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» Introduction

» The Multivariate Normal Density
and Its Properties

- Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of and
S

»Large-Sample Behavior of and S

Questions

»What is the univariate normal
distribution?

»What is the multivariate normal
distribution?

»Why to study multivariate normal
distribution?

Multivariate Normal Distribution

~ Generalized from univariate normal
density

- Base of many multivariate analysis
techniques

» Useful approximation to “true”
population distribution

- Central limit distribution of many
multivariate statistics

+ Mathematical tractable
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Outline

- Introduction

- The Multivariate Normal Density
and Its Properties

-Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

- The Sampling Distribution of and
S

-Large-Sample Behavior of and S

Questions

-What is the formula for the
probability density function of a
univariate normal distribution?

»What are the probability meaning of
parameters x and o?

-How much probability are in the
intervals (-0, uto) and (u-20, p+20)?

- How to look up the accumulated
univariate normal probability in Table
1, Appendix?

Questions

»What is the Mahalanobis distance for
univariate normal distribution?

»What is the Mahalanobis distance for
multivariate normal distribution?

»What are the symbol for and the
formula of the probability density of
a p-dimensional multivariate normal
distribution?

Questions

- What are the possible shapes in a
surface diagram of a bivariate
normal density?

» What is the constant probability
density contour for a p-dimensional
multivariate normal distribution?

- What are the eigenvalues and
eigenvectors of the inverse of ¥?
(Result 4.1)

Questions

-What is the region that the total
probability inside equals 1-a?

»What is the probability distribution
for a linear combination of p random
variables with the same multivariate-
normal distribution? (Result 4.2)

»How to find the marginal distribution
of a multivariate-normal distribution
by Result 4.2?

Questions

- What is the probability distribution
for a random vector obtained by
multiplying a matrix to a random
vector of p random variables with the
same multivariate-normal
distribution? (Result 4.3)

- What is the probability distribution of
a random vector of multivariate
normal distribution plus a constant
vector? (Result 4.3)
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Questions

- Given the mean and covariance
matrix of a multivariate random
vector, and the random vector is
partitioned, how to find the mean
and covariance matrix of the two
parts of the partitioned random
vector? (Result 4.4)

Questions

-What are the if-and-only-if conditions
for two multivariate normal vectors
X, and X, to be independent? (Result
4.5)

- If two multivariate normal vectors X,
and X, are independent, what will be
the probability distribution of the
random vector partitioned into X;
and X,? (Result 4.5)

Questions

«A random vector X is partitioned into
X, and X,, then what is the
conditional probability distribution od
X, given X, = x,? (Result 4.6)

»What is the probability distribution
for the square of the Mahalanobis
distance for a multivariate normal
vector? (Result 4.7)

Questions

»How to find the value of the
Mahalanobis distance for a
multivariate normal vector when the
probability inside the corresponding
ellipsoid is specified? (Result 4.7)

Questions

-What is the shape of a chi-square
distribution curve?

»How to look up the accumulated chi-
square probability from Table 3,
Appendix?

» What is the joint distribution of two
random vectors which are two linear
combinations of n different
multivariate random vectors? (Result
4.8)

Univariate Normal Distribution

N(u,0%)

1
f(x)= — 67[(’(7“)/6]2/2 —00< X <00
2o
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Table 1, Appendix

Square of Distance
(Mahalanobis distance)

[x‘“] — (- 1) (0?) (x-0)
O

v

(x—p) = (x—p)

p-dimensional Normal Density
N,(nX)

l —(x—p)E Y (x-p)/2
f(X) — e (T (x)
(27[)pl2|2|1/2
—o<x, <o, i=12-,p
x is a sample from random vector
X'=[X, X, X,]

Example 4.1 Bivariate Normal

= E(Xl), Hy = E(Xz)
o, = Var(X)), o,, = Var(X,)

Pz =01, /(\/;11\/0722): Corr(X,, X5)

Ony Op - 1 Op —Op
= { Tl ————
Oy Op 01,0, =01, | =01, Oy

2 2
0110 = Oy = 01,05 (1— pp,)

Example 4.1 Squared Distance

(x—p)E*(x—p)

L B S
P 611622(1_9122)

|: O _Plzw/?u\/;zz:l{xl_ﬂl}
~ P \/0-711\/0-722 On

2 2
_ 1 [xi/h] +[x2/12] Zplz[xiﬂl][xzﬂzj
17/7122 \VOou V02 On VO

Example 4.1 Density Function
1

Jn)= 2714 0,05, (1 p122)
_ 1 YT 2 X~ Hy 2
e 2(1—pfz)[{\/c7uJ [ EJ
_ MK X
(322 22
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Example 4.1 Bivariate Distribution

O = Opp0 P, = 0

Example 4.1 Bivariate Distribution

Oy = Opps P, = 0.75

Contours

Constant probability density contour
= {all x such that (x—p)' L *(x-p) = * |
=surface of an ellipsoid centered at p
axes:+ cﬁl e,
Ye = Ae, i=12-p

Result 4.1

X : positive definite
Ye=Jle=X"e :%e

(4,e) for £ = (1/4,e) for &*
X positive definite

Example 4.2 Bivariate Contour

Bivariatenormal, o,, =0,
eigenvalues and eigenvectors

A =0y, +0y,, 91':[%’%]

, 1 -1
A, =0 — 0y, € :[ﬁ’ﬁ]

Example 4.2 Positive Correlation

C,0,10,>

,,,,,,

30
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Probability Related to
Squared Distance

Solid ellipsoid of x valuessatisfying

(x—p) 7 (x-p) < 7, (@)
has probability1- «

Probability Related to
Squared Distance

—

- -

Result 4.2

X:N,(n,X)=
aX=aX +a,X,++a,X, :
N(a'p,a'Xa)
a'X:N(a'p,a'Xa)foreverya—=
X mustbe N, (n, X)

Example 4.3 Marginal Distribution
X=[X}, X;, - X, ]"N,(n,X)
a'=[10,---,0], a'X=JX,
ap=y, aXa=oy
a'’X:N(a'p,a'Xa)=N(u,0,)
Marginal distribution of X, in X:

N(y;,0,)

Result 4.3

X:N,(1X)

ayX;+-+a, X,
anX;+-+a, X
AX=| 1 TN (AR, AZAY)

a X, +--+a,X,
X+d:N,(n+d,X)

Proof of Result 4.3: Part 1

Any linear combination b'(AX) = a'X,
a=A'b=
(b'A)X: N((b'A)p,(b'A)X(A'D))
=
b'(AX): N(b'(Ap),b'(AX A")b)
valid for everyb = AX: N (Ap, AX A')
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Proof of Result 4.3: Part 2
a'(X+d)=a'X+a'd
a'X:N(a'p,a'Xa)
a'X+a'd:N(a'n+a'd,a'Xa)
aisarbitrary =
X+d:N,(n+d,X)

Example 4.4 Linear Combinations

X: N (1, %)
Xl
XZ}AX
XS

X,-X,| |1 -1 0
X,-Xx,| [0 1 -1
01— 203, + 0y 0'12+O'2370'2270'13}

Ap= ﬂ‘ﬁ _/“z}
Hy = Hs
AZA':{
01yt 053 =0~ 013 0y =20, +03
AX:N,(Ap,AZA")
can be verifiedwith Y, = X, - X,, Y, = X, - X,

Result 4.4
X:Np(p,):)
(35%) 1y X, | X,
X=| ——— , p=l—-—-1 Y= — + ——
X, 293 X, | Ey
((p—g)x1)

=X 1N, (1, Iy)

Example 4.5 Subset Distribution

X:Ns(n, X)
X o o
X1=|: 2:|,”1:|:,u2:|, an{ 22 24:|
X, Hy Oy Oy
el =)
Hy | O Oy

Proof :Set A :[ I | 0 }in Result 4.3
(gxp) (9xq) (gx(p=9))
Result 4.5 Example 4.6 Independence

(@) X,, X, :independent, Cov(X,,X,)= 0

(41x1) (g2x1) (41%42)

X, 1y T, | Zp
O Ny ||| = + -
X, K, X, | Xy

= X, X, rindependent if and only if X,, =0
(©) Xy 1Ny (1, 2y), X, 1N, (5, E5,) independent

X, 1y Z, | 0
T :qu+q2 T T + D
X, n, 0 | Xy

=

X Ny(n,X)
4 10

=1 3 0
00 2

X,, X, :not independent

X,
X, = {Xl} and X, are independent

2

(X, isindependent of X, and also X,)
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Result 4.6
[ X, By
X=|-——|:N,(,%), p=|-——|
| X, K,
le | Z12
L=l-—— + ———|, [E4|>0=
_221 | X,

conditional distribution of X, given X, =x, is
normal with mean = p, + £, X (x, —p,) and

covariance=X,, — X, X %,

Proof of Result 4.6
{ I | -Z,Z,
A=|—— + ———— |

|:X1 - E122; (X, - P‘z)}

X, —n,
joint normal with covariance
Z11 - 2"1222221 | 0
ATA'=| ———————— + -

Proof of Result 4.6

X, —p, —Z,Z50 (X, —p,) and X, —p, are independent
A, Bindependent = P(4| B) = P(4,B)/ P(B) = P(A)
X =y =5 (X, — 1) =X, — 1y — E 5 (X, — 1) |
X, =X,)=

SX =1 —Zp T (X, — 1) = X — 1y — 2T (X, — 1,))
X, - —E,E5 (X, —n,) N, (0,2, —E,E,%,)

X, givenX, =x,:

N, (1 + T (X, — 1), Ty — T X5 E5)

Example 4.7 Conditional Bivariate

X W lloy o
bl o)
Xy Hy |01 Op

show that

2
o o,
f(yx,) =Ny +—2(x, — 1), 04, ——2)
2 Oy

Example 4.1 Density Function
1

Jn)= 2714 0,05, (1 p122)
_ 1 YT 2 Xo —Hy 2
exp{ 2(1_p122)[{ \/GTJ +[ ~ J
_ MK X T
(322 22

Example 4.7

1 [[XlM]2+[x2ﬂ2J22p [%ﬂl]{xzﬂz]]
2(17,0122) \/5711 \/0'722 . \/0-711 \/5722

2

1 o ] 1 (x, — )"

e () |+ L E )
20‘11(1—p122)( o 2 L 2 oy

270,05 (- p) = \/g\/ ou(l-ph)y 270y,
S lx) = f(xx,) ] f(xp)

1 (-t ) ) P 26733 (1p)

) ‘/gv 0'11(1*,0122) ‘




2011/9/28

Result 4.7 v? Distribution
X:N,(nX), [Z[>0 X, N(,02), X, N(u,,0l),
@ (X-p) 2 (X-p): 12 X, N(u,0%); Z, =%:N(O,l)

(b) The probability inside the solid ellipsoid
{x: (X-p) =1 (X-p) < 77 (@)}is1-a,
where y; (o) denotes the upper (100a)th )= {1(;/)”%12’2, 7 >0

| 2
2= Z[x _ﬂ"j , v:.degrees of freedom (d.f.)
i=1 O-,'

5y =422 (v12)
0, 72 <0
(Gamma distribution with o = v /2)

percentile of the ;(j distribution

2 Distribution Curves Table 3, Appendix

Proof of Result 4.7 (a) Proof of Result 4.7 (b)
(XWX = 32X (K1) s .
ah P[(X—u)‘E‘l(X—u)3cJ is the probability
[ (X~ u)} '2122, Z=A(X-p):N,(0,AZA) assigned to the ellipsoid by X: N, (u, X)
&% (X —p)' (X —p) new random variable
aza- |V [zz}{ & o Hl distributed by 7
e [ R
e p PX-py = (X-p) < 22 (@)]=1-
Z:N@0D,(X-p)Z'(X-p) :z:l:zf 2
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Result 4.8

X, X,, -, X, : mutually independent
Xj : Np (p‘jr 2“)

V=X +6,X, ++¢, X, : N{Zc,u/., (Zc,z.)):]
j=1

1

V, =bX, +b,X, +---+b,X, and V, and V, are joint normal

(Zcf.)z (b'e)z
with covariance matrix| ‘=

bor  (OHE

Proof of Result 4.8

X=X, X, X, 1N, (0, Ey)

1 L0 0
N

B, 00 - %
A{Z; Zi ZH'AX{%}:NZ,](Ap,AzxA')

block diagonal terms of AX A" (3" c))E, (3 67)Z
=1 =1

off —diagonaltermsof AZ A" (3 ¢;b,)

Jj=1 56

Example 4.8 Linear Combinations

X, X,, X;, X, :independent identical N, (p, X)

3 3 -11
p=-1,x=/-1 1 0
1 1 0 2

a'X,:N(a'p,a'Xa)
a'n=3a,—a,+a,

a'Ya=23a’ +a’ +2a’ -2a,a, +2a,a,

Example 4.8 Linear Combinations

1 1 1 1
A\ :7X1+EX2 +EX3+EX4 1N, (py, Zy,)

2
6
4
By =D, =2pn=|-2
j=1 2
. 3 -11
Z, = )E=E=-1 1 0
= 1 0 2

4
V, =X, +X, +X,-3X,, Cov(V,,V,)=3c,p)E=0
j=1

Outline

» Introduction

» The Multivariate Normal Density
and Its Properties

»Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of and
S

»Large-Sample Behavior of and S

Questions

+What are random samples?
+What is the likelihood?

-How to estimate the mean and
variance of a univariate normal
distribution by the maximum-
likelihood technique? (point
estimates)

«What is the multivariate normal
likelihood?

10
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Questions

-What is the trace of a matrix?

»How to compute the quadratic form
using the trace of the matrix? (Result
4.9)

-How to express the trace of a matrix
by its eigenvalues? (Result 4.9)

»Result 4.10

Questions

-How to estimate the mean and
covariance matrix of a multivariate
normal vector? (Result 4.11)

» What is the invariance property of
the maximum likelihood estimates?

-What is the sufficient statistics?

Maximum-likelihood Estimation

- =~

Multivariate Normal Likelihood

X, X,,-+, X, :random sample from N, (u, X)
Joint density of 1
=
X1’X21...1X’ (zﬂ)nplzznlz

as a function of pand X for fixed x,, x,,---, X

=) I (x—R) 2
j=

n

= likelihood
Maximum likelihood estimation
Maximum likelihood estimates

Trace of a Matrix
k
A =la,}=tr(A) = a,; cisascalar

(kxk) =y

(@) tr(cA) =ctr(A)

(b) tr(A £B) =tr(A) £+ tr(B)
(c) tr(AB) = tr(BA)

(d) tr(BAB) = tr(A)

(e) tr(AA") = z/: Zk: a;

i=1 j=1

Result 4.9

A .k x k symetric matrix
X : k x1vector
(@) x'Ax = tr(x' Ax) = tr(Axx')

(b) tr(A) = zk;z,.

66

11



2011/9/28

Proof of Result 4.9 (a)

B:mxkmatrix, C:kxm matrix
tr(BC) = tr(CB)

r(BC) = i (i bc;i J

i=1 \_j=1

tr(CB) = i[ic./ibﬁj = i{ibﬁcﬁj = r(BC)

j=1\i=1 i=1 \_j=1

= tr(x' Ax) = tr((Ax)x"') = tr(Axx")

Proof of Result 4.9 (b)
A=P'AP, P'P=I
A =diag{ly, Ay, A }
tr(A) = tr(P'AP)
k
=tr(APP") =tr(A) =>4,

i=1

Likelihood Function
2("/ —n = (x, —p)=tr 2’1/21;(&—#)(’&, -

j=

Sl )

J=1

2(}& —i+§—uXx/.—§+i—u)’
Z;(x xXx x)+n(x p)(x )

J
,tr{z”f’é(x, —=)x, 7?}'+!1(§7p)(7{7|1)'\]“/2

1
L(uyE)=W9

Result 4.10

B : px p symmetric positive definite matrix
b : positive scalar

b
X B]
for all positive definite ( X ; with equality
pxp

i e—tr(Z’lB)IZ < ib (Zb)Pbe—bp

holding only for £ = (1/25)B

Proof of Result 4.10

tr(): IB): tr[(): IBIIZ)BM]:U[BM): 1B1/z]
7, -eigenvalues of BY>X'B"?, all positive

w(='B)=3n, |='B/=][n =Bl
i=1 i=1

[ » b
) 5.
1 e w(z'B)/2 _ \i=l zl

= B \B\

q}’e nl2
2’ L

upper bound is attained when X = (1/ 2b)B such that BY?X*B"? = 21

hasa maximum (2b) e atyp =2b - —e w1 (2"

Result 4.11 Maximum Likelihood
Estimators of p and X

X, X;, -+, X, :random sample from N (u, X)
n=X
g1 (X “X)x,-X)=""1s

n ez n

12
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Proof of Result 4.11
Exponent of L(p, X):
_ % t{z_{g (x, -x)x, - x)‘ﬂ —%n(i —p) = (x-p)
=>p=X

o3 Al

= (2”)/,,;/2‘2,,/2 ¢

Invariance Property

6 : maximum likelihood estimator of @

h(é) : maximum likelihood estimator of /()
Examples:

MLEof p' 2 n=p'T i

MLE of \Jo, =[5,

&, =13 (X, - X} = MLE of Var(xX,)

il
J=1

Sufficient Statistics

Joint density of
X1| Xz X

n

1 7[{27{54("/4)("ﬁi)“’(f*ll)(i*p)'ﬂ/z
= nl2 "

"o
depends on the whole set of observations
X;,X,, -, X, through xand S

~.xand S are sufficient statistics of a multivariate

normal population

Outline

» Introduction

» The Multivariate Normal Density
and Its Properties

- Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of ¥ and
S

. Earge-SampIe Behavior of

and S

Questions

» What is the distribution of sample
mean for multivariate normal
samples?

»What is the distribution of sample
covariance matrix for multivariate
normal samples?

Distribution of Sample Mean

X,, X,, -, X, rrandom sample from N, (n, X)
Univariatecase: p =1
X:N(u,c°/n)
Multivariate case:
X:N,(nX/n)
cf.Result 4.8

13
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Sampling Distribution of S

X,, X,,++, X, : random sample from N, (1, X)
Univariate case: p =1

(n-1)s*= ZHL(XJ —)?)2 ot

j=1

(n-1)s? =UZZZf, oZ, :N(0,0?)
j=1

Multivariate case :

Z,=X,-X:N,(0,%)

(n-DS = ZZ/.Z'/ : Wishart distribution 7, , ((n-1)S| X)

j=1

Wishart Distribution

(n-p-2)/2 e—lr[AE’l]/Z

("Wzli[l"(;(n—i)j

A

w,4(A|X) =
2];(}1—1)/27[1;(]7—1)/4‘2

A : positive definite
Properties:
AW, (AE), AW, (A, |E)=
A +AW, ., (A, +A, %)
AW, (A]|Z)= CAC: W, (CAC|CEC)

80

Outline

» Introduction

» The Multivariate Normal Density
and Its Properties

» Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of and
S

-Large-Sample Behavior of X and S

Questions

- What is the univariate central limit
theorem?

- What is the law of large numbers, for
the univariate case and the
multivariate case? (Result 4.12)

- What is the multivariate central limit
theorem? (Result 4.13)

Questions

»What is the limit distribution for the
square of statistical distance?

Univariate Central Limit Theorem

X :determined by a large number of independent
causesV,, V,, -+, V,

¥, :random variables having approximately
the same variability

X=V+Vy+-+V,

= X has a nearly normal distribution

X is also nearly normal for large sample size

84

14
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Result 4.12 Law of Large Numbers

Y, Y,.---,Y, :independent observations froma
population (may not be normal) with E(Y;) = u

=
= Y+Y,+--+Y . -
7 =L convergesin probability
n
tou

That is, for any prescribed ¢ > 0,
Pl-e<Y-u<e]l—>lasn—> o

Result 4.12 Multivariate Cases

X,,X,, -+, X, independent observations from
population (may not be multivariate normal)
with mean E(X;)=p =

X converges in probability top

S converges in probability to X

Result 4.13 Central Limit Theorem

X,, X,, -, X, :independent observation froma
population with mean p and finite
covariance X
= /n(X —p) is approximately N,(0,%)
for large samplesize n >> p
(quite good approximation for moderate » when
the parent population is nearly normal)

Limit Distribution of
Statistical Distance

X:nearly N, (n, 12‘.) for large samplesize n >> p
n

n(X—p) £ (X —p) :approximately z>
for large n-p

S close to X with high probability when
nis large

2 n(X—p)'S™ (X —p):approximately 2
for large n-p

88

Outline

» Assessing the Assumption of

Normality
» Detecting Outliers and Cleaning Data

» Transformations to Near Normality

Questions

~How to determine if the samples
follow a normal distribution?

- What is the Q-Q plot? Why is it
valid?

»How to measure the straightness in a
Q-Q plot?

15
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Questions

-How to use Result 4.7 to check if the
samples are taken from a
multivariate normal population?

» What is the chi-square plot? How to
use it?

Q-Q Plot

Xy < X <---< X, :Observations on X,

Let x;, be distict and » moderate to large, e.g., n > 20
; . 1
Portion of x <x,, :]/n—>(]—5)/n

P i—1/2
FIZ < g = [ e s = 12

2z n

Plot (qm VX0 )to see if they are approximately

linear, since x;, = oq,;, + w if the data are from
a normal distribution

Example 4.9

Probability level x4 and
S = Standard normal

n quantiles g

Example 4.9

Histogram of MidTerm Scores of
Students of This Course in 2006

-u il

Q-Q Plot of MidTerm Scores of
Students of This Course in 2006

._I L s 0 - ¥ !' %0 R0

96

n = 33, r, = 0.946652

16
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Example 4.10 Radiation Data of
Closed-Door Microwave Oven

Measurement of Straightness
Z’::(x(,-) _f)(q“) -q)

I”Q = - = -
\/Z (x() = %) \/z(%) -q)*

=

Reject the normality hypothesis at level of
significance « if 7, falls below the appropriate

valuein Table 4.2

Table 4.2 Q-Q Plot Correlation
Coefficign_t__T_e_s_t_

Sample size

Example 4.11

For data from Example 4.9, x =0.770,4 =0

10

10
2(’“(/) _7“)7(;) =8.584, Z:,(xm _’7)2 =8.472
J=

Jj=1

10
;qf/) =8.795, 7, =0.994

n=10, «=0.10
1, >0.9351= Do not reject normality hypothesis

100

Evaluating Bivariate Normality

Check if roughly 50% of sample observations
liein the ellipse given by
{all x such that (x-X)'S *(x—X) < #2(0.5)}

Example 4.12

102

17
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Example 4.12

_ | 62.309 10,005.20 255.76 5
e { 2927 } 5= { 255.76 1430 }10
72(0.5)=1.39

- {xl - 62.309“ 0.000184 - 0.003293}?1 - 62.309} 10°5

x,—2927 ||-0.003293 0.128831 | x,—2927

[x,,x, ] =[126.974,4224] = d* = 4.34>1.39
Seven out of 10 observations are with 42 <1.39
Greater than 50% = reject bivariate normality
However, sample size (n =10) is too small to reach the conclusion

103

Chi-Square Plot

d® = (x—x)S™(x—X) :squared distance

Order the squared distance djj) <dj, <---<d_,
4., (( j—%)/n) 100( j—%)/n quantile of the
chi-square distribution with p degrees of freedom
Graphall (g, ,((j *%) In),dZ,)

The plot should resemble a straight line through
the origin having slope 1

Note that g, ((j —%) In)= 72— (i- %) In)

Example 4.13 Chi-Square Plot
for Example 4.12

Example 4.13 Chi-Square Plot
for Example 4.12

Chi-Square Plot for Computer
Generated 4-variate Normal Data

Outline

» Assessing the Assumption of
Normality

» Detecting Outliers and Cleaning Data
» Transformations to Near Normality

18
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Steps for Detecting Outliers
-Make a dot plot for each variable

- Make a scatter plot for each pair of
variables

» Calculate the standardized values.
Examine them for large or small
values

- Calculated the squared statistical
distance. Examine for unusually
large values. In chi-square plot,
these would be points farthest from
the origin.

Outline

- Assessing the Assumption of
Normality

» Detecting Outliers and Cleaning Data
- Transformations to Near Normality

Questions

»How to transform sample counts,
proportion, and correlation, such that
the new variable is more near to a
univariate normal distribution?

»What is Box and Cox’s univariate
transformation?
»How to extend Box and Cox’s

transformation to the multivariate
case?

Questions

-How to deal with data including large
negative values?

Helpful Transformation to
Near Normality

Original Scale Transformed Scale

Counts, y \/;

P ti P 5
roportions, p logit(7) :%|09(1p~]
-p

Correlations, r Fisher's z() :%mg[i;rj
=

Box and Cox’s
Univariate Transformations

xt -1
x(»:):{ ) A=0

Inx, 2=0
Choose A to maximize

e(z)—glnlli(xgﬂ)—x‘“] 1+(,1—1)Z":|nxj
o3k

J=1 J=1

(4) 1 E” (4)

A)

X =— x/-
n j=1

19



2011/9/28

Example 4.16 (A) vs. A

Example 4.16 Q-Q Plot

Transforming Multivariate

Observations
s Agyeee, A, - power transformations for

the p characteristics
Select 4, to maximize

2
zk(a)__gm{lz[xg;y_mj }+(/1—1)Zlnxﬂ(
=1

n'3

— 1 n
@ _ %)
Xe = " Z Xji

J=1

(h) _ (h) _ () _
x(.’t)':[x/lA ! x,.zi o xﬂ’l 1‘|
J

! Z 4,

More Elaborate Approach

A4y Ay, A, - power transformations for
the p characteristics
Selecth = [ﬂi,iz,-~~,ﬁ,p]'to maximize
n P n
Wy 2,1 2,)= —Inis() +3 (4 -1 Inx,
k=1 j=1
S(1) is computed from
A N S

X (') — Jp

J /11 ﬂvz lp

Example 4.17 Original Q-Q Plot for
Open-Door Data

Example 4.17 Q-Q Plot of
Transformed Open-Door Data

o
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Example 4.17 Contour Plot of
for Both Radiation Data

x(l) _ |Og(x+l) xZO,ﬂ.:O

Transform for Data Including
Large Negative Values
{w+1y -2 ¥>0,4%0

exs i oafi2-2) x<0,422
—|Og(—x+1) x<0,4=2
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