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December 30, 2012 TA: H.C. Cheng

(Principal Components Analysis)

The main objective of principal components analysis (PCA) is to reduce the di-
mension of the observations. The simplest way of dimension reduction is to take
just one element of the observed vector and to discard all others. This is not a
very reasonable approach since strength may be lost in interpreting the data. An
alternative method is to weight all variables equally, i.e., to consider the simple av-
erage p−1

∑p
j=1Xj of all the elements in the vector X = (X1, . . . , Xp)

T . This again
is undesirable, since all of the elements of X are considered with equal importance
(weight).

A more flexible approach is to study a weighted average, namely

δTX =

p∑
j=1

δjXj so that

p∑
j=1

δ2j = 1.

The above equation is also called a standardized linear combination (SLC) and
the weighting vector δ = (δ1, . . . , δp)

T can then be optimized to investigated and
to detect specific features. One aim is to maximize the variance of the projection
δTX, i.e., to choose δ according to

max
δ:‖δ‖=1

Var(δTX) = max
δ:‖δ‖=1

δTVar(X)δ.

The interesting “directions” of δare found through the spectral decomposition of
the covariance matrix (from the Rayleigh quotient theorem). Indeed, the direction
δ is given by the eigenvector γ1 corresponding to the largest eigenvalue λ1 of the
covariance matrix Σ = Var(X). Hence the SLC with the highest variance is the
first principal component (PC) y1 = γT1 X. Orthogonal to the direction γ1 we find
the second highest variance y2 = γT2 X, the second PC. Proceeding in this way and
writing in matrix notation, the result for a random variable X with E(X) = µ and
Var(X) = Σ = ΓΛΓT is the PC transformation which is defined as

Y = ΓT (X − µ).

Here we have centered the variable X in order to obtain mean PC variance Y .

In practice the PC transformation has to be replaced by the respective estimators:
µ becomes x, Σ is replaced by S (the empirical covariance matrix). If g1 denotes the
first eigenvector of S, the first principal component is given by y1 = (X−1nx

T )g1.
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More generally if S = GLGT is the spectral decomposition of S, then the PCs are
obtained by

Y = (X − 1nx
T )G.

Note that with the centering matrix H = I − (n−11n1Tn ) and H1nx
T = 0 we can

write

SY = n−1Y THY = n−1GT (X − 1nx
T )TH(X − 1nx

T )G

= n−1GTXTHXG = GTSG = L.

where L = diag(l1, . . . , lp) is the matrix of eigenvalues of S. Hence the variance of
yi equals the eigenvalue li.

The weighting of the PCs tells us in which directions, expressed in original coordi-
nates, the best variance explanation is obtained. A measure of how well the first
q PCs explain variation is given by the relative proportion:

Ψq =

∑q
j=1 λj∑p
j=1 λj

=

∑q
j=1 Var(Yj)∑p
j=1 Var(Yj)

.

The covariance between the PC vector Y and the original vector X is calculated
as

Cov(X, Y ) = E(XY T ) − E(X)E(Y T ) = E(XY T )

= E(XXTΓ) − µµTΓ = Var(X)Γ

= ΣΓ = ΓΛΓTΓ = ΓΛ.

Hence, the correlation coefficient ρXiYj , between variable Xi and the PC Yj is

ρXiYj =
γijλj

(σXiXi
λj)1/2

= γij

( λj
σXiXi

)1/2
.

Using actual data, this can be translated into

rXiYj = gij

( lj
sXiXi

)1/2
.

The correlations can be used to evaluate the relations between the PCs Yj where
j = 1, . . . , q, and the original variables Xi, where i = 1, . . . , p. Note that

p∑
j=1

r2XiYj
=

∑p
j=1 ljg

2
ij

sXiXi

=
sXiXi

sXiXi

= 1.

So the r2XiYj
may be seen as the proportion of variance of Xi explained by Yj.

The data set of this exercise comes from n random sample with variate 6. Please
answer the following questions
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(a) Please find the principal directions with respect to each eigenvalues

(b) Please plot the principal components 1 vs. 2, 2 vs. 3, 1 vs. 3 of the data
and mark the first 100 by “o” and others “+” respectively.

(c) Please find the proportion of variance and the cumulated proportion of each
eigenvalue.

(d) Please find the correlation coefficient rXiYj , i = 1, . . . , 6, j = 1, 2 and plot it
out. Which of the original variables are most strongly correlated with the
principal component Y1 and Y2?

3


