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Questions

-What is the concept of the Principal
Components?

»What are the objectives of the
Principal Components?
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Concept of Principal Components

X2

Principal Component Analysis

» Explain the variance-covariance
structure of a set of variables
through a few linear combinations of
these variables

- Objectives
—Data reduction
— Interpretation

- Does not need normality assumption
in general

Outline

« Introduction
« Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
«Large Sample Inferences

» Monitoring Quality with Principal
Components

Questions

-How to find the Principal Components
for a Random vector with a known
probability distribution? (Result 8.1)

What is the relationship between the
sum of all eigenvalues and the trace
of the covariance matrix? (Result 8.2)

» How to calculate the proportion of

total population variance due to the
kth principal component?
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Questions

-What is the relationship between the
ith principal component and the ith
variable? (Result 8.3)

- What is the geometric interpretation
of the principal components?
- How to find the principal components

for a standardized random vector?
(Result 8.4)

Questions

»What are the principal components
for a diagonal covariance matrix?

»What are the principal components
for the special covariance matrix

Principal Components
Random vector X'=|X, X, - X, |has

the covariance matrix
Linear combination:Y, =a X, i=12-,p
Var(Y,)=a,Xa,, Cov(Y, Y,)=aZXa,
First principal component :
a,X that maximizes Var(a,X) subject toa,a, =1
ith principal component :
a,X that maximizes Var(a,X) subject toa,a, =1
and Cov(a, X, a,X) =0 for k <i u

0'2 po‘z “ee paz

Z: po‘2 62 e paz

yolea p0'2 o?
Result 8.1

Covariance matrix X of random vector X

is with eigenvalue - eigenvector pairs (1.,e, ),
where 4, > 2, >---> 4, >0

The ith principal component is given by
Y,=eX, i=12-,p, with

Var(Y)) =e.Xe, = 1,
Cov(Y,Y,)=eXe, =0,i 2k

If some A, are equal, the choice of corresponding

i=1, 2,...’p

e, and hence Y; are not unique 2
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Proof of Result 8.1

a a .
max = A, attained whena=e,
=0 q'q

a'Xa

ee, =1, thus max =1 =eXe = Var(y)

=0 gq'q

a'Xa
max
ale..e, a'a

a=e€,.,, ek+12ek+l = /11”1 = Var(Yk+1)

:ﬂk+l’k:1’ 2’---’p_1

Cov(Y,,Y,)=eXe, =e,Ae, =0foranyi =k

13

Result 8.2
Covariance matrix X of random vector
X= [Xl X, - Xp]is with eigenvalue -

eigenvector pairs (4,,e, ), where 4, > 4, >---> 4, >0
The ith principal component is given by
Y,=eX, i=12--,p, then

P
O +0y+to,, = Var(X)
i=1

P
= A+ A+ -+, =) Var(Y)

i=1 14

Proof of Result 8.2
L=PAP', A=diagih, Ay A,
P=le, e, - ¢ PP=PP=I

Op+0y+to,, = Zp:Var(X,.) =tr(X)
=1
=tr(PAP')=tr(AP'P)=tr(A)

P
= A+ A4+ A, = Var(Y)

i=1

Proportion of Total Variance due to
the kth Principal Component

Proportion of total

population variance _ A
due to the kth principal | 4 +4, +-+4,
component

16
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Result 8.3

Y, = e, X are the principal components obtained
from the covariance matrix X, then

e. A
Pr.x, = k\/_ k=12 p
Ok

are the correlation coefficients between ¥, and

Proof of Result 8.3

a,=[0 - 0 1 0 - OJsothatx, =a,X
Cov(X,,Y,)=Cov(a,X,e,X)=a,Ze, = Le,
Var(Y;) = 4, Var(X;)=oy

Cov(X,.Y:) Aieig

Prx = JVar(v;)/Var(x,) B \//’t_l@
\/\/;L_iﬁ{ i,k=12,-
O 1k

..'p

18

variable)(,(.Heree;.=[el.1 e, e,.p]isthe
eigenvector of X corresponding to the eigenvalue
AoAlso X=[x, X, - x,]
Example 8.1
X'=[X, X, X,| hasthecovariance matrix
1 -2 0
X=(-2 5 0/ whoseeigenvalue-eigenvector
0 0 2
pairs are

2,=583, e =[0.383 -0.924 0]
2, =200, e,=[0 0 1]
2,=017, ¢ =[0.924 0383 0]

Example 8.1

Principal components
Y, =e,X=0.383X, -0.924.X,
Y, =e,X=X,
Y, =e,X =0.924.X, +0.383X,
Verification
Var(Y;) = (0.383)*Var(X,)
+2(0.383)(~0.924) Cov(X,, X,) + (-0.924)* Var(X,)
=5.83=4
Cov(1;,Y,) =0.383Cov(X,, X;)—0.924Cov(X,, X;) =0

20
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Example 8.1
Lzojg, Mzo.gg
A+ Ay + A3 A+ Ay + A3

L _enfh 03830583
o Vo V1
_enh _ -0.924/0583 _

Py, x, = =-0.998

02 \/g
i

P, x; = Pr,.x, =0, Pr,xy =
V033

=0.925

Geometrical Interpretation
X:N,(n,X)

X is with eigenvalue - eigenvector pairs (4, e, )
constant probability density ellipsoid
(x-p)2?(x-p)=¢?

= e + el +oe e, feon)f

2 P

Principal components of x-p: y, =e,(x-p)

i=1,2,,p

2 1 2 1 2 1 2

c =— + — Foeee b —
PRt lpyp

Geometric Interpretation

A

Standardized Variables

7Kt 1o,
Oii
1’0-11 0

0 [ 0

Z=V_l/2(X—p), vY2 _ : 0:'22 ) :
0 0 - Jo,

1 po - py

1 ..
Cov(z) =V 2pviz _p_| P2 T T P
Py P2y 1
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Result 8.4
z=\z, z, - z,| withCov(Z)=p
(%4 e;): eigenvalue - eigenvector pairs of p
A2 Ay 222, 20
The ith principal component of Z:
Y,=eZ=eVY3(X-p) i=12,-,p

SVar(r,) = SVar(z,) = p
i=1 i=1

Py, .z, Zeik\/ﬂ“_i’ k=12, p

25

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)
population variance A
due to the th principal Cp
component

26

12/20/2011

Example 8.2

2{1 4} p{l 0.4}

4 100 04 1
Eigenvalue - eigenvector pairs for X :

2, =100.16, e; =[0.040 0.999]

A, =084, e,=[0.999 -0.040]
Eigenvalue - eigenvector pairs for p :
J=1+p=14, e =[0.707 0.707]
A, =1-p=06, e,=[0.707 -0.707]

27

Example 8.2

Principal components for X : A =0.992
A+,

Y = 0.040.X; +0.999.X,
Y, =0.999.X, —0.040X,

!

Principal components forp: —==0.7
p

Y, =0.7072, +0.707Z, = 0.707(X; — 11,) + 0.0707(X, — 11,)
Y, =0.707Z, —0.707Z, = 0.707(X; — 11,) - 0.0707(X, — 11,)

Prz, =euA =0.837, py , = e[l =0.837

28




Principal Components for Diagonal
Covariance Matrix

o, 0 - 0
T=| o':22 ) : ,el.=[0 ... 010 - 0]

e =o.e, Y=¢X=X,

p=1 pe =le, Y =e;.Z=Z,.

X: N, (p, X), constant density ellipsoid is
a right ellipsoid for X
and a sphere for Z

29

Principal Components for a Special
Covariance Matrix

Principal Components for a Special
Covariance Matrix

1 1 —(i-1)

Ve NN

i=2p

Y—eZ-—t$z A_,lmp
N= p

the last p —1components collectively contribute

very little to the total variance and can be neglected

when pisnearl

31

o’ po® - po’ 1 p - p
o o ... o2 o 1 - D
X= p: : - p: = :
po’  po? o’ P p 1
T e ]
NI P
T =d=we=2,=1=p
Outline

- Introduction
- Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
-Large Sample Inferences

» Monitoring Quality with Principal
Components

32
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Questions

-What are the sample principal
components?

« How to compute the sample principal
components?

» How to decide the number of
principal components required?

- What is the geometric interpretation
of the sample principal components?

33

Questions

»How to compute the sample principal
components for standardized random
vectors?

-What does it mean for an unusually
small value for the last eigenvalue
from either the sample covariance or
correlation matrix?

34
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Sample Principal Components
X; . Xy, -, X, :nindependent drawings from some

p —dimensional population with mean p and
covariance matrix X
sample mean x, sample covariance matrix S

first sample principal componenta;x; :

maxa,Sa;, subjecttoaja, =1
a

ith sample principal component a,x :

maxa,Sa, subjecttoaa, =1 and a,Sa, =0
a;

35

Sample Principal Components

S = {s;, }is with eigenvalue - eigenvector pairs
(il.,é,.) i k=12 p

ith sample principal component of observation x :
P =@,X=eyx; + 5%y +eete,x,
M2p222,20

sample variance(y, ) = /{k

sample covariance(y;,y,) =0, i#k

. p P~
Total sample variance= Y's; = >4, r; , =
i=1 .

: i Xk
i=1




Example 8.3

Socioeconomic variables for 61 tracts in Madison, Wisconsin.
X, : total population (thousands)
X, : professional degree (percent)
X :employed age over 16 (percent)
X, : government employment (percent)
X5 : median home value ($10,000s)
x'=[4.47 396 71.42 2691 1.64]

3.397

-1.102 9.673
S=| 4306 -1513 55.626

—2.078 10.953 -28.937 89.067

0.027 1203 -0.044 0.957 0.319 a7

Example 8.3

Coelficients for the Principal Components
{Correlation Cocfficients in Parentheses)

Variable & (r;, ) € iri, ) € By €5
| x 2 - -

Total population | —0.038( - .22) 0.071(.24) 0.188 0477 0.058
Profession 0.105(.35) 0.130(.26) —-0.961 07 —(1139
Employment (%) | 0.492( - .68) (L¥64(.73) 046 —{091 0005
Government N )

employment (%) | (.863(.93) 0.480(.32) 0.153 ~(L030 0007
Medium home

value | 0.009(.16) 0.015(.17)  —0.125 0082 0.989
Variance (A,}: | 107.02 39.67 8.37 287 0.15
Cumulative

percentage of

total variance | 617 928 98,1 999 1.000

38

Scree Plot to Determine Number of
Principal Components

A
L

39

Example 8.4: Pained Turtles

natural logarithms of the measured carapace
length, width, and weight of 24 male pained turtles
sample mean vector :
x=[4.725 4.478 3.703]
sample covariance matrix

11.072 8.019 8.160
$=10"% 8.019 6.417 6.005

8.160 6.005 6.773

40
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Example 8.4

COEFFICIENTS FOR PRINCIPAL COMPONENTS
{Correlation Coefficients in Parentheses)

Variable & {r ) & 8,

in {length) 683 (.99) -.159 -.713
In (width) 510 (97) —.594 622
in (height) S23(97) 788 324
Variance (A,): 2330 % 1077 60 % 107 .36 % 107
Cumulative

percentage of total

variance 96.1 98.5 100

41

Example 8.4: Scree Plot

A X 107

20~

Example 8.4: Principal Component

- One dominant principal component

—Explains 96% of the total
variance

« Interpretation
1 = 0.683In(length) + 0.510In(width) +0.523In(height)

 In[(length) % (widih) 510 (heighr) 5%
= In(volume of a box with adjusted dimension)

43

a4
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Standardized Variables

Zﬁ:xji_xi’ i=1,2- p, Z:{Z/-l-}
! Sii ‘
z‘,*Dfuz(X, x) i:%Z'I:O
I 1 512 1p
1 S10 1 SZ‘U
S: =2 7722=| uon . o Aszys, 7R
sllp SZ-I’ l

45

Principal Components

7,,2,, -, Z, arestandardized observations
with sample covariance matrix R

(ii ,éi): eigenvalue - eigenvector pairs of R

W20z 2,20

The ith principal component of z :

yi=ez, i=12p

sample variance (y,) = il., sample covariance(y;,y,) =0,i =k

total sample variance = tr(R) = p

ry,-,zk =éik\/7i' i,k:l, 2]...’p

46

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)
sample variance

due to the kth sample principal
component

A hliae
p

a7

Example 8.5: Stocks Data

- Weekly rates of return for five stocks
- X, JP Morgan
- X,: Citibank
- X;: Wells Fargo
- X,: Royal Dutch Shell
- X;: ExxonMobil

48
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Example 8.5
x'=[0.0011 0.0007 0.0016 0.0040 0.0040]
1
0632 1

R=/0511 0574 1
0.115 0322 0183 1
0.155 0.213 0.146 0.683 1

Jy=2437, & =[0469 0532 0465 0.387 0.361]

4, =1.407, &,=[-0368 —0.236 -0.315 0.585 0.606]
J3=0501, &,=[-0.604 —-0.136 0.772 0.093 —0.109]
4, =0400, &, =[0.363 —0.629 0.289 —-0.381 0.493]
Js=0255 &;=[0.384 —0496 0071 0595 —0.498] .

Example 8.5

First two principal components:
P =&,z = 0.469z; +0.532z, +0.465z5 +0.387z, +0.361z;
$, = e,z = —0.368z, —0.236z, — 0.315z, + 0.585z, + 0.606z;

Mt g7y
p
, - roughly equally weighted sum (index) of the five stocks

(general stock - market component, or, market component)
¥, : contrast banking stocks and the oil stocks
(industry component)

50
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Example 8.6

- Body weight (in grams) for n=150
female mice were obtained after
the birth of their first 4 litters

x'=[39.88 45.08 48.11 49.95]
1
07501 1
106329 06925 1
0.6363 0.7386 0.6625 1

Example 8.6

~

o~

=3.085 1,=0382, A,=0342, 4, =0.217
A ~1+(p—-1)F =1+ (4—1)x0.6854 = 3.056
dyx Ay~

R Ay~ Ay << j\l
3, =€,z =0.49z, +0.52z, +0.49z, + 0.50z,

52
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Comment

- An unusually small value for the last
eigenvalue from either the sample
covariance or correlation matrix can
indicate an unnoticed linear
dependency of the data set

» One or more of the variables is
redundant and should be deleted

- Example: x, =x; + x, + x5

Outline

» Introduction
» Popular Principal Components

» Summarizing Sample Variation by
Principal Components

- Graphing the Principal Components
-Large Sample Inferences

- Monitoring Quality with Principal
Components

54

Questions

- Why to check the normality of the
first few principal components?

- How to pinpoint suspect observation?

Check Normality and
Suspect Observations

- Construct scatter diagram for pairs of
the first few principal components

- Make Q-Q plots from the sample
values generated by each principal
component

» Construct scatter diagram and Q-Q
plots for the last few principal
components

56
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Example 8.7: Turtle Data

, = 0.683(x, —4.725) + 0.510(x, — 4.478)
+0.523(x; —3.703)

$, =—0.159(x, — 4.725) — 0.594(x, — 4.478)
+0.788(x —3.703)

5 = —0.713(x, — 4.725) +0.622(x, — 4.478)
+0.324(x; —3.703)

Example 8.7

. ) L

Lt | |
-1 i 1 2 B e (T S R T
Y. i

58

Outline

- Introduction
» Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
« Large Sample Inferences

» Monitoring Quality with Principal
Components

Questions

- What are the large sample
distribution for eigenvalues and
eigenvectors?

- How to determine the confidence
interval for an eigenvalue?

» What is the approximate distribution
for estimated eigenvectors?

- How to test for equal correlation
structure?

60
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Large Sample Distribution for
Eigenvalues and Eigenvectors
S is with eigen values i‘:lﬂl ipJand

~

eigenvectorse;, e,, -, €,

LetA = diag{ﬂi, A, } J;'s are eigenvalues of X
= /n (A — 1) : approximately N,(0,2A%)

) ) .
LetE. =1 Y —* _e.e
] l;(lk_ﬂ’i)z .

= /n(&, e, ):approximately N, (0,E,)

A, isindependent of the elements of associated €,

Confidence Interval for 2,
A N(A,,222 [ n) for n large

100(1—- ex)% confidence interval for 4, :

A <4 A

i S i
1+z(al2)N2/n " 1-z(al2)V2/n

62

Approximate Distribution of
Estimated Eigenvectors

Vn(e, —e,): approximate N, (0,E,)
E, can be approximated by

E[ = Ai Zp:#kék
-4

63

Example 8.8

Stock price data : Ng(p, X)

X has distinct eigenvalues 4; > 4, >---> 15 >0
n =103 large

J, =0.0014, z(0.025) =1.96

95% confidence interval

0.0014 0.0014

A4 < , or
1+1.96+/2/103 A 1-1.964/2/103

0.0011< 4, <0.0019

64
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Testing for Equal Correlation

1 p - p
Hy:p=po= p 1 ,0 Hyip#po
p p 1
p-1cd p(p-2) %ick p-(p-2)-7)°

Reject H, in favor of H, if

_ (n- 1)[

X X (ry —7)° —72(’% —7) } > ey p-2yi2(@)
C(1-7)?

k i<k

65

Example 8.9
1
. 0.7501 1
Example 8.6, female mice data R =
0.6329 0.6925 1
0.6363 0.7386 0.6625 1

7, =0.6731, 7, =0.7271, 1, = 0.6626, 7, = 0.6791, 7 = 0.6855

>3 (r —7) =0.01277, Zrk—r ) =0.00245, 7 = 2.1329

ki<k

T= M[o 01277 - (2.1329)(0.00245)| =11.4
(1-0.6855)>

z ZKA a)(4-2)12 (0 05) =11.07

The evidence against H,, is strong, but not overwhelming

66

Outline

- Introduction
» Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
«Large Sample Inferences

« Monitoring Quality with Principal
Components

67

Questions

-How to monitor a stable process
using the first two principal
components?

»How to monitor a stable process
using the 7?2 chart from the principal
components?

-How to control future values by
principal components?

68
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Questions

- Why avoiding Computation with
Small Eigenvalues?

69

Monitoring Stable Process: Part 1

The values of the first two principal components
should be stable for a process stable over time
Construct the quality ellipse for the first two

principal components when » large:
~2 ~2

73 <75 (@)

70

Example 8.10
Police Department Data

Variable € [ &, &, &
Appearances overtime (x,) D46 048 629 ~.643 A32
Extraordinary event (x;) 039 985 - 077 - 151 ~-007
Holdover hours {x3) ~.658 107 582 2500 —.392
COA hours {x4) 734 069 503 397 -213
Meeting hours (x) —153 107 081 586 784
L1 2770226 1429206 628129 221,138 99824

*First two sample cmponents explain 82%
of the total variance

71

Example 8.10:
Principal Components

Period Vi :V;?. ¥ia ;’; 4 \A’w
1 2044.9 5882 4258 -189.1 ~2008
2 ~2143.7 ~6H86.2 883.6 ~5659 4415
3 ~177.8 ~464.6 707.5 736.3 38.2
4 ~2186.2 450.5 -184.0 4437 —325.3
5 —~878.6 —545.7 115.7 296.4 4375
6 5632 10454 2812 620.5 142.7
7 403.1 66.8 340.6 ~135.5 5212
8 - 1988.9 ~801.8  —14373 —148.8 616
9 132.8 5637 125.3 68.2 611.5
10 ~2787.3 ~213.4 7.8 1694 2023
11 283.4 3936.9 -(.9 2762 ~139.6
12 761.6 256.0  —2153.6 ~418.8 282
3 - 498.3 2447 9665  —11423 182.6
14 2366.2 —1193.7 —168.5 2706 3449
18 1917.8 ~782.0 -%2.8 ~196.8 -89.9
16 21877 -373.8 170.1 ~841  —2502

72
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Example 8.10:
95% Contr_g_l__l;_!_lipse

1000

00

NN}

Monitoring Stable Process: Part 2
X:N,(n L), E=[e1 e, - epJ

X—H:ZP:(X—H)'efef :Zp:Yiei
i=1

i=1

El(X_"_Ylel_YZeZ):[O 0¥ - Yp}:[o 0 Y(Z)}

2 y2 2 ,
Y' E’l Y :i+74+...+7p:l
(2)=Y(2).Y2) ~(2) -2
)Y /13 /14 /Ip P
~2 ~2 ~2
=2 e 2 yoL =72 ()
J p
4 ,

74
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Example 8.11
T2 Chart for Unexplained Data

Example 8.12
Control Ellipse for Future Values

€ &, € € &
Appearances overtime {x;) 049 629 304 479 530
Extraordinary event {x,) 007 -.078 939 ~.260 -.212
Holdover hours (x;) -.062 582 —-.089 ~.158 —437
COA hours {x,} 731 2503 =) =336  -291
Meeting hours {x;) -~.159 081 058 -.752 632
A 129647499 672995.1 396,596.5 194,401.0 92,7603

*Example 8.10 data after dropping out-of-control case

19
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Example 8.12 Avoiding Computation with Small
99% Prediction Ellipse Eigenvalues
§ djj z(ij_i_j}jlél_j;ﬂéZ)(ij_i_)’;jlél_jjzéZ)

= (ij —X- jflél - JA’jzéz )Eﬁ(i; -X _j;jlél - J?,-zéz)

10‘()0

P
= 7’ :approximate cy’
k=3

n

di="3di=ev, sh=—t->(dk-azf =2cv
n‘= n—-1%4

~ 1000 il

2 -5\
Sq2 (d U )
g ¢c= 242’ v=2-7
L U AN N A N R S B N
5000 ~2000 0 2000 4000 v d?
g 77 78

20



