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Questions

- What is the univariate normal
distribution?

« What is the multivariate normal
distribution?

» Why to study multivariate normal
distribution?

Multivariate Normal Distribution

» Generalized from univariate normal
density

-Base of many multivariate analysis
techniques

- Useful approximation to “true”
population distribution

» Central limit distribution of many
multivariate statistics

» Mathematical tractable

Outline

« Introduction

« The Multivariate Normal Density
and Its Properties

« Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

- The Sampling Distribution of and
S

- Large-Sample Behavior of and S

Questions

-What is the formula for the
probability density function of a
univariate normal distribution?

-What are the probability meaning of
parameters ¢ and o?

-How much probability are in the
intervals (u-o, ut+o) and (u-20, u+20)?

-How to look up the accumulated
univariate normal probability in Table
1, Appendix?
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Questions

- What is the Mahalanobis distance for
univariate normal distribution?

+ What is the Mahalanobis distance for
multivariate normal distribution?

- What are the symbol for and the
formula of the probability density of
a p-dimensional multivariate normal
distribution?

Questions

-What are the possible shapes in a
surface diagram of a bivariate
normal density?

-What is the constant probability
density contour for a p-dimensional
multivariate normal distribution?

-What are the eigenvalues and
eigenvectors of the inverse of ¥?
(Result 4.1)

Questions

-What is the region that the total
probability inside equals 1-a?

» What is the probability distribution
for a linear combination of p random
variables with the same multivariate-
normal distribution? (Result 4.2)

- How to find the marginal distribution
of a multivariate-normal distribution
by Result 4.2?

Questions

»What is the probability distribution
for a random vector obtained by
multiplying a matrix to a random
vector of p random variables with the
same multivariate-normal
distribution? (Result 4.3)

-What is the probability distribution of
a random vector of multivariate
normal distribution plus a constant
vector? (Result 4.3)
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Questions

- Given the mean and covariance
matrix of a multivariate random
vector, and the random vector is
partitioned, how to find the mean
and covariance matrix of the two
parts of the partitioned random
vector? (Result 4.4)

Questions

-What are the if-and-only-if conditions
for two multivariate normal vectors
X, and X, to be independent? (Result
4.5)

- If two multivariate normal vectors X,
and X, are independent, what will be
the probability distribution of the
random vector partitioned into X;
and X,? (Result 4.5)

Questions

- A random vector X is partitioned into
X; and X,, then what is the
conditional probability distribution od
X, given X, = x,? (Result 4.6)

«» What is the probability distribution
for the square of the Mahalanobis
distance for a multivariate normal
vector? (Result 4.7)

Questions

~-How to find the value of the
Mahalanobis distance for a
multivariate normal vector when the
probability inside the corresponding
ellipsoid is specified? (Result 4.7)
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Questions

«What is the shape of a chi-square
distribution curve?

- How to look up the accumulated chi-
square probability from Table 3,
Appendix?

- What is the joint distribution of two
random vectors which are two linear
combinations of n different
multivariate random vectors? (Result
4.8)

Univariate Normal Distribution

N(u,0?)

f(x)= ! el _ o oy cop

Table 1, Appendix

Square of Distance
(Mahalanobis distance)

(’““j (= 1)) (e 10)
O

v

(x—p)Z*(x-p)
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p-dimensional Normal Density

Np (H’E)
1 —(x-p)T 7 (x—p)/2
f(X) — PR n
(272')”/2‘2‘1/2
—o<x; <o, i=12,--p
x is a sample from random vector
Xlz[Xl’ XZ’ e, Xp]

Example 4.1 Bivariate Normal

= E(Xl)i Hy = E(Xz)
o,, = Var(X,), o,, = Var(X,)

P2 =01 /(\/0'_11\/0-_22): Corr(X,, X,)

01 Oy a 1 Oy —Oyp
I= { Ei=———
Oy Op 0110y =015 | =0, Oy

2 _ 2
01102 =01, = 01,0, (1= pp3)

Example 4.1 Squared Distance

(x—p) =7 (x—p)

I I
P ’ 0-11‘722(1_,0122)

|: Oy _plz\/o'in\/o'in:“:xl_ﬂl}
_plZJ;MJ?ﬂ On X~ Hy

2 2
_ 1 [xl_ﬂlJ +{x2_ﬂ2J —2p12[xl_ﬂlJ{xz_'uzJ
1_/0122 VOou \VO2 Oy \VO2

Example 4.1 Density Function
1
27 \/ 01,0, (1- p122)

= 1 X H 2 Xo = Hy 2
o 2(1_/)122)[[ Vo j ( Jon J
_ Y TH | X
5[5

S, x,) =
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Example 4.1 Bivariate Distribution

i

Oy = 0y P =0
25

Example 4.1 Bivariate Distribution

Oy = Oz P = 0.75

26

Contours

Constant probability density contour
= {all xsuch that (x —p)' T (x-p) = ¢ }
= surface of an ellipsoid centered at p

axes:tcq/ e,

i:l’ 2’...’p

i i

27

Result 4.1

Y. : positive definite
Ye=de=>X'e :%e

(1,e) for £ = (1/1,e) for &
Y positive definite

28
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Example 4.2 Bivariate Contour

Bivariatenormal,o,;, =0,

eigenvalues and eigenvectors
11
A =0y,+0y,, € :[ﬁy ﬁ]

, 1 -1
Ay =0, -0y, e, :[ﬁaﬁ]

Example 4.2 Positive Correlation

Probability Related to
Squared Distance

Solid ellipsoid of x valuessatisfying

(x—p) T (x-p)< 7. ()
has probability 1— «

Probability Related to
Squared Distance
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Result 4.2

X:N,(nX)=
aX=aX +a,X,++a,X, .
N(a'p,a'Xa)
a'X:N(a'p,a'Xa)foreverya—=
X mustbe N, (n, X)

Example 4.3 Marginal Distribution
X=[X, X, X,]"N,(n,X)
a'=[10,---,0], a'X=X,
ap=p, aXa=oy
a'’X:N(a'p,a'Xa)=N(u,o,)
Marginal distribution of X, in X:

N(p.0;)

Result 4.3

X:N,(nX)

_a11X1+---+a1po_
anX;+-+a,, X

P . 1
AX = 'N,(Am,AZA")

| a Xy +eeta, X

ap“p
X+d:N,(n+d,X)

Proof of Result 4.3: Part 1

Any linear combination b’ (AX) =a'X,
a=A'b=>
(b'A)X:N((b'A)p, (b'A)X(A'D))
=
b'(AX):N(b'(Apn),b'(AX A')b)
valid foreveryb = AX: N, (Ap, AL A')
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Proof of Result 4.3: Part 2

a'(X+d)=a'X+a'd
a'X:N(a'p,a'Xa)
a'X+a'd:N(a'p+a'd,a'xa)
aisarbitrary =
X+d:N,(n+d,X)

Example 4.4 Linear Combinations
X Ny(n X)

X
X, -X, 1 -1 0
= X, [=AX
X,-X, 0 1 -1
X,
Au:{ﬂl_#z}
Hy = Hs
AZA.:{ 01 —201, + 0y, 012+023_0'22_0'13:|
01y + 093 =0y — 03 0y =20, +03

AX:N,(Ap,AZA')
can be verifiedwithY, =X, - X,, ¥, =X, - X,

Result 4.4
XZNp(u,Z)
55%) Iy L, | X,
X: -——— !'l': ———, E: —— + —_—
X, K, X, | X
((p—9)x1)

=X Nq (ny, X))

Proof :Set A :[ | 0 }in Result 4.3

(gxp) (9%q) (9x(p—q))

Example 4.5 Subset Distribution

X Ng(n, X)

X o o
Xl:{ 2} ul:{ﬂz} 211:|: 2 24}
X, My Oy Oy
X, :N2(|:ﬂ2}|:0'22 (724D
Hy | [ Oo Oy

2011/9/28
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Result 4.5
(@) X, X, :independent, Cov(X,,X,)= 0
(¢:x1) (g2x1) (a1%q2)
Xl p’l 2'11 | 2“12
O)| | Ny | === ===+ ===
X, ) X, | Ey

= X, X, :independent if and onlyif X, =0
(C) Xl : qu(ul' le), Xz : qu (Hz* 222) independent

Example 4.6 Independence

X Ny(p, X)
4 1 0

Xr=/1 3 0
0 0 2

X, X, :not independent

X
X, = [Xl} and X, are independent

2

(X, isindependent of X, and also X,)

42

X, By L, | 0
=== Ny, |- + -——=

X, 1, 0 | E “

Result 4.6

X, By
X=|-——]!N,(n,X), p=|-——|

B X, K,

[z, | OE,
T=l-—— + ———| [Ey>0=

[ 2 | Zp

conditional distribution of X, given X, =x, is
normal with mean = p, + X, X7 (x, —p,) and
covariance=X,, — X, X ¥, -

Proof of Result 4.6
{1 | —Z,Z;}

X,—n,
joint normal with covariance

211_21222221 | 0
ATA'=| ———————— EE—

X, - 2"122';; (X, —n,)
AX-p)=|-———————————— :

a4

2011/9/28
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Proof of Result 4.6

X, -, —X,X0(X, —n,) and X, —p, are independent

A, Bindependent = P(A| B) = P(4,B)/ P(B) = P(A)

S - - lezz Xy —p,) =%, —py - ):12):';; (x, —my) |
X, =X,)=

SX =y - 2122;; (X —p,) =%, —py - 21222 (x,—1,))

X —m - 2"122";; (X;—n,): N, 0,z - E1222221)

X, given X, =x, :

Nq (m, + ):'1222 (x, —1,), 2y - 21222221)

Example 4.7 Conditional Bivariate

|:xl:|:N2(|::u1:|,|:o-ll 012})
Xy Hy || O Oy
show that
2
O. O.
f(xl | xz) = N(,ul +_12(x2 _/uz)’o-ll -

Oy Oy

Example 4.1 Density Function
1
27 \/ 01,0, (1- p122)

_ 1 X 2 X, = Ky 2

o 2(1_/)122)[[ Jon J ( Vou J
_ Y TH | X
o o

S, x,) =

Example 4.7

2 2
1 [ MM | T —2p XI_ﬂlj{xz_/%]]
12
2(1- plzz) \VOou V02 VOou V02
2

1 91 j 1(x—1,)
e () | o2 Ee )

20—11(1_/0122)( o 2 P 2 oy

2701/613,05 (1-p) = 27y (711(1—p122)\/271'(722

SO lx) = f 0, x,) 1 f(x,)
1

\/Z\/ on(l- /7122 )

e*("‘f/‘r(o'lz 1095)(xa= 1 ))2/20'11 (1*P122)

2011/9/28
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Result 4.7
X:N,(nX), [Z[>0
@ (X—p)Z(X—p):z;
(b) The probability inside the solid ellipsoid
{x:(X-p) T (X-p) < 7; (2)}isl-a,
where ;(j («) denotes the upper (100«)th

percentile of the ;(rf distribution

v? Distribution

X1:N(:u110'12)! X, :N(,Uzao'zz)’ T

Xi=H Ny
O;

XV:N(/HWO—&); Zi:

2
4= Z(xi _'”fj , v :degrees of freedom (d.f.)
i=1 i

o

1 2V 2
77 B a— x°>0
j[‘,(lz): ZV/ZF(V/Z) (}( ) e Z
0, 72 <0
(Gamma distribution with o = v /2)

v? Distribution Curves

Table 3, Appendix

2011/9/28
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Proof of Result 4.7 (a)

(X—p)y = (X—p) = li(x Wee (X—p)

{ e (X- p)} , Z=A(X-p):N,(0,AXA")
61/\/7

AZA'= :Zjﬁ [Z} e}L/Z \7272 \/‘%]:I

2,1 NOD, (X0 (X-p) = Y 271 ]

Proof of Result 4.7 (b)

P|(X—p)'=*(X—p)<c?| is the probability
assigned to the ellipsoid by X: N, (n, X)

(X —p)' (X —p) new random variable
distributed by

PIX-py = (X-p) < 72 (a)]=1-«

Result 4.8

X, X,, -+, X, : mutually independent
Xj . Np ("112)

V=X, +6,X, ++¢, X, ! Np(chpj,(Zcf)E]
= =
V, =bX,+b,X,+---+b,X, and V, and V, are joint normal
Q.HE  (box

with covariance matrix| /=

bor (X)L

Proof of Result 4.8

X'=[X;, X, X, 11N, (1 Zx)

0 S0 - 0
ST

n, 00 - X

{Z; Z; Zﬂ,AX:Rﬂ:sz(Ap,AzxA')

block diagonal terms of AZ A": (Zcf)):, O
Jj=1

off —diagonaltermsof AX, A" (Zc b)E

2011/9/28
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Example 4.8 Linear Combinations

X, X,, X;, X, :independent identical N,(n, X)

3 3 -11
p=|-1,x=/-1 1 0
1 1 0 2

a'X,:N(a'p,a'Xa)
a'n=3aq —a,+a,
a'Ya=3a +a’ +2a. -2a,a, +2a,a,

57

Example 4.8 Linear Combinations

1 1 1 1
\]1 :EX1 JrEXz +EX3 +EX4 :N3(,'IV1‘ZV1)

6
4
My =2 ch, =2p= {_2]
=

2

4
V,=X,+X, +X;-3X,, Cov(V,V,)=(D¢c;b,)Z=0
j=1

Outline

« Introduction

« The Multivariate Normal Density
and Its Properties

« Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

- The Sampling Distribution of and
S

- Large-Sample Behavior of and S

Questions

-What are random samples?
-What is the likelihood?

«How to estimate the mean and
variance of a univariate normal
distribution by the maximum-
likelihood technique? (point
estimates)

+What is the multivariate normal
likelihood?

2011/9/28
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Questions

- What is the trace of a matrix?

- How to compute the quadratic form
using the trace of the matrix? (Result
4.9)

- How to express the trace of a matrix
by its eigenvalues? (Result 4.9)

« Result 4.10

Questions

» How to estimate the mean and
covariance matrix of a multivariate
normal vector? (Result 4.11)

-What is the invariance property of
the maximum likelihood estimates?

«What is the sufficient statistics?

Maximum-likelihood Estimation

i
7

0} 4
A0 )
2 3 5 L&

Multivariate Normal Likelihood

X, X,, -+, X, :random sample from N, (u, )

Joint density of 1 *é"‘f*“)'z’l("f")’ 2
{xl,xz,---,x }: (2)""x™" ‘
as a function of pand X for fixed x;, x,,---, x
= likelihood

Maximum likelihood estimation

Maximum likelihood estimates

n

n

64

2011/9/28
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Trace of a Matrix
k
(,f;\k) - {aii }:> tr(A) = ;aﬁ; cisascalar

(@) tr(cA) =ctr(A)

(b) tr(A£B) =tr(A) £ tr(B)
(c) tr(AB) =tr(BA)

(d) tr(BAB) =tr(A)

k k

() tr(AA) =D > a;

i=1 j=1

Result 4.9

A : k x k symetric matrix
X .k x1vector
(@) x' Ax = tr(x' Ax) = tr(Axx')

(mMM:i%

Proof of Result 4.9 (a)

B:mxk matrix, C:kxm matrix
tr(BC) = tr(CB)

wnquf{i@%J
tr(CB) = ﬁ[z c/.l.b,./} - Z[zk; by.cﬂ) - tr(BC)

= tr(x' Ax) = tr((Ax)x') = tr(Axx')

Proof of Result 4.9 (b)
A=P'AP, P'P=1I
A =diag{l, Ay, A, }
tr(A) = tr(P' AP)
k
=tr(APP") =tr(A) =>4,

i=1

2011/9/28
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Likelihood Function

1 -1{2 1{i(x,-i){x,-i)‘m(i-,.)(?-,.)'”/z

Result 4.10

B : px p symmetric positive definite matrix
b : positive scalar

ibeftr():’lB)lz < ib(Zb)pb e,bp

= B]

for all positive definite ( )y ; with equality
pxp

holding only for £ = (1/2b)B

Proof of Result 4.10

tl’(Zle) —tr [(27131/2 )Bllz ] _ tr[Bqulel/z]
7, - eigenvalues of BY>?X'B"?, all positive

p P
w(z*B)=Yn. [=B|=]]n =B/
i=1 i=1

b
1; 5
1 ,-r(ETB)/2 _ \ =l 22 1 £

= =y — b _—n;12
Eil o Tl
n"e™"? hasa maximum (2b) e at = 2b .. ﬁe’"@’l‘”’z < ﬁ(Zb)”" e

upper bound is attained when X = (1/ 2b)B such that BY*Z*BY? = 251

Result 4.11 Maximum Likelihood
Estimators of p and X

X, X,, -+, X, :random sample from N (n, X)

2011/9/28
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Proof of Result 4.11

Exponent of L(p,X):

_;t{zl(z":(xj ~x[x, _x)ﬂ —%n(i ~p) I (X-p)

J=1

=——¢
T X

73

Invariance Property

0 : maximum likelihood estimator of @

h(é) : maximum likelihood estimator of 4(6)
Examples:

MLEof 2 n=p'E '

MLE of \/o, =[5,

&,=23(x, - X, f =MLE of Var(x,)
n‘

74

Sufficient Statistics

Joint density of
X, X,, X

n

R i O e |

(27[)"1;/2 Z nl2 e
depends on the whole set of observations

X;,X,, -, X, throughxand S

s.x and S are sufficient statistics of a multivariate
normal population

75

Outline

« Introduction

» The Multivariate Normal Density
and Its Properties

»Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

- The Sampling Distribution of ¥ and
S

.Earge—SampIe Behavior of and S

2011/9/28
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Questions

- What is the distribution of sample
mean for multivariate normal
samples?

» What is the distribution of sample
covariance matrix for multivariate
normal samples?

Distribution of Sample Mean

X, X,, -+, X, :random sample from N, (n, X)
Univariate case: p =1
X :N(u,0%1n)
Multivariate case :
X: N,(n,X/n)
cf.Result 4.8

78

Sampling Distribution of S

X, X;, -+, X, srandom sample from N, (n, X)
Univariate case: p =1

(n-1)s* :zn:(Xj —)?)2 :0'2;(”2_1

J
(n-1)s? :JzzZ‘f, oZ, :N(0,6%)
j=1

Multivariate case :
Z,=X,-X:N,(0,%)

(n-)S = Z Z/Z'j :Wishart distribution ,_, ((n-1)S | X)
Jj=1

79

Wishart Distribution

|A|("*P*2)/2e—tr[A}:’l]IZ

op(n1)12 1 p(p=i4|y| (D2 ’ r(l n_ij
=TI S0 )

A : positive definite

Wn—l(A | Z') =

Properties:
Al : Wml (Al | Z')’ AZ : sz (AZ | Z') =
Al + A2 : Vleerz (Al + A2 | Z)

AW (A|X)= CAC: W, (CAC|CEC)

80

2011/9/28
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Outline

« Introduction

» The Multivariate Normal Density
and Its Properties

- Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

- The Sampling Distribution of and
S

. Large-Sample Behavior of X and S

Questions

«What is the univariate central limit
theorem?

-What is the law of large numbers, for
the univariate case and the
multivariate case? (Result 4.12)

«What is the multivariate central limit
theorem? (Result 4.13)

Questions

- What is the limit distribution for the
square of statistical distance?

Univariate Central Limit Theorem

X :determined by a large number of independent
causesV,, V,, -+, V,

V. :random variables having approximately
the same variability

X=V+V,+--+V,

= X has a nearly normal distribution

X is also nearly normal for large sample size

84

2011/9/28
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Result 4.12 Law of Large Numbers

Y., Y,.---, Y, rindependent observations froma
population (may not be normal) with E£(Y;) = u

=
= Y +Y, +---+Y . ..
y =TT onvergesin probability
n
tou

That is, for any prescribed ¢ > 0,
Pl-e<Y-u<e]—>lasn— o

85

Result 4.12 Multivariate Cases

X,,X,, -+, X, independent observations from
population (may not be multivariate normal)
with mean E(X;)=p =

X convergesin probability to p

S convergesin probability to X

86

Result 4.13 Central Limit Theorem

X,,X,, -+, X, :independent observation from a
population with mean p and finite
covariance X

— Vn(X - p) is approximately N,(0,%)
for large samplesize n >> p
(quite good approximation for moderate » when
the parent population is nearly normal)

87

Limit Distribution of
Statistical Distance

X : nearly N, (n, lZ:) for large samplesize n >> p
n

n(X—p) (X —p) :approximately >
for large n-p

S close to X with high probability when
nislarge

. n(X—p)'S™(X —p) :approximately >
for large n-p

88

2011/9/28
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Outline

- Assessing the Assumption of

Normality
» Detecting Outliers and Cleaning Data

» Transformations to Near Normality

Questions

»How to determine if the samples
follow a normal distribution?

What is the Q-Q plot? Why is it
valid?

-How to measure the straightness in a

Q-Q plot?

Questions

» How to use Result 4.7 to check if the
samples are taken from a
multivariate normal population?

«What is the chi-square plot? How to
use it?

Q-Q Plot

Xy S Xy -0 < X,y D Observations on X,

Letx, be distict and » moderate to large, e.g., n > 20
. . o1

Portionof x<x,:j/n— (1—5)/n

j-1/2

n

q0) 1 —z2/2
PlZ<gqg, .]= ——e " dz =
[Z<q,] J‘,m or
Plot (q(j) VX0 )to see if they are approximately

linear, since x,;, = oq,;, + u if the data are from
a normal distribution

92

2011/9/28
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Example 4.9

Ordered
observations Standard normal

Probability levels
] quantiles g

{)
0
6 25 674

.1 a6
N 2
41 3 385
.62 A 125
80 D3 125
.26 65 385
54 75 674
7 85 036
( 95 645

Example 4.9

A *
..
|l ®
L]
L |
L ]
L ]

., e > -
® — 14+

Histogram of MidTerm Scores of
Students of This Course in 2006

@QDMD

Q-Q Plot of MidTerm Scores of
Students of This Course in 2006

n =33, ry = 0.946652

2011/9/28
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Example 4.10 Radiation Data of
Closed-Door Microwave Oven

g ®e

97

Measurement of Straightness

Zn:(x(j) _f)(qU) -q)

Q n n
\/Z () = %)° \/Z (9= 9)°
j=1 j=1
Reject the normality hypothesis at level of
significance « if 7, falls below the appropriate

valuein Table 4.2

98

Table 4.2 Q-Q Plot Correlation
Coefficient Test

Significance

Sample size
9198

99

Example 4.11

For data from Example 4.9, x =0.770,4 =0

10 10
Z;, (x(«/) - )7(_/) =8.584, 21: (xu) - )2 =8.472
J= J=

10
Z;q(%,) =8.795, r,=0.994
=

n=10, a=0.10
1, >0.9351= Do not reject normality hypothesis

100

2011/9/28
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Evaluating Bivariate Normality

Check if roughly 50% of sample observations
lie in the ellipse given by
fall x such that (x—x)'S(x—X) < #2(0.5)}

Example 4.12

x, = sales x; = profits x assets
Company (millions of dollars) (millions of dollars) (millions of dollars)
General Motors 126,974 4,224 173,297
Ford 96.933 3.835

Exxon 86,656

IBM 63,438

General Electric 55264 3.939

Mobil 50,976 1.809

Philip Morris 39,069 2946

Chrysler 36.156 359

Du Pont 2,480

Texaco 2413

Source: “Fortune 500.” Fortune, 121 { April 23, 1990), 346-367 > 1990 ['|.-n;i||\..\'.l:'.;.'_hl-.r.,*«':'\;d

Example 4.12

_ |62.309 10,005.20 255.76 s
¥ { 2927 } :{ 25576 14.30 }Xlo
77(0.5)=1.39
2_ {xl - 62.309“ 0.000184 —0.003293}{;:1 - 62.309} 10
x,—2927 || -0.003293 0.128831 | x,—2927
[x,,x, ] =[126.974,4224] = d* = 4.34 >1.39
Seven out of 10 observations are with 4 <1.39
Greater than 50% = reject bivariate normality
However, sample size (n =10) is too small to reach the conclusion
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Chi-Square Plot

d? = (x—x)S(x—X) :squared distance

Order the squared distance dj, < d( <---<d(,
qc)p((j—%)/n) ZlOO(j—%)/n quantile of the
chi-square distribution with p degrees of freedom
Graphall (g, , (( j—%)/n), a2,

The plot should resemble a straight line through
the origin having slopel

1 .1
Note that g, ((/—-2)/n) = 2, A= =)
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Example 4.13 Chi-Square Plot
for Example 4.12

Example 4.13 Chi-Square Plot
for Example 4.12

Chi-Square Plot for Computer
Generated 4-variate Normal Data

— e — g

Outline

- Assessing the Assumption of
Normality

» Detecting Outliers and Cleaning Data

» Transformations to Near Normality
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Steps for Detecting Outliers
- Make a dot plot for each variable

- Make a scatter plot for each pair of
variables

- Calculate the standardized values.
Examine them for large or small
values

« Calculated the squared statistical
distance. Examine for unusually
large values. In chi-square plot,
these would be points farthest from
the origin.

Outline

» Assessing the Assumption of
Normality

» Detecting Outliers and Cleaning Data
» Transformations to Near Normality

Questions

- How to transform sample counts,
proportion, and correlation, such that
the new variable is more near to a
univariate normal distribution?

+ What is Box and Cox’s univariate
transformation?

« How to extend Box and Cox’s
transformation to the multivariate
case?

Questions

-How to deal with data including large
negative values?

2011/9/28
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Helpful Transformation to
Near Normality

Original Scale Transformed Scale

Counts, y \/;

Proportions, p

logit(5) :;Iog(l —ﬁﬁJ

Correlations, r Fisher's Z(r):%mg[iwj
_

Box and Cox’s
Univariate Transformations

p)
(/:){x _1,/17&0
=y

Inx, A=0
Choose A to maximize

/@(ﬁ):-%ln[%i(ﬁ-ﬁj ]Jr(/i—l)ilnxj

j=1

J

1 n
X =235
n‘3

Example 4.16 (L) vs. A

Example 4.16 Q-Q Plot
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Transforming Multivariate

Observations
Ay Ayyee+, A, - power transformations for

the p characteristics
Select 4, to maximize

2
(. (2)= -g In[iZ(x%‘) - xy)j ]+(z -1)>Inx,
j=1

=

n

- 1
) _ *
=22 xj
}’l/:1
) (&) _ (o) _ o)
@ | X 1 X 1 x;,’ 1
= = =
A A A,

X

117

More Elaborate Approach

A Ay, /1p : power transformations for
the p characteristics
Select A = [ﬂq,ﬁz,---,ﬂp}to maximize

P n
o 2, )= =080 3 -2
= J
S(1) is computed from
o [ X1 dP-1

J ﬂ'l 22 ﬂ,

X

Example 4.17 Original Q-Q Plot for
Open-Door Data

Example 4.17 Q-Q Plot of
Transformed Open-Door Data

A
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Example 4.17 Contour Plot of
for Both Radiation Data

Transform for Data Including
Large Negative Values

{w+1y-alra ¥20,2%0

exs1P i cali2-a) x<0,4%2
_|og(—x+l) x<0,4=2
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