

$$(\overline{X}_{1i} - \overline{X}_{2i}) \pm c \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} s_{ii,pooled}$$

Example 6.4: Electrical Usage of Homeowners with and without ACs

$$\bar{\mathbf{x}}_1 = \begin{bmatrix} 204.4 \\ 556.6 \end{bmatrix}, \quad \mathbf{S}_1 = \begin{bmatrix} 13825.3 & 23823.4 \\ 23823.4 & 73107.4 \end{bmatrix}, \quad n_1 = 45$$

$$\overline{\mathbf{x}}_2 = \begin{bmatrix} 130.0 \\ 355.0 \end{bmatrix}, \quad \mathbf{S}_2 = \begin{bmatrix} 8632.0 & 19616.7 \\ 19616.7 & 55964.5 \end{bmatrix}, \quad n_1 = 55$$

$$\mathbf{S}_{pooled} = \frac{n_1 - 1}{n_1 + n_2 - 2} \mathbf{S}_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} \mathbf{S}_2$$
$$= \begin{bmatrix} 10963.7 & 21505.5 \\ 21505.5 & 63661.3 \end{bmatrix}$$

$$c^2 = \frac{98(2)}{97} F_{2,97}(0.05) = 6.26$$

Example 6.4: Electrical Usage of Homeowners with and without ACs

95% simultaneous confidence intervals

$$\mu_{11} - \mu_{21} : (204.4 - 130.0) \pm \sqrt{6.26} \sqrt{\left(\frac{1}{45} + \frac{1}{55}\right) 10963.7}$$

or
$$21.7 \le \mu_{11} - \mu_{21} \le 127.1$$

$$\mu_{12} - \mu_{22} : (556.6 - 355.0) \pm \sqrt{6.26} \sqrt{\left(\frac{1}{45} + \frac{1}{55}\right) 63661.3}$$

or
$$74.7 \le \mu_{12} - \mu_{22} \le 328.5$$

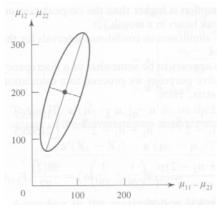
49

Bonferroni Simultaneous Confidence Intervals

$$\mu_{1i} - \mu_{2i} : (\overline{x}_1 - \overline{x}_2) \pm t_{n_1 + n_2 - 2} \left(\frac{\alpha}{2p}\right) \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) s_{ii, pooled}}$$

51

Example 6.4: 95% Confidence Ellipse



50

Result 6.4

 $n_1 - p$ and $n_2 - p$ are large

100% confidence ellipsoid for $\mu_1 - \mu_2$:

$$\left[\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})\right] \left[\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2}\right]^{-1}$$

$$\left[\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}-\left(\mathbf{\mu}_{1}-\mathbf{\mu}_{2}\right)\right]\leq\chi_{p}^{2}(\alpha)$$

Simultaneous confidence intervals for $\mathbf{a}'(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$:

$$\mathbf{a}'(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) \pm \sqrt{\chi_p^2(\alpha)} \sqrt{\mathbf{a}'(\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2)} \mathbf{a}$$

Proof of Result 6.4

$$\begin{split} E\left(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}\right) &= \mathbf{\mu}_{1} - \mathbf{\mu}_{2} \\ \operatorname{Cov}\left(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}\right) &= \operatorname{Cov}\left(\overline{\mathbf{X}}_{1}\right) + \operatorname{Cov}\left(\overline{\mathbf{X}}_{2}\right) = \frac{1}{n_{1}} \boldsymbol{\Sigma}_{1} + \frac{1}{n_{2}} \boldsymbol{\Sigma}_{2} \\ \overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} &: \operatorname{nearly} N_{p} \left(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}, \frac{1}{n_{1}} \boldsymbol{\Sigma}_{1} + \frac{1}{n_{2}} \boldsymbol{\Sigma}_{2}\right) \\ \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - \left(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\right)\right] \left(\frac{1}{n_{1}} \boldsymbol{\Sigma}_{1} + \frac{1}{n_{2}} \boldsymbol{\Sigma}_{2}\right)^{-1} \\ \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - \left(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\right)\right] &: \boldsymbol{\chi}_{p}^{2} \\ \boldsymbol{\Sigma}_{1} \sim \mathbf{S}_{1}, \quad \boldsymbol{\Sigma}_{2} \sim \mathbf{S}_{2} \end{split}$$

Example 6.5

Example 6.4 Data

$$\begin{split} &\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2 = \begin{bmatrix} 464.17 & 886.08 \\ 886.08 & 2642.15 \end{bmatrix} \\ &\mu_{11} - \mu_{21} : 74.4 \pm \sqrt{5.99}\sqrt{464.17} \text{ or } (21.7, 127.1) \\ &\mu_{12} - \mu_{22} : 201.6 \pm \sqrt{5.99}\sqrt{2642.15} \text{ or } (75.8, 327.4) \\ &H_0 : \mathbf{\mu}_1 - \mathbf{\mu}_2 = 0 \\ &T^2 = \left[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 \right] \left[\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right]^{-1} \left[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 \right] = 15.66 > \chi_2^2 (0.05) = 5.99 \end{split}$$
Critical linear combination :
$$\left[\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right]^{-1} \left[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 \right] = \begin{bmatrix} 0.041 \\ 0.063 \end{bmatrix}$$

Remark

If
$$n_1 = n_2 = n$$

$$\frac{n-1}{n+n-2} = \frac{1}{2}$$

$$\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 = \frac{1}{n} (\mathbf{S}_1 + \mathbf{S}_2)$$

$$= \frac{(n-1)\mathbf{S}_1 + (n-1)\mathbf{S}_2}{n+n-2} \left(\frac{1}{n} + \frac{1}{n}\right) = \mathbf{S}_{pooled} \left(\frac{1}{n} + \frac{1}{n}\right)$$

54

Multivariate Behrens-Fisher Problem

- Test H_0 : μ_1 - μ_2 =0
- → Population covariance matrices are unequal
- → Sample sizes are not large
- →Populations are multivariate normal
- → Both sizes are greater than the number of variables

Approximation of T^2 Distribution

$$T^{2} = (\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})) \left(\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2}\right)^{-1} (\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))$$

$$= \frac{vp}{v - p + 1} F_{p,v - p + 1}$$

$$v = \frac{p + p^{2}}{\left[\operatorname{tr}\left[\left(\frac{1}{n_{1}} \mathbf{S}_{i} \left(\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2}\right)^{-1}\right)^{2}\right] + \left[\operatorname{tr}\left[\left(\frac{1}{n_{i}} \mathbf{S}_{i} \left(\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2}\right)^{-1}\right)^{2}\right]\right]}\right]$$

$$\min(n_{1}, n_{2}) \leq v \leq n_{1} + n_{2}$$

57

Confidence Region

$$(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})) \left(\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2}\right)^{-1} (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))$$

$$\leq \frac{vp}{v - n + 1} F_{p, v - p + 1}(\alpha)$$

58

Example 6.6

◆ Example 6.4 data

$$\frac{1}{n_1} \mathbf{S}_1 \left(\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right)^{-1} = \begin{bmatrix} 0.776 & -0.060 \\ -0.092 & 0.646 \end{bmatrix}
\frac{1}{n_2} \mathbf{S}_2 \left(\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right)^{-1} = \begin{bmatrix} 0.224 & -0.060 \\ 0.092 & 0.354 \end{bmatrix}
\nu = 77.6
\frac{\nu p}{\nu - p + 1} F_{p,\nu - p + 1}(0.05) = \frac{155.2}{76.6} \times 3.12 = 6.32$$

 $T^2 = 15.66 > 6.32$, $H_0: \mu_1 - \mu_2 = 0$ is rejected

9

Outline

- → Introduction
- → Comparison of Univariate Means
- → Paired Comparisons and a Repeated Measures Design
- → Comparing Mean Vectors from Two Populations
- → Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

U

Questions

- Why paired comparisons are not good ways to compare several population means?
- How to compute summed squares (between)?
- How to compute summed squares (within)?
- How to compute summed squares (total)?

61

Questions

- → How to compute the F value for testing of the null hypothesis?
- How are the three kinds of summed squares related?
- How to explain the geometric meaning of the degrees of freedom for a treatment vector?
- → What is an ANOVA table?

3

Questions

- *How to calculate the degrees of freedom for summed squares (between)?
- How to calculate the degrees of freedom for summed squares (within)?
- →How to calculate the degrees of freedom for summed squares (total)?

62

Scenarios

- ⋆ To test if the following statements are plausible
 - Music compressed by four MP3 compressors are with the same quality
 - Three new drugs are all as effective as a placebo
 - -Four brands of beer are equally tasty
 - Lectures, group studying, and computer assisted instruction are equally effective for undergraduate students

Comparing Four MP3 Compressors

- → Test four brands, A, B, C, D
- → 10 subjects each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- → Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

65

Problem of Using a *t*-Test

- Must compare two brands at a time
- → There are 6 possible comparisons
- → Each has a 0.05 chance of being significant by chance
- Overall chance of significant result, even when no difference exist, approaches 1-(0.95)⁶ ~ 0.26

67

Hypotheses

→ Null hypothesis

$$H_0: \mu_A = \mu_B = \mu_C = \mu_D$$

→ Alternative hypothesis

 $H_1: Not$ all the μ s are equal

66

Sample Data

Subject	A	В	С	D
1	4	5	7	2
2	4	5	8	1
3	5	6	7	2
4	5	6	9	3
5	6	7	6	3
6	3	6	3	4
7	4	4	2	5
8	4	5	2	4
9	3	6	2	4
10	4	3	3	3
Mean	4.2	5.3	4.9	3.1

Grand mean: 4 375

*Adapted from: G. R. Norman and D. L. Streiner, Biostatistics, 3rd ed

Thinking in Terms of Signals and Noises

- **→** Signals
 - Overall difference among the means of the groups
 - Sum of all the squared differences between group means and the overall means
- → Noises
 - -Overall variability within the groups
 - Sum of all the squared differences between individual data and their group means

69

Sum of Squares (Between)

$$SS(between) = n \sum (\overline{x}_{\ell} - \overline{x})^{2}$$

$$SS(between) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$$

$$= 27.875$$

0

Sum of Squares (Within)

$$SS(within) = \sum_{\ell} \sum_{j} \left(x_{\ell j} - \overline{x}_{\ell} \right)^{2}$$

$$SS(within) = (4 - 4.2)^{2} + (4 - 4.2)^{2} + \dots + (4 - 4.2)^{2} + \dots + (5 - 5.3)^{2} + (5 - 5.3)^{2} + \dots + (3 - 5.3)^{2} + \dots + (7 - 4.9)^{2} + (8 - 4.9)^{2} + \dots + (3 - 4.9)^{2} + \dots + (2 - 3.1)^{2} + (1 - 3.1)^{2} + \dots + (3 - 3.1)^{2}$$

$$[40 \text{ terms}]$$

$$= 101.50$$

1

Sum of Squares (Total)

$$SS(total) = \sum_{\ell} \sum_{j} (x_{\ell j} - \bar{x})^{2}$$

$$x_{\ell j} - \bar{x} = (x_{\ell j} - \bar{x}_{\ell}) + (\bar{x}_{\ell} - \bar{x})$$

$$(x_{\ell j} - \bar{x})^{2} = (x_{\ell j} - \bar{x}_{\ell})^{2} + 2(x_{\ell j} - \bar{x}_{\ell})(\bar{x}_{\ell} - \bar{x}) + (\bar{x}_{\ell} - \bar{x})^{2}$$

$$\sum_{j} (x_{\ell j} - \bar{x}_{\ell}) = 0$$

$$\sum_{j} (x_{\ell j} - \bar{x})^{2} = \sum_{j} (x_{\ell j} - \bar{x}_{\ell})^{2} + n(\bar{x}_{\ell} - \bar{x})^{2}$$

$$SS(total) = SS(within) + SS(between)$$

Sum of Squares (Total)

$$SS(total) = (4-4.375)^{2} + (4-4.375)^{2} + \dots + (4-4.375)^{2} + (5-4.375)^{2} + (5-4.375)^{2} + \dots + (3-4.375)^{2} + (7-4.375)^{2} + (8-4.375)^{2} + \dots + (3-4.375)^{2} + (2-4.375)^{2} + (1-4.375)^{2} + \dots + (3-4.375)^{2}$$

$$[40 \text{ terms}]$$

$$= 129.375 = 101.50 + 27.875$$

73

Distribution of Sum of Squares

$$X: N(\mu, \sigma^2)$$

$$S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \overline{X})^2$$
 $(n-1) \frac{S^2}{\sigma^2}: \chi^2$ distribution with $n-1$ degrees of freedom [proved by moment generating function, see P. G. Hoel, *Introduction to Mathematical Statistics*, 5th ed., John Wiley & Sons, 1984, p. 281]

5

χ² Distribution

$$\begin{split} X_1 : N(\mu_1, \sigma_1^2), \quad X_2 : N(\mu_2, \sigma_2^2), \quad \cdots, \\ X_{\nu} : N(\mu_{\nu}, \sigma_{\nu}^2); \quad Z_i &= \frac{X_i - \mu_i}{\sigma_i} : N(0,1) \\ \chi^2 &= \sum_{i=1}^{\nu} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2, \quad \nu : \text{degrees of freedom (d.f.)} \\ f_{\nu}(\chi^2) &= \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \left(\chi^2\right)^{\nu/2 - 1} e^{-\chi^2/2}, \chi^2 > 0 \\ 0, \qquad \chi^2 \leq 0 \end{cases} \end{split}$$

(Gamma distribution with $\alpha = v/2$)

74

Distribution of Sum of Squares

$$SS(within) = \sum_{\ell=1}^{g} \sum_{j=1}^{n} (x_{\ell j} - \overline{x})^{2}$$

$$\frac{SS(within)}{\sigma^{2}} : \chi^{2} \text{ distribution with}$$

$$\text{degree of freedom } df(within) = gn - 1$$

$$SS(between) = \sum_{\ell=1}^{g} (\overline{x}_{\ell} - \overline{x})^{2}$$

$$\overline{x} = \frac{1}{gn} \sum_{\ell=1}^{g} \sum_{j=1}^{n} x_{\ell j} = \frac{1}{g} \sum_{\ell=1}^{g} \left(\frac{1}{n} \sum_{j=1}^{n} x_{\ell j}\right) = \frac{1}{g} \sum_{\ell=1}^{g} \overline{x}_{\ell}$$

$$\frac{SS(between)}{\sigma^{2}} : \chi^{2} \text{ distribution with}$$

$$\text{degree of freedom } df(between) = g - 1$$

F-Distribution

 χ_1^2, χ_2^2 : independent, with d.f. f_1 and f_2 , respectively

$$F = \frac{\chi_1^2 / f_1}{\chi_2^2 / f_2}, F > 0$$

$$f(F) = \frac{\Gamma\left(\frac{f_1 + f_2}{2}\right)}{\Gamma\left(\frac{f_1}{2}\right)\Gamma\left(\frac{f_2}{2}\right)} \left(\frac{f_1}{f_2}\right)^{\frac{f_1}{2}} \frac{F^{\frac{f_1}{2}-1}}{\left(1 + \frac{f_1F}{f_2}\right)^{(f_1 + f_2)/2}}$$

 $: F_{f_1,f_2}$

77

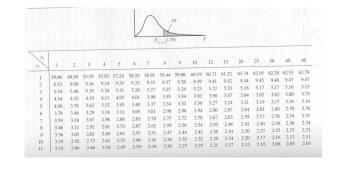
Distribution of F

$$F = \frac{SS(between) / df(between)}{SS(within) / df(within)}$$
:
$$F \text{ distribution of degree of freedoms}$$

$$df(between) \text{ and } df(within)$$

79

F-Distribution



78

Expected Values of Sum of Squares

if no difference between groups

 $E[SS(between)/df(between)] = \sigma_{err}^2$

if no difference within groups

 $E[SS(between)/df(between)] = n\sigma_{bet}^2$

if both differences can happen

 $E[SS(between)/df(between)] = n\sigma_{bet}^2 + \sigma_{err}^2$

Thus, if H_0 is invalid

 $\frac{E[SS(between)/df(between)]}{E[SS(within)/df(within)]} = \frac{n\sigma_{bet}^2 + \sigma_{err}^2}{\sigma_{err}^2} > 1$

F > 1

Degrees of Freedom

$$df(between) = g - 1 = 4 - 1 = 3$$

 $df(within) = g(n-1) = 4(10-1) = 36$
 $df(total) = gn - 1 = gn - g + g - 1$
 $= df(within) + df(between)$
 $= 40 - 1 = 39 = 36 + 3$

1

Hypothesis Testing

$$F = 3.296 > F_{3,36}(0.05) = 2.86$$

reject $H_0: \mu_A = \mu_B = \mu_C = \mu_D$
at 0.05 significance level

83

ANOVA Summary

Source	Sum of	df	Mean	F
	Squares		square	
Between	27.875	3	9.292	3.296
Within	101.500	36	2.819	
Total	129.375	39		

82

Univariate ANOVA

 $X_{\ell 1}, X_{\ell 2}, \cdots, X_{\ell n_{\ell}}$: random sample from $N(\mu_{\ell}, \sigma^2)$

$$\ell = 1, 2, \dots, g$$

Null hypothesis $H_0: \mu_1 = \mu_2 = \cdots = \mu_g$

Reparameterization

$$\mu_\ell = \mu + \tau_\ell$$

$$H_0: \tau_1 = \tau_2 = \dots = \tau_g = 0$$

$$X_{\ell j} = \mu + \tau_{\ell} + e_{\ell j}, \quad e_{\ell j} : N(0, \sigma^2), \quad \sum_{\ell=1}^{g} n_{\ell} \tau_{\ell} = 0$$

$$x_{\ell j} = \overline{x} + (\overline{x}_{\ell} - \overline{x}) + (x_{\ell j} - \overline{x}_{\ell})$$

Univariate ANOVA

$$\begin{split} &(x_{ij} - \overline{x})^2 = (\overline{x}_{\ell} - \overline{x})^2 + (x_{ij} - \overline{x}_{\ell})^2 + 2(\overline{x}_{\ell} - \overline{x})(x_{ij} - \overline{x}_{\ell}) \\ &\sum_{j=1}^{n_{\ell}} (x_{ij} - \overline{x}_{\ell}) = 0 \\ &\sum_{j=1}^{n_{\ell}} (x_{\ell j} - \overline{x})^2 = n_{\ell} (\overline{x}_{\ell} - \overline{x})^2 + \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \overline{x}_{\ell})^2 \\ &\sum_{\ell=1}^g \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \overline{x})^2 = \sum_{\ell=1}^g n_{\ell} (\overline{x}_{\ell} - \overline{x})^2 + \sum_{\ell=1}^g \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \overline{x}_{\ell})^2 \\ &(SS_{cor}) = (SS_{tr}) + (SS_{res}) \\ &\sum_{\ell=1}^g \sum_{j=1}^{n_{\ell}} x_{\ell j}^2 = (n_1 + n_2 + \dots + n_{\ell}) \overline{x}^2 + \sum_{\ell=1}^g n_{\ell} (\overline{x}_{\ell} - \overline{x})^2 + \sum_{\ell=1}^g \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \overline{x}_{\ell})^2 \\ &(SS_{obs}) = (SS_{mean}) + (SS_{tr}) + (SS_{res}) \end{split}$$

Concept of Degrees of Freedom

$$\mathbf{1} = [1, \dots, 1] = \mathbf{u}_1 + \mathbf{u}_2 + \dots + \mathbf{u}_{\sigma}$$

Treatment vector and $\mathbf{1}$ are all on the hyperplane spanned by $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_g$: d.f. g

1 is perpendicular to the treatment vector

 \therefore mean vector $\overline{x}\mathbf{1}$: d.f. g-1

Residual vector

$$\mathbf{e} = \mathbf{y} - \overline{x}\mathbf{1} - \left[(\overline{x}_1 - \overline{x})\mathbf{u}_1 + (\overline{x}_2 - \overline{x})\mathbf{u}_2 + \dots + (\overline{x}_g - \overline{x})\mathbf{u}_g \right]$$

perpendicular to the hyperplane spanned by $\mathbf{u}_{\scriptscriptstyle 1},\mathbf{u}_{\scriptscriptstyle 2},\cdots,\mathbf{u}_{\scriptscriptstyle g}$

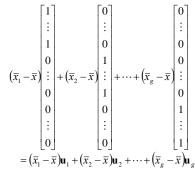
 \therefore d.f. of $\mathbf{e} : n - g$

37

Concept of Degrees of Freedom

$$\mathbf{y}' = [x_{11}, \dots, x_{1n_1}, x_{21}, \dots, x_{2n_2}, \dots, x_{gn_g}] : \mathbf{d.f.} \ n = n_1 + n_2 + \dots + n_g$$

Treatment vector



Univariate ANOVA

Source of variation	Sum of squares (SS)	Degrees of freedom (d.f.)
Treatments	$SS_{tr} = \sum_{\ell=1}^{g} n_{\ell} (\overline{x}_{\ell} - \overline{x})^{2}$	g - 1
Residual (Error)	$SS_{res} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^2$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$SS_{cor} = \sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^2$	$\sum_{\ell=1}^g n_\ell - 1$

Univariate ANOVA

Reject
$$H_0: \tau_1 = \tau_2 = \dots = \tau_{\sigma} = 0$$
 at level α if

$$F = \frac{SS_{tr}/(g-1)}{SS_{res}/\left(\sum_{\ell=1}^{g} n_{\ell} - g\right)} > F_{g-1,\sum_{n_{\ell}-g}}(\alpha)$$

$$\frac{1}{1 + SS_{tr} / SS_{res}} = \frac{SS_{res}}{SS_{res} + SS_{tr}}$$

89

Outline

- <u>Comparing Several Multivariate</u> <u>Population Means (One-Way</u> <u>MANOVA)</u>
- → Simultaneous Confidence Intervals for Treatment Effects
- → Testing for Equality of Covariance Matrices
- ⋆Two-Way ANOVA
- → Two-Way Multivariate Analysis of Variance

Examples 6.7 & 6.8

$$\begin{pmatrix} 9 & 6 & 9 \\ 0 & 2 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 4 \\ 4 & 4 \\ 4 & 4 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 4 & 4 \\ -3 & -3 \\ -2 & -2 & -2 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

$$SS_{obs} = 216$$
, $SS_{mean} = 128$

$$SS_{tr} = 78$$
, d.f. = $3 - 1 = 2$

$$SS_{res} = 10$$
, d.f. = $(3+2+3)-3=5$

$$F = \frac{\text{SS}_{tr}/(g-1)}{\text{SS}_{res}/(\sum n_{\ell} - g)} = \frac{78/2}{10/5} = 19.5 > F_{2.5}(0.01) = 13.27$$

 $H_0: \tau_1 = \tau_2 = \tau_3 = 0$ is rejected at the 1% level

90

Questions

- →What is the one-way MANOVA table?
- How to compute Wilk's lambda for MANOVA?
- →How to test the equality of several mean vectors from the Wilk's lambda?
- →How to test the equality of several mean vectors for large sample size?

Questions

• What are other statistics used in statistical software package for oneway MANOVA?

93

One-Way MANOVA

Population 1: \mathbf{X}_{11} , \mathbf{X}_{12} , \cdots , \mathbf{X}_{1n_1} Population 2: \mathbf{X}_{21} , \mathbf{X}_{22} , \cdots , \mathbf{X}_{2n_2} \vdots

Population $g: \mathbf{X}_{g1}, \mathbf{X}_{g2}, \cdots, \mathbf{X}_{gn_g}$

MANOVA (Multivariate ANalysis Of VAriance) is used to investigate whether the population mean vectors are the same, and, if not, which mean components differ significantly

95

Scenario: Example 6.10, Nursing Home Data

- Nursing homes can be classified by the owners: private (271), non-profit (138), government (107)
- Costs: nursing labor, dietary labor, plant operation and maintenance labor, housekeeping and laundry labor
- ⋆To investigate the effects of ownership on costs

94

Assumptions about the Data

 $\mathbf{X}_{\ell 1}, \mathbf{X}_{\ell_2}, \cdots, \mathbf{X}_{\ell n_{\ell}}$: random sample from a population with mean $\mathbf{\mu}_{\ell}, \ell = 1, 2, \cdots, g$

Random sample from different populations are independent

All populations have a common covariance matrix Σ

Each population is multivariate normal

MANOVA

$$\begin{split} \mathbf{X}_{\ell j} &= \mathbf{\mu} + \mathbf{\tau}_{\ell} + \mathbf{e}_{\ell j}; \ j = 1, 2, \cdots, n_{\ell}; \ \ell = 1, 2, \cdots, g \\ \mathbf{e}_{\ell j} &: N_{p}(\mathbf{0}, \boldsymbol{\Sigma}), \quad \boldsymbol{\mu} : \text{ overall mean (level)} \\ \mathbf{\tau}_{\ell} &: \ell \text{th treatment effect}, \sum_{\ell=1}^{g} n_{\ell} \mathbf{\tau}_{\ell} = \mathbf{0} \\ \mathbf{x}_{\ell j} &= \overline{\mathbf{x}} + \left(\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}\right) + \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}\right) = \hat{\boldsymbol{\mu}} + \hat{\boldsymbol{\tau}}_{\ell} + \hat{\mathbf{e}}_{\ell j} \\ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}\right) \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}\right)' = \sum_{\ell=1}^{g} n_{\ell} \left(\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}\right) \left(\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}\right)' \\ &+ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}\right) \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}\right) = \mathbf{B} + \mathbf{W} \end{split}$$

MANOVA

$$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell} \right) \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell} \right)$$

$$= (n_{1} - 1)\mathbf{S}_{1} + (n_{2} - 1)\mathbf{S}_{2} + \dots + (n_{g} - 1)\mathbf{S}_{g}$$

$$\text{Reject } H_{0} : \mathbf{\tau}_{1} = \mathbf{\tau}_{2} = \dots = \mathbf{\tau}_{g} = 0 \text{ if Wilk's lambda}$$

$$\Lambda^{*} = \frac{|W|}{|B + W|} = \frac{\left| \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell} \right) \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell} \right) \right|}{\left| \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}} \right) \left(\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell} \right) \right|}$$

is too small

MANOVA

Source of variation	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.)
Treatment	$\mathbf{B} = \sum_{\ell=1}^{g} n_{\ell} (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}})'$	g - 1
Residual (Error)	$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell})'$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$\mathbf{B} + \mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})'$	$\sum_{\ell=1}^g n_\ell - 1$

98

Distribution of Wilk's Lambda

No. of variables	No. of groups	Sampling distribution for multivariate normal data
p = 1	$g \ge 2$	$\left(rac{\Sigma n_{\ell}-g}{g-1} ight)\left(rac{1-\Lambda^*}{\Lambda^*} ight)\sim F_{g-1,\Sigma n_{\ell}-g}$
p = 2	<i>g</i> ≥ 2	$\left(\frac{\Sigma n_{\ell}-g-1}{g-1}\right)\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right)\sim F_{2(g-1),2(\Sigma n_{\ell}-g-1)}$
$p \ge 1$	g = 2	$\left(\frac{\Sigma n_{\ell}-p-1}{p}\right)\left(\frac{1-\Lambda^*}{\Lambda^*}\right)\sim F_{p,\Sigma n_{\ell}-p-1}$
$p \ge 1$	g = 3	$\left(\frac{\Sigma n_\ell - p - 2}{p}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2p,2(\Sigma n_\ell - p - 2)}$

Test of Hypothesis for Large Size

If H_0 is true and $\sum n_{\ell} = n$ is large,

$$-\left(n-1-\frac{p+g}{2}\right)\ln\Lambda^*:\chi^2_{p(g-1)}$$

Reject H_0 at significance level α if

$$-\left(n-1-\frac{p+g}{2}\right)\ln\left(\frac{|\mathbf{W}|}{|\mathbf{B}+\mathbf{W}|}\right) > \chi_{p(g-1)}^{2}(\alpha)$$

101

Example 6.9

$$\begin{bmatrix}
9 & 6 & 9 \\
1 & 3 & 2 \\
4 & 0 & 7
\end{bmatrix}$$

$$\bar{\mathbf{x}}_{1} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}, \bar{\mathbf{x}}_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \bar{\mathbf{x}}_{3} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \bar{\mathbf{x}} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 6 & 9 \\ 0 & 2 \\ 3 & 1 & 2 \end{bmatrix}, SS_{obs} = SS_{mean} + SS_{tr} + SS_{res} = 128 + 78 + 10 = 216$$

$$\begin{bmatrix} 3 & 2 & 7 \\ 4 & 0 \\ 8 & 9 & 7 \end{bmatrix}, SS_{obs} = SS_{mean} + SS_{tr} + SS_{res} = 200 + 48 + 24 = 272$$

Popular MANOVA Statistics Used in Statistical Packages

Wilk's lambda
$$\Lambda^* = \frac{|\mathbf{W}|}{|\mathbf{B} + \mathbf{W}|}$$

Lawley - Hotelling trace = $tr[\mathbf{BW}^{-1}]$

Pillai trace = $tr[\mathbf{B}(\mathbf{B} + \mathbf{W})^{-1}]$

Roy's largest root =

maximum eigenvalue of $\mathbf{W}(\mathbf{B} + \mathbf{W})^{-1}$

102

Example 6.8

$$\begin{pmatrix} 9 & 6 & 9 \\ 0 & 2 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 4 & 4 \\ -3 & -3 \\ -2 & -2 & -2 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 3 & 2 & 7 \\ 4 & 0 \\ 8 & 9 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 5 \\ 5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} -1 & -1 & -1 \\ -3 & -3 \\ 3 & 3 & 3 \end{pmatrix} + \begin{pmatrix} -1 & -2 & 3 \\ 2 & -2 \\ 0 & 1 & -1 \end{pmatrix}$$

Cross products

 $Mean: 8 \times 4 \times 5 = 160$

Treatment: $3 \times 4 \times (-1) + 2 \times (-3) \times (-3) + 3 \times (-2) \times 3 = -12$

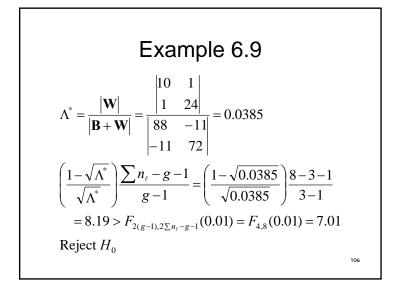
Residual: $1 \times (-1) + (-2) \times (-2) + 1 \times 3 + \dots + 0 \times (-1) = 1$

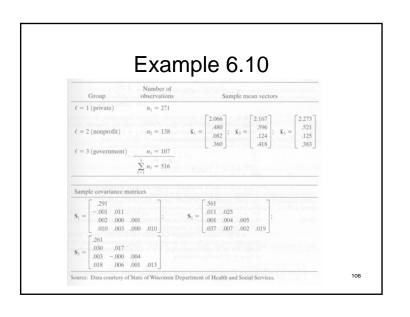
Total: $9 \times 3 + 6 \times 2 + 9 \times 7 + \dots + 2 \times 7 = 149$

Source of variation	Matrix of sum of squares and cross products	Degrees of freedom
Treatment	$\begin{bmatrix} 78 & -12 \\ -12 & 48 \end{bmatrix}$	3 - 1 = 2
Residual	$\begin{bmatrix} 10 & 1 \\ 1 & 24 \end{bmatrix}$	3+2+3-3=5
Total (corrected)	88 -11 -11 72	7) - 6,000

Example 6.10: Nursing Home Data

- Nursing homes can be classified by the owners: private (271), non-profit (138), government (107)
- Costs: nursing labor, dietary labor, plant operation and maintenance labor, housekeeping and laundry labor
- → To investigate the effects of ownership on costs





Example 6.10

$$\mathbf{W} = (n_1 - 1)\mathbf{S}_1 + (n_2 - 1)\mathbf{S}_2 + (n_3 - 1)\mathbf{S}_3$$

$$= \begin{bmatrix} 182.962 \\ 4.408 & 8.200 \\ 1.695 & 0.633 & 1.484 \\ 9.581 & 2.428 & 0.394 & 6.538 \end{bmatrix}$$

$$\mathbf{\bar{x}} = \frac{n_1 \mathbf{\bar{x}}_1 + n_2 \mathbf{\bar{x}}_2 + n_3 \mathbf{\bar{x}}_3}{n_1 + n_2 + n_3} = \begin{bmatrix} 2.136 & 0.519 & 0.102 & 0.380 \end{bmatrix}$$

$$\mathbf{B} = \sum_{\ell=1}^g n_\ell (\mathbf{\bar{x}}_\ell - \mathbf{\bar{x}}) (\mathbf{\bar{x}}_\ell - \mathbf{\bar{x}})' = \begin{bmatrix} 3.475 \\ 1.111 & 1.225 \\ 0.821 & 0.453 & 0.235 \\ 0.584 & 0.610 & 0.230 & 0.304 \end{bmatrix}$$

Outline

- → Comparing Several Multivariate Population Means (One-Way MANOVA)
- → <u>Simultaneous Confidence Intervals</u> <u>for Treatment Effects</u>
- → Testing for Equality of Covariance Matrices
- ⋆Two-Way ANOVA
- Two-Way Multivariate Analysis of Variance

Example 6.10

$$\Lambda^* = \frac{|W|}{|B+W|} = 0.7714$$

$$\left(\frac{\sum n_{\ell} - p - 2}{p}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) = 17.67$$

$$F_{2\times 4, 2\times 510}(0.01) \approx \chi_8^2(0.01)/8 = 2.51$$
or, approximate analysis

$$-(n-1-(p+g)/2)\ln\left(\frac{|W|}{|B+W|}\right) = 132.76$$

 $\chi^2_{p(g-1)}(0.01) = \chi^2_8(0.01) = 20.09$ Reject H_0 by both analyses

110

Questions

→What are the Bonferroni Intervals for Treatment Effects?

Bonferroni Intervals for Treatment Effects

$$\hat{\tau}_{ki} = \overline{x}_{ki} - \overline{x}_{i}, \quad \hat{\tau}_{ki} - \hat{\tau}_{\ell i} = \overline{x}_{ki} - \overline{x}_{\ell i}$$

$$\operatorname{Var}(\hat{\tau}_{ki} - \hat{\tau}_{\ell i}) = \operatorname{Var}(\overline{x}_{ki} - \overline{x}_{\ell i}) = \left(\frac{1}{n_{k}} + \frac{1}{n_{\ell}}\right) \sigma_{ii}$$

$$\mathbf{W} = (n_{1} - 1)\mathbf{S}_{1} + (n_{2} - 1)\mathbf{S}_{2} + \dots + (n_{g} - 1)\mathbf{S}_{g}$$

$$= (n - g)\mathbf{S}_{pooled} \approx (n - g)\mathbf{\Sigma}$$

$$\operatorname{Var}(\hat{\tau}_{ki} - \hat{\tau}_{\ell i}) \approx \left(\frac{1}{n_{k}} + \frac{1}{n_{\ell}}\right) \frac{w_{ii}}{(n - g)}$$

$$m = pg(g - 1)/2$$

Result 6.5: Bonferroni Intervals for Treatment Effects

With confidence at least $(1-\alpha)$

$$\tau_{ki} - \tau_{\ell i}$$
 belongs to

$$\overline{x}_{ki} - \overline{x}_{\ell i} \pm t_{n-g} \left(\frac{\alpha}{pg(g-1)} \right) \sqrt{\frac{w_{ii}}{n-g} \left(\frac{1}{n_k} + \frac{1}{n_\ell} \right)}$$

114

Example 6.11: Example 6.10 Data

$$\hat{\tau}_1 = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}} = \begin{bmatrix} -0.070 & -0.039 & -0.020 & -0.020 \end{bmatrix}$$

$$\hat{\tau}_3 = \overline{\mathbf{x}}_3 - \overline{\mathbf{x}} = \begin{bmatrix} 0.137 & 0.002 & 0.023 & 0.003 \end{bmatrix}$$

$$\hat{\tau}_{13} - \hat{\tau}_{33} = -0.20 - 0.023 = -0.043, n = 516$$

$$\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_3}\right) \frac{w_{33}}{n - g}} = \sqrt{\left(\frac{1}{271} + \frac{1}{107}\right) \frac{1.484}{516 - 3}} = 0.00614$$

$$t_{513}(0.05/4\times3\times2) = 2.87$$

95% simultaneous confidence interval for $\tau_{13} - \tau_{33}$

 $-0.043 \pm 2.87 \times 0.00614$ or (-0.061, -0.025)

95% simultaneous confidence intervals for

$$\tau_{13} - \tau_{23}$$
 and $\tau_{23} - \tau_{33}$: $(-0.058, -0.026), (-0.021, 0.019)$

Outline

- → Comparing Several Multivariate Population Means (One-Way MANOVA)
- → Simultaneous Confidence Intervals for Treatment Effects
- <u>Testing for Equality of Covariance</u>

 Matrices
- ⋆Two-Way ANOVA
- → Two-Way Multivariate Analysis of Variance

Questions

→ How to test if the covariance matrices of several populations are equal? (Box's M-Test)

17

Box's M-Test

$$M = -2\ln\Lambda = \left[\sum_{\ell} (n_{\ell} - 1)\right] \ln \left|\mathbf{S}_{pooled}\right| - \sum_{\ell} \left[(n_{\ell} - 1)\ln \left|\mathbf{S}_{\ell}\right|\right]$$

$$u = \left[\sum_{\ell} \frac{1}{(n_{\ell} - 1)} - \frac{1}{\sum_{\ell} (n_{\ell} - 1)}\right] \left[\frac{2p^{2} + 3p - 1}{6(p + 1)(g - 1)}\right]$$

$$C = (1 - u)M : \text{approximate } \chi_{v}^{2}$$

$$v = \frac{1}{2}p(p+1)(g-1)$$

Reject H_0 if $C > \chi_{\nu}^2(\alpha)$

19

Test for Equality of Covariance Matrices

→With g populations, null hypothesis

$$H_0$$
: $\Sigma_1 = \Sigma_2 = \ldots = \Sigma_g = \Sigma$

- Assume multivariate normal populations
- Likelihood ratio statistic for testing

$$\begin{split} H_0 & \quad \Lambda = \prod_{\ell} \left(\frac{|\mathbf{S}_{\ell}|}{|\mathbf{S}_{pooled}|} \right)^{(n_{\ell}-1)/2} \\ & \quad \mathbf{S}_{pooled} = \frac{1}{\sum_{\ell} (n_{\ell}-1)} \left\{ (n_1-1)\mathbf{S}_1 + \dots + (n_g-1)\mathbf{S}_g \right\} \end{split}$$

118

Example 6.12

→ Example 6.10 - nursing home data

$$g = 3$$
, $p = 4$, $n_1 = 271$, $n_2 = 138$, $n_3 = 107$

$$\ln |\mathbf{S}_1| = -17.397, \quad \ln |\mathbf{S}_2| = -13.926$$

$$\ln |\mathbf{S}_3| = -15.741, \quad \ln |\mathbf{S}_{pooled}| = -15.564$$

$$u = \left[\frac{1}{270} + \frac{1}{137} + \frac{1}{106} - \frac{1}{270 + 137 + 106}\right] \left[\frac{2(4)^2 + 3(4) - 1}{6(4 + 1)(3 - 1)}\right]$$

= 0.0133

$$M = [270 + 137 + 106](-15.564) -$$

$$[270(-17.397) + 137(-13.926) + 106(-15.741)] = 289.3$$

$$C = (1 - 0.0133) \times 289.3 = 285.5$$

$$v = 4(4+1)(3-1)/2 = 20$$

 H_0 is rejected at any reasonable lelel of significance from χ_v^2 table for comparison with C

Example 6.13: Plastic Film Data

		F	actor	2: Amo	unt of	additi	ve
	9.28150000 64.92400000	Low (1.0%)		High (1.5%)			
		x_1	x_2	x_3	x_1	x_2	x_3
		[6.5	9.5	4.4]	[6.9	9.1	5.7
		[6.2	9.9	6.4]	[7.2	10.0	2.0]
	Low (-10)%	[5.8	9.6	3.0]	[6.9	9.9	3.9
		[6.5	9.6	4.1]	[6.1	9.5	1.9]
Factor 1: Change		[6.5	9.2	0.8]	[6.3	9.4	5.7]
in rate of extrusion		x_1	x_2	x_3	x_1	x_2	χ_3
		[6.7	9.1	2.8]	[7.1	9.2	8.4]
		[6.6	9.3	4.1]	[7.0		5.2
	High (10%)	[7.2	8.3	3.8]	[7.2	9.7	6.9
		[7.1	8.4	1.6]	[7.5	10.1	2.7]
		[6.8	8.5	3.4]	[7.6	9.2	1.9]

Questions

- → How to determine if a factor and its interaction with the other factor is significant if two factors are involved in an experiment?
- What are the four types of interactions of two factors?
- What is the two-way ANOVA table?

123

Outline

- → Comparing Several Multivariate Population Means (One-Way MANOVA)
- → Simultaneous Confidence Intervals for Treatment Effects
- → Testing for Equality of Covariance Matrices
- ⋆Two-Way ANOVA
- → Two-Way Multivariate Analysis of Variance

122

Scenarios

- ⋆ To observe if effects of factors in the following scenarios are significant
 - Ratings of music compressed by MP3 compressors: brands vs. ages of the subjects
 - Performance of Teaching: methods (Lectures, group studying, and computer assisted instruction) vs. genders of undergraduate students

Teaching Methods vs. Gender: Knowing only Overall Mean

Gender	CAI	Lecture	Group Studying	Mean
Boys	50	50	50	50
Girls	50	50	50	50
Mean	50	50	50	50

123

Teaching Methods vs. Gender:

Knowing Overall Mean, Row Effects, and Column Effects

Gender	CAI	Lecture	Group Studying	Mean
Boys	50	40	30	40
Girls	70	60	50	60
Mean	60	50	40	50

Teaching Methods vs. Gender: Knowing Overall Mean and Row Effects

Gender	CAI	Lecture	Group Studying	Mean
Boys	40	40	40	40
Girls	60	60	60	60
Mean	50	50	50	50

126

Teaching Methods vs. Gender: Including Interaction Terms

Gender	CAI	Lecture	Group Studying	Mean
Boys	65	40	15	40
Girls	55	60	65	60
Mean	60	50	40	50

Comparing Four MP3 Compressors

- → Test four brands, A, B, C, D
- → 10 subjects, 5 young and 5 senior, each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- → Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

129

Sample Data

		A	В	С	D	Mean
	1~4	4	5	7	2	
	5~8	4	5	8	1	
Young	9~12	5	6	7	2	5.05
Subjects	13~16	5	6	9	3	5.05
	17~20	6	7	6	3	
	Mean	4.8	5.8	7.4	2.2	

*Adapted from: G. R. Norman and D. L. Streiner, *Biostatistics*, 3rd ed.

Sample Data

		A	В	С	D	Mean
	21~24	3	6	3	4	
	25~28	4	4	2	5	
Senior	29~32	4	5	2	4	3.70
Subjects	33~36	3	6	2	4	
	37~40	4	3	3	3	
	Mean	3.6	4.8	2.4	4.0	

	A	В	C	D	Mean
Brand Mean	4.2	5.3	4.9	3.1	4.375

*Adapted from: G. R. Norman and D. L. Streiner, Biostatistics, 3rd &d

Sum of Squares (Young/Senior)

$$SS(young / senior) = bn \sum_{\ell=1}^{g} (\bar{x}_{\ell \bullet} - \bar{x})^{2}$$

$$SS(young / senior) = 20[(5.05 - 4.375)^{2} + (3.70 - 4.375)^{2}]$$

$$= 18.225$$

Sum of Squares (Brands)

$$SS(brands) = gn \sum_{k=1}^{b} (\bar{x}_{\bullet k} - \bar{x})^{2}$$

$$SS(brands) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$$

$$= 27.875$$

133

Sum of Squares (Total)

$$\begin{split} x_{\ell k r} &= \overline{x} + \left(\overline{x}_{\ell \bullet} - \overline{x}\right) + \left(\overline{x}_{\bullet k} - \overline{x}\right) + \left(\overline{x}_{\ell k} - \overline{x}_{\ell \bullet} - \overline{x}_{\bullet k} + \overline{x}\right) + \left(x_{\ell k r} - \overline{x}_{\ell k}\right) \\ &\sum_{\ell=1}^g \sum_{k=1}^b \sum_{r=1}^n \left(x_{\ell k r} - \overline{x}\right)^2 = \sum_{\ell=1}^g b n (\overline{x}_{\ell \bullet} - \overline{x})^2 + \sum_{k=1}^b g n (\overline{x}_{\bullet k} - \overline{x})^2 \\ &+ \sum_{\ell=1}^g \sum_{k=1}^b n (\overline{x}_{\ell k} - \overline{x}_{\ell \bullet} - \overline{x}_{\bullet k} + \overline{x})^2 + \sum_{\ell=1}^g \sum_{k=1}^b \sum_{r=1}^n \left(x_{\ell k r} - \overline{x}_{\ell k}\right)^2 \\ &\mathrm{SS}(total) = \mathrm{SS}(young/senior) + \mathrm{SS}(brand) + \\ &\mathrm{SS}(interactions) + \mathrm{SS}(within) \end{split}$$

135

Sum of Squares (Within)

134

Sum of Squares (Interactions)

$$SS(interactions) = n \sum_{\ell=1}^{g} \sum_{k=1}^{b} (\overline{x}_{\ell k} - \overline{x}_{\ell \bullet} - \overline{x}_{\bullet k} + \overline{x})^{2}$$

$$SS(interactions) = 5[(4.8 - 4.875)^{2} + (3.6 - 3.525)^{2} + \cdots + (4.0 - 2.425)^{2}]$$
[8 terms]
$$= 58.475$$

Sum of Squares (Total)

$$SS(total) = (4-4.375)^{2} + (4-4.375)^{2} + \dots + (4-4.375)^{2} + \dots + (5-4.375)^{2} + (5-4.375)^{2} + (5-4.375)^{2} + \dots + (3-4.375)^{2} + \dots + (3-4.375)^{2}$$

$$[40 \text{ terms}]$$

$$= 129.375 = 18.225 + 58.475 + 24.80 + 27.875$$

137

Degrees of Freedom

$$df(young/senior) = g - 1 = 2 - 1 = 1$$

$$df(brand) = b - 1 = 4 - 1 = 3$$

$$df(within) = bg(n-1) = 8(5-1) = 32$$

$$df(interactions) = (b-1)(g-1) = (4-1)(2-1) = 3$$

$$df(total) = bgn - 1 = bg(n-1) + (b-1)(g-1) + b - 1 + g - 1$$

$$= df(within) + df(interactions) +$$

$$df(brand) + df(young/senior)$$

$$= 40 - 1 = 39 = 32 + 3 + 3 + 1$$

Expected Values of Sum of Squares

E[SS(brand)/df(brand)] contains σ_{brand}^2 , $\sigma_{interactions}^2$, σ_{err}^2 $E[SS(within)/df(within)] = \sigma_{err}^2$ Thus, if brand effect is significant $\frac{E[SS(brand)/df(brand)]}{E[SS(within)/df(within)]} > 1$

 $F_{brand} > 1$

138

Two-way ANOVA Summary

	-			
Source	Sum of	df	Mean	F
	Squares		square	
Brand	27.875	3	9.29	11.99
Young/	18.225	1	18.23	23.52
Senior				
Brand X	58.475	3	19.49	25.15
Y/S	30.473	3	17.47	25.15
Within	24.80	32	0.78	
Total	129.375	39		140

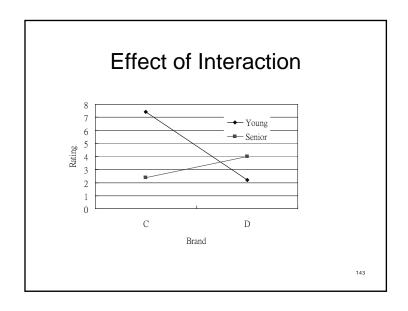
Hypothesis Testing

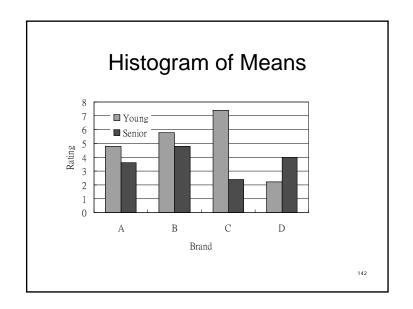
$$F_{brand} = 11.99 > F_{3,32}(0.05) \approx 2.92$$

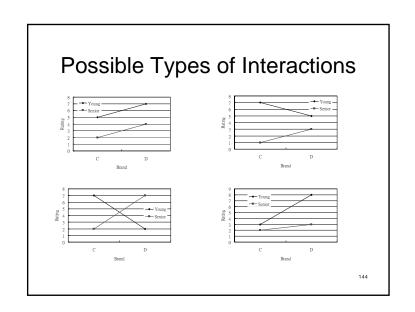
$$F_{Y/S} = 23.52 > F_{1,32}(0.05) \approx 4.17$$

$$F_{interactions} = 25.15 > F_{3,32}(0.05) \approx 2.92$$

All factors and interactions are significant at 0.05 significance level







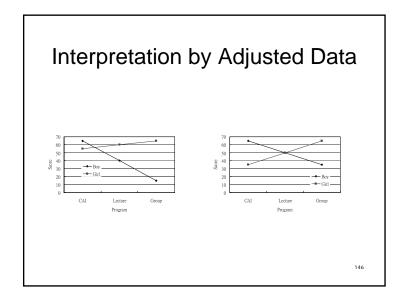
de Groot's Experiment (1965)

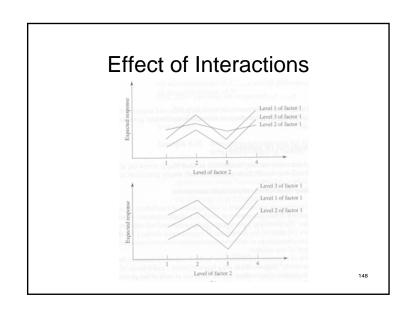
- Observed the ability of chess masters and novices to recall piece positions
- **⋆** Experts
 - Recalled about 90% of the pieces in a typical mid-game
- Novices
 - Recalled about 20%
- → Many factors might have been introduced
- → Randomized piece positions
 - Everybody recalled about 20%
 - No effect of expertise

145

Two-Way ANOVA

$$\begin{split} X_{\ell k r} &= \mu + \tau_{\ell} + \beta_{k} + \gamma_{\ell k} + e_{\ell k r} \\ \ell &= 1, 2, \cdots, g; \quad k = 1, 2, \cdots, b; \quad r = 1, 2, \cdots, n \\ \sum_{\ell = 1}^{g} \tau_{\ell} &= \sum_{k = 1}^{b} \beta_{k} = \sum_{\ell = 1}^{g} \gamma_{\ell k} = \sum_{k = 1}^{b} \gamma_{\ell k} = 0, \quad e_{\ell k r} : N(0, \sigma^{2}) \\ E(X_{\ell k r}) &= \mu + \tau_{\ell} + \beta_{k} + \gamma_{\ell k} \\ x_{\ell k r} &= \overline{x} + (\overline{x}_{\ell \bullet} - \overline{x}) + (\overline{x}_{\bullet k} - \overline{x}) + (\overline{x}_{\ell k} - \overline{x}_{\ell \bullet} - \overline{x}_{\bullet k} + \overline{x}) + (x_{\ell k r} - \overline{x}_{\ell k}) \\ \sum_{\ell = 1}^{g} \sum_{k = 1}^{b} \sum_{r = 1}^{n} (x_{\ell k r} - \overline{x})^{2} &= \sum_{\ell = 1}^{g} bn(\overline{x}_{\ell \bullet} - \overline{x})^{2} + \sum_{k = 1}^{b} gn(\overline{x}_{\bullet k} - \overline{x})^{2} \\ &+ \sum_{\ell = 1}^{g} \sum_{k = 1}^{b} n(\overline{x}_{\ell k} - \overline{x}_{\ell \bullet} - \overline{x}_{\bullet k} + \overline{x})^{2} + \sum_{\ell = 1}^{g} \sum_{k = 1}^{b} \sum_{r = 1}^{n} (x_{\ell k r} - \overline{x}_{\ell k})^{2} \\ \mathrm{SS}_{cor} &= \mathrm{SS}_{fac1} + \mathrm{SS}_{fac2} + \mathrm{SS}_{int} + \mathrm{SS}_{res} \end{split}$$





Two-Way A	NOVA
-----------	------

Source of variation	Sum of squares (SS)	Degrees of freedom (d.f.)
Factor 1	$SS_{fac1} = \sum_{\ell=1}^{g} bn(\overline{x}_{\ell}, -\overline{x})^{2}$	g - 1
Factor 2	$SS_{fac2} = \sum_{k=1}^{b} gn(\overline{x}_{,k} - \overline{x})^{2}$	b - 1
Interaction	$SS_{int} = \sum_{\ell=1}^{g} \sum_{k=1}^{b} n(\overline{x}_{\ell k} - \overline{x}_{\ell k} - \overline{x}_{k k} + \overline{x})^{2}$	(g-1)(b-1)
Residual (Error)	$SS_{res} = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (x_{\ell k r} - \bar{x}_{\ell k})^2$	gb(n-1)
Total (corrected)	$SS_{cor} = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (x_{\ell k r} - \bar{x})^2$	gbn-1

149

Outline

- → Comparing Several Multivariate Population Means (One-Way MANOVA)
- → Simultaneous Confidence Intervals for Treatment Effects
- → Testing for Equality of Covariance Matrices
- ⋆Two-Way ANOVA
- ▼ Two-Way Multivariate Analysis of Variance

151

Two-Way ANOVA

F – ratio tests

$$\frac{SS_{fac1}/(g-1)}{SS_{res}/(gb(n-1))}: \text{for effects of factor } 1$$

$$\frac{SS_{fac2}/(b-1)}{SS_{res}/(gb(n-1))}$$
: for effects of factor 2

$$\frac{SS_{int}/(g-1)(b-1)}{SS_{res}/(gb(n-1))}$$
: for effects of

factor 1 - factor 2 intercation

150

Questions

- → What is the two-way MANOVA table?
- How to determine if the interaction effect exists?
- How to test the effect of each factor by the two-way MANOVA?
- → How to determine the Bonferroni confidence intervals if the interaction effect is negligible?

Two-Way MANOVA

$$\begin{split} \mathbf{X}_{\ell k r} &= \mathbf{\mu} + \mathbf{\tau}_{\ell} + \mathbf{\beta}_{k} + \mathbf{\gamma}_{\ell k} + \mathbf{e}_{\ell k r} \\ \ell &= 1, 2, \cdots, g; \quad k = 1, 2, \cdots, b; \quad r = 1, 2, \cdots, n \\ \sum_{\ell = 1}^{g} \mathbf{\tau}_{\ell} &= \sum_{k = 1}^{b} \mathbf{\beta}_{k} = \sum_{\ell = 1}^{g} \mathbf{\gamma}_{\ell k} = \sum_{k = 1}^{b} \mathbf{\gamma}_{\ell k} = 0, \quad \mathbf{e}_{\ell k r} : N_{p}(\mathbf{0}, \mathbf{\Sigma}) \\ \mathbf{X}_{\ell k r} &= \overline{\mathbf{x}} + (\overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}_{\bullet k} + \overline{\mathbf{x}}) + (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k}) \\ \sum_{\ell = 1}^{g} \sum_{k = 1}^{b} \sum_{r = 1}^{n} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}})' = \\ \sum_{\ell = 1}^{g} b n(\overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}})' + \sum_{k = 1}^{b} g n(\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}})' \\ + \sum_{\ell = 1}^{g} \sum_{k = 1}^{b} n(\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}_{\bullet k} + \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell \bullet} - \overline{\mathbf{x}}_{\bullet k} + \overline{\mathbf{x}})' \\ + \sum_{\ell = 1}^{g} \sum_{k = 1}^{b} \sum_{r = 1}^{n} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k})' \\ \end{cases}$$

Two-Way MANOVA

Test for interaction

For large samples, reject H_0 : $\gamma_{11} = \gamma_{12} = \cdots = \gamma_{gb} = 0$ if

$$-\left[gb(n-1) - \frac{p+1-(g-1)(b-1)}{2}\right] \ln \Lambda^* > \chi^2_{(g-1)(b-1)}(\alpha)$$

Wilk's lambda
$$\Lambda^* = \frac{\left| SSP_{res} \right|}{\left| SSP_{int} + SSP_{res} \right|}$$

If interaction effects exist, the factor effects do not have a clear interpretation

155

Two-Way MANOVA

Source of variation	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.)
Factor 1	$SSP_{fac1} = \sum_{\ell=1}^{g} bn(\overline{\mathbf{x}}_{\ell}, -\overline{\mathbf{x}})(\overline{\mathbf{x}}_{\ell}, -\overline{\mathbf{x}})'$	g - 1
Factor 2	$SSP_{lsc2} = \sum_{k=1}^{b} gn(\overline{\mathbf{x}}_{\cdot k} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\cdot k} - \overline{\mathbf{x}})'$	b-1
Interaction	$SSP_{mt} = \sum_{\ell=1}^g \sum_{k=1}^b n(\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell k} + \overline{\mathbf{x}})(\overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell k} - \overline{\mathbf{x}}_{\ell k} + \overline{\mathbf{x}})'$	(g-1)(b-1)
Residual (Error)	$SSP_{res} = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}_{\ell k})'$	gb(n-1)
Total (corrected)	$SSP_{cor} = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell k r} - \overline{\mathbf{x}})'$	gbn-1

15

Two-Way MANOVA

Test for factor 1 effect

For large samples, reject $H_0: \mathbf{\tau}_1 = \mathbf{\tau}_2 = \cdots = \mathbf{\tau}_q = 0$ if

$$-\left[gb(n-1) - \frac{p+1-(g-1)(b-1)}{2}\right] \ln \Lambda^* > \chi^2_{(g-1)p}(\alpha)$$

Wilk's lambda
$$\Lambda^* = \frac{\left|SSP_{res}\right|}{\left|SSP_{fac1} + SSP_{res}\right|}$$

Test for factor 2 effect

For large samples, reject $H_0: \boldsymbol{\beta}_1 = \boldsymbol{\beta}_2 = \dots = \boldsymbol{\beta}_b = 0$ if

$$-\left[gb(n-1) - \frac{p+1 - (g-1)(b-1)}{2}\right] \ln \Lambda^* > \chi^2_{(b-1)p}(\alpha)$$

Wilk's lambda
$$\Lambda^* = \frac{\left| SSP_{res} \right|}{\left| SSP_{fac2} + SSP_{res} \right|}$$

Bonferroni Confidence Intervals

With negligible interactions,

the simultaneus confidence intervals are

$$(\bar{x}_{\ell \bullet i} - \bar{x}_{m \bullet i}) \pm t_p \left(\frac{\alpha}{pg(g-1)}\right) \sqrt{\frac{E_{ii}}{\nu} \frac{2}{bn}} \quad \text{for } \tau_{\ell i} - \tau_{m i}$$

and

$$\left(\overline{x}_{\bullet ki} - \overline{x}_{\bullet qi}\right) \pm t_p \left(\frac{\alpha}{pb(b-1)}\right) \sqrt{\frac{E_{ii}}{v}} \frac{2}{gn} \quad \text{for } \beta_{ki} - \beta_{qi}$$

$$v = gb(n-1) \quad \mathbf{F} = \mathbf{SSP}$$

 $v = gb(n-1), \quad \mathbf{E} = \mathbf{SSP}_{ras}$

Example 6.13: Interaction

$$\Lambda^* = \frac{|SSP_{res}|}{|SSP_{int} + SSP_{res}|} = 0.7771$$

$$(g-1)(b-1) = 1$$

$$F = \left(\frac{1 - \Lambda^*}{\Lambda^*}\right) \frac{(gb(n-1) - p + 1)/2}{(|(g-1)(b-1) - p| + 1)/2} : F_{\nu_1, \nu_2}$$

$$\nu_1 = |(g-1)(b-1) - p| + 1 = 3$$

$$\nu_2 = gb(n-1) - p + 1 = 14$$

 $F = 1.34 < F_{3.14}(0.05) = 3.34$

 $H_0: \gamma_{11} = \gamma_{12} = \gamma_{21} = \gamma_{22} = 0$ (no interaction) is not rejected

Example 6.13: MANOVA Table

Source of variation		SSP		d.f.
Factor 1: change in rate of extrusion	1.7405	-1.5045 1.3005	.8555 7395	1
Factor 2: amount of additive	.7605	.6825 .6125	1.9305 1.7325 4.9005	1
Interaction	.0005	.0165 .5445	.0445 1.4685 3.9605	1
Residual	1.7640	.0200 2.6280	-3.0700 5520 64.9240	16
Total (corrected)	4.2655	7855 5.0855	2395 1.9095 74.2055	19

Example 6.13: Effects of Factors 1 & 2

$$\Lambda_{1}^{*} = \frac{|SSP_{res}|}{|SSP_{fac1} + SSP_{res}|} = 0.3819$$

$$\Lambda_{2}^{*} = \frac{|SSP_{res}|}{|SSP_{fac2} + SSP_{res}|} = 0.5230$$

$$F_{1} = \left(\frac{1 - \Lambda_{1}^{*}}{\Lambda_{1}^{*}}\right) \frac{v_{2}/2}{v_{1}/2} = 7.55, \quad v_{1} = |(g - 1) - p| + 1 = 3$$

$$F_{2} = \left(\frac{1 - \Lambda_{2}^{*}}{\Lambda_{2}^{*}}\right) \frac{v_{2}/2}{v_{1}/2} = 4.26, \quad v_{1} = |(b - 1) - p| + 1 = 3$$

$$v_{2} = gb(n - 1) - p + 1 = 14$$

$$F_{1} > F_{3,14}(0.05) = 3.34, \quad \text{reject } H_{0}: \tau_{1} = \tau_{2} = 0$$

$$F_{2} > F_{3,14}(0.05) = 3.34, \quad \text{reject } H_{0}: \beta_{1} = \beta_{2} = 0$$

Outline

- Profile Analysis
- → ANOVA for Repeated Measures
- → Repeated Measures Designs and Growth Curves
- → Perspectives and Strategy for Analyzing Multivariate Models

161

Profile Analysis

- A battery of p treatments (tests, questions, etc.) are administered to two or more group of subjects
- The question of equality of mean vectors is divided into several specific possibilities
 - -Are the profiles parallel?
 - -Are the profiles coincident?
 - Are the profiles level?

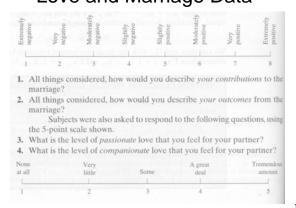
163

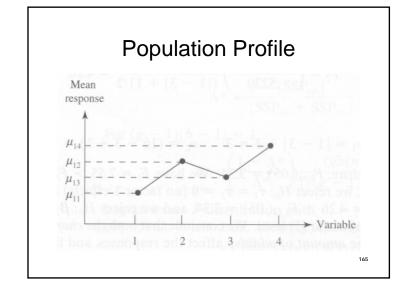
Questions

- → What is the profile analysis?
- → How to carry out the profile analysis?

162

Example 6.14: Love and Marriage Data





Test for Parallel Profiles

$$\mathbf{C}_{(p-1)\times p} = \begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

 $\mathbf{C}\mathbf{X}_{1j}: N_{p-1}(\mathbf{C}\boldsymbol{\mu}_1, \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}'), \mathbf{C}\mathbf{X}_{2j}: N_{p-1}(C\boldsymbol{\mu}_2, \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}')$

Reject H_{01} : $\mathbf{C}\mathbf{\mu}_1 = \mathbf{C}\mathbf{\mu}_2$ at level α if

$$T^{2} = (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})'\mathbf{C}' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{CS}_{pooled} \mathbf{C}' \right]^{-1} \mathbf{C} (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}) > c^{2}$$

$$c^{2} = \frac{(n_{1} + n_{2} - 2)(p - 1)}{n_{1} + n_{2} - p} F_{p-1, n_{1} + n_{2} - p}(\alpha)$$

Profile Analysis

Assume two populations

Are the profiles parallel?

$$H_{01}: \mu_{1i} - \mu_{1i-1} = \mu_{2i} - \mu_{2i-1}, i = 2, 3, \dots, p$$

Are the profiles coincident?

$$H_{02}: \mu_{1i} = \mu_{2i}, i = 1, 2, \dots, p$$

Are the profiles level?

$$H_{03}: \mu_{11} = \mu_{12} = \dots = \mu_{1p} = \mu_{21} = \mu_{22} = \dots = \mu_{2p}$$

166

Test for Coincident Profiles

Given parallel profiles

Reject H_{02} : $\mathbf{1}' \boldsymbol{\mu}_1 = \mathbf{1}' \boldsymbol{\mu}_2$ at level α if

$$T^{2} = \mathbf{1}'(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}) \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{1}' \mathbf{S}_{pooled} \mathbf{1} \right]^{-1} \mathbf{1}'(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})$$

$$= \left(\frac{\mathbf{1}'(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})}{\sqrt{\left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{1}' \mathbf{S}_{pooled} \mathbf{1} \right]}} \right)^{2} > t_{n_{1} + n_{2} - 2}^{2} (\frac{\alpha}{2}) = F_{1, n_{1} + n_{2} - 2}(\alpha)$$

Test for Level Profiles

Given coincident profiles

Reject H_{03} : $C\mu = 0$ at level α if

$$(n_1 + n_2)\overline{\mathbf{x}}'\mathbf{C}'[\mathbf{CSC}']^{-1}\mathbf{C}\overline{\mathbf{x}} > c^2$$

$$c^{2} = \frac{(n_{1} + n_{2} - 1)(p - 1)}{n_{1} + n_{2} - p - 1} F_{p-1, n_{1} + n_{2} - p + 1}(\alpha)$$

$$\overline{\mathbf{x}} = \frac{n_1}{n_1 + n_2} \overline{\mathbf{x}}_1 + \frac{n_2}{n_1 + n_2} \overline{\mathbf{x}}_2$$

169

Example 6.14: Test for Parallel Profiles

$$\mathbf{CS}_{pooled}\mathbf{C}' = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \mathbf{S}_{pooled} \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}) = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0.200 \\ 0.033 \\ -0.033 \\ 0.167 \end{bmatrix} = \begin{bmatrix} -0.167 \\ -0.066 \\ 0.200 \end{bmatrix}$$

$$T^2 = 1.005 < \frac{(30+30-2)(4-1)}{30+30-4} F_{3,56}(0.05) = 8.7$$

/1

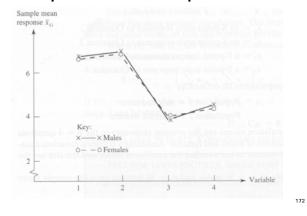
Example 6.14

$$\overline{\mathbf{x}}_{1} = \begin{bmatrix} 6.833 \\ 7.033 \\ 3.967 \\ 4.700 \end{bmatrix}, \overline{\mathbf{x}}_{2} = \begin{bmatrix} 6.633 \\ 7.000 \\ 4.000 \\ 4.533 \end{bmatrix}$$

$$\mathbf{S}_{pooled} = \begin{bmatrix} 0.606 & 0.262 & 0.066 & 0.161 \\ 0.262 & 0.637 & 0.173 & 0.143 \\ 0.066 & 0.173 & 0.810 & 0.029 \\ 0.161 & 0.143 & 0.029 & 0.306 \end{bmatrix}$$

170

Example 6.14: Sample Profiles



Example 6.14: Test for Coincident Profiles

$$\mathbf{1'}(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) = 0.367$$
$$\mathbf{1'S}_{pooled} \mathbf{1} = 4.207$$

$$T^{2} = \left(\frac{0.367}{\sqrt{\left(\frac{1}{30} + \frac{1}{30}\right)} 4.207}\right)^{2} = 0.501 < F_{1,58}(0.05) = 4.0$$

173

Questions

- What are repeated measures?
- → How to view the data for repeated measures in a two-way ANOVA view?
- How to test the null hypothesis in repeated measures?

175

Outline

- → Profile Analysis
- *ANOVA for Repeated Measures
- → Repeated Measures Designs and Growth Curves
- Perspectives and Strategy for Analyzing Multivariate Models

174

Repeated-Measures ANOVA

- → Drugs A, B, C are tested to see if they are equally effective for pain relief
- Subjects are to take all of the drugs, in turn, suitably blinded and after a suitable washout period
- →Subjects rate the degree of pain belief on a 1 to 6 scale (1: no relief, 6 complete relief)

1/6

Avoiding Order Effects

- → Randomize the order of treatment
 - -1/3 get drug A first, 1/3 get drug B first,1/3 get drug C first
- → People in a long, natural healing course may grow tolerant of the irritant and learn to tune them out
 - -The last medication may work the best
 - -Order effects

177

Two-Way ANOVA View

- → Individual subjects as one factor
- → Pain reliever as a second factor
- → Cells are defined by
 - -Subjects: 10 levels
 - -Drug: 3 levels
- ⋆One observation per cell
- → Special case of two-way ANOVA

$$- n = 1, g = 10, b = 3$$

79

Sample Data

		•		
Subject	A	В	С	Average
1	5	3	2	3.33
2	5	4	3	4.00
3	5	6	5	5.33
4	6	4	2	4.00
5	6	6	6	6.00
6	4	2	1	2.33
7	4	4	3	3.67
8	4	5	5	4.67
9	4	2	2	2.67
10	5	3	1	3.00
Means	4.80	3.90	3.00	3.90

^{*}Adapted from: G. R. Norman and D. L. Streiner, *Biostatistics*, 3rd ed.

Sum of Squares (Drug)

$$SS(drug) = g \sum_{k=1}^{b} (\bar{x}_{\bullet k} - \bar{x})^{2}$$

$$SS(drug) = 10[(4.8 - 3.9)^{2} + (3.9 - 3.9)^{2} + (3.0 - 3.9)^{2}]$$

= 16.2.

Sum of Squares (Subjects)

$$SS(subjects) = b \sum_{\ell=1}^{g} (\bar{x}_{\ell \bullet} - \bar{x})^{2}$$

$$SS(subjects) = 3[(3.33 - 3.90)^{2} + (4.00 - 3.90)^{2} + \cdots + (3.00 - 3.90)^{2}]$$

$$= 36.7$$

181

Sum of Squares (Within)

$$SS(within) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \left(x_{\ell k \gamma} - \overline{x}_{\ell k} \right) = 0$$

183

Sum of Squares (Interaction)

$$SS(interaction) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} (\overline{x}_{\ell k} - \overline{x}_{\ell \bullet} - \overline{x}_{\bullet k} + \overline{x})^{2}$$

$$SS(interaction) = [(5 - 4.23)^{2} + (3 - 3.33)^{2} + \cdots + (1 - 2.10)^{2}]$$
[30 terms]
$$= 15.8$$

182

Degrees of Freedom

$$df(subject) = g - 1 = 10 - 1 = 9$$

$$df(drug) = b - 1 = 3 - 1 = 2$$

$$df(within) = bg(n - 1) = 0$$

$$df(interaction) = (b - 1)(g - 1) = (3 - 1)(10 - 1) = 18$$

$$df(total) = bg - 1 = (b - 1)(g - 1) + b - 1 + g - 1$$

$$= df(interaction) + df(drug) + df(subject)$$

$$= 30 - 1 = 29 = 18 + 2 + 9$$

Signal vs. Noise

- ⋆ To determine if there is any significant difference in relief from different pain relievers
 - -Main effect of Drug
- SS(within) = 0
- → Choose SS(interaction) as error term
 - Reflects the extent to which different subjects respond differently to the different drug types

185

Hypothesis Testing

 $F_{Drug} = 9.225 > F_{2,18}(0.05) \approx 3.55$

Drug effect is significant (i.e., difference exists) at 0.05 significance level

187

ANOVA Table

Source	Sum of	df	Mean	F
	Squares		square	
Drug	16.2	2	8.100	9.225
Subject	36.7	9	4.078	
Drug X Subject	15.8	18	0.878	
Totals	68.7	29		

186

ANOVA Table for Same Data as a One-Way ANOVA Test

Source	Sum of Squares	df	Mean square	F
Drug	16.2	2	8.100	4.107
Error	52.5	27	1.944	
Totals	68.7	29		

Outline

- → Profile Analysis
- *ANOVA for Repeated Measured
- ▼ Repeated Measures Designs and Growth Curves
- → Perspectives and Strategy for Analyzing Multivariate Models

189

Questions

→How to compare growth curves?

190

Example 6.15: Ulna Data, Control Group

Subject	Initial	1 year	2 year	3 year
1	87.3	86.9	86.7	75.5
2	59.0	60.2	60.0	53.6
3	76.7	76.5	75.7	69.5
4	70.6	76.1	72.1	65.3
5	54.9	55.1	57.2	49.0
6	78.2	75.3	69.1	67.6
7	73.7	70.8	71.8	74.6
8	61.8	68.7	68.2	57.4
9	85.3	84.4	79.2	67.0
10	82.3	86.9	79.4	77.4
11	68.6	65.4	72.3	60.8
12	67.8	69.2	66.3	57.9
13	66.2	67.0	67.0	56.2
14	81.0	82.3	86.8	73.9
15	72.3	74.6	75.3	66.1
Mean-	72.38	73.29	72.47	64.79

Example 6.15: Ulna Data, Treatment Group

Subject	Initial	1 year	2 year	3 year
1	83.8	85.5	86.2	81.2
2	65.3	66.9	67.0	60.6
3	81.2	79.5	84.5	75.2
0.0a 4 Si	75.4	76.7	74.3	66.7
5	55.3	58.3	59.1	54.2
6	70.3	72.3	70.6	68.6
277 (6-63), 4	76.5	79.9	80.4	71.6
8 69.1	66.0	70.9	70.3	64.1
9	76.7	79.0	76.9	70.3
10	77.2	74.0	77.8	67.9
1179.2	67.3	70.7	68.9	65.9
12	50.3	51.4	53.6	48.0
13	57.7	57.0	57.5	51.5
14	74.3	77.7	72.6	68.0
0.7015	74.0	74.7	74.5	65.7
16	57.3	56.0	64.7	53.0
Mean	69.29	70.66	71.18	64.53

Comparison of Growth Curves

 $\mathbf{X}_{\ell i}$: vector of p measurements on subject j in group ℓ

$$j = 1, 2, \dots, n_{\ell}; \quad \ell = 1, 2, \dots, g$$

 \mathbf{X}_{ℓ_i} : Multivariate normal with covariance Σ

Putthoff - Roy model

$$E(\mathbf{X}_{\ell j}) = \begin{bmatrix} \boldsymbol{\beta}_{\ell 0} + \boldsymbol{\beta}_{\ell 1} t_{1} + \dots + \boldsymbol{\beta}_{\ell q} t_{1}^{q} \\ \boldsymbol{\beta}_{\ell 0} + \boldsymbol{\beta}_{\ell 1} t_{2} + \dots + \boldsymbol{\beta}_{\ell q} t_{2}^{q} \\ \vdots \\ \boldsymbol{\beta}_{\ell 0} + \boldsymbol{\beta}_{\ell 1} t_{p} + \dots + \boldsymbol{\beta}_{\ell q} t_{p}^{q} \end{bmatrix} = \begin{bmatrix} 1 & t_{1} & \cdots & t_{1}^{q} \\ 1 & t_{2} & \cdots & t_{2}^{q} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & t_{p} & \cdots & t_{p}^{q} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_{\ell 0} \\ \boldsymbol{\beta}_{\ell 1} \\ \vdots \\ \boldsymbol{\beta}_{\ell q} \end{bmatrix}$$
$$= \mathbf{B} \boldsymbol{\beta}_{\ell}$$

Example 6.15

Use quadratic growth model

$$\left[\hat{\beta}_1 \quad \hat{\beta}_2 \right] = \begin{bmatrix} 73.0701 \, (2.58) & 70.1387 \, (2.50) \\ 3.6444 \, (0.83) & 4.0900 \, (0.80) \\ -2.0274 \, (0.28) & -1.8534 \, (0.27) \end{bmatrix}$$

Control Group: $73.07 + 3.64t - 2.03t^2$

Treatment Group: $70.14 + 4.09t - 1.85t^2$

 $\Lambda^* = 0.7627$

$$-(N-(p-q+g)/2)\ln\Lambda^* = 7.86 < \chi^2_{(4-2-1)2}(0.01) = 9.21$$

Comparison of Growth Curves

Maximum likelihood estimators of β_{ℓ} :

$$\hat{\boldsymbol{\beta}}_{\ell} = \left(\mathbf{B}'\mathbf{S}_{pooled}^{-1}\mathbf{B}\right)^{-1}\mathbf{B}'\mathbf{S}_{pooled}^{-1}\overline{\mathbf{X}}_{\ell}$$

$$\mathbf{S}_{pooled} = \frac{1}{N-g} ((n_1 - 1)\mathbf{S}_1 + \dots + (n_g - 1)\mathbf{S}_g) = \frac{\mathbf{W}}{N-g}$$

$$N = \sum_{\ell=1}^{g} n_{\ell}, \quad \hat{\text{Cov}}(\hat{\boldsymbol{\beta}}_{\ell}) = \frac{k}{n_{\ell}} (\mathbf{B}' \mathbf{S}_{pooled}^{-1} \mathbf{B})^{-1}$$

$$k = (N-g)(N-g-1)/(N-g-p+q)(N-g-p+q+1)$$

$$\mathbf{W}_{q} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} \left(\mathbf{X}_{\ell j} - \mathbf{B} \hat{\boldsymbol{\beta}}_{\ell} \right) \left(\mathbf{X}_{\ell j} - \mathbf{B} \hat{\boldsymbol{\beta}}_{\ell} \right), \quad \Lambda^{*} = \frac{\left| \mathbf{W} \right|}{\left| \mathbf{W}_{q} \right|}$$

Reject the null hypothesis that the polynomial is adequate if

$$-(N-(p-q+g)/2)\ln \Lambda^* > \chi^2_{(p-q-1)g}(\alpha)$$

104

Outline

- → Profile Analysis
- →ANOVA for Repeated Measured
- → Repeated Measures Designs and Growth Curves
- Perspectives and Strategy for Analyzing Multivariate Models

Questions

- → What are the strategies in multivariate analysis?
- Why is the experimental design important?

97

Example 6.16: Comparing Multivariate and Univariate Tests

Univariate test on x_1 : $F = 2.46 < F_{1,18}(0.10) = 3.01$ Univariate test on x_2 : $F = 2.68 < F_{1,18}(0.10) = 3.01$ Accept $\mu_1 = \mu_2$

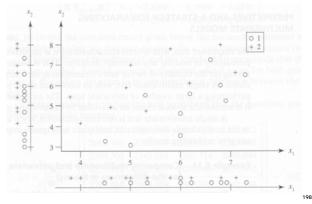
Hotelling's test:

$$T^2 = 17.29 > c^2 = \frac{18 \times 2}{17} F_{2,17}(0.01) = 12.94$$

Reject $\mu_1 = \mu_2$

99

Example 6.16: Comparing Multivariate and Univariate Tests



Strategy for Multivariate Comparison of Treatments

- →Try to identify outliers
 - Perform calculations with and without the outliers
- →Perform a multivariate test of hypothesis
- Calculate the Bonferroni simultaneous confidence intervals
 - For all pairs of groups or treatments, and all characteristics

Importance of Experimental Design

- ◆Differences could appear in only one of the many characteristics or a few treatment combinations
- → Differences may become lost among all the inactive ones
- → Best preventative is a good experimental design
 - Do not include too many other variables that are not expected to show differences