
Multivariate Statistical Analysis, Exercise 11, Fall 2011, Prof.S.K.Jeng

January 6, 2012 TA: H.C. Cheng

(Principal Components Analysis)

The main objective of principal components analysis (PCA) is to reduce the di-
mension of the observations. The simplest way of dimension reduction is to take
just one element of the observed vector and to discard all others. This is not a
very reasonable approach since strength may be lost in interpreting the data. An
alternative method is to weight all variables equally, i.e., to consider the simple av-
erage p−1

∑p
j=1Xj of all the elements in the vector X = (X1, . . . , Xp)

T . This again
is undesirable, since all of the elements of X are considered with equal importance
(weight).

A more flexible approach is to study a weighted average, namely

δTX =

p∑
j=1

δjXj so that

p∑
j=1

δ2j = 1.

The above equation is also called a standardized linear combination (SLC) and
the weighting vector δ = (δ1, . . . , δp)

T can then be optimized to investigated and
to detect specific features. One aim is to maximize the variance of the projection
δTX, i.e., to choose δ according to

max
δ:‖δ‖=1

Var(δTX) = max
δ:‖δ‖=1

δTVar(X)δ.

The interesting “directions” of δare found through the spectral decomposition of
the covariance matrix (from the Rayleigh quotient theorem). Indeed, the direction
δ is given by the eigenvector γ1 corresponding to the largest eigenvalue λ1 of the
covariance matrix Σ = Var(X). Hence the SLC with the highest variance is the
first principal component (PC) y1 = γT1 X. Orthogonal to the direction γ1 we find
the second highest variance y2 = γT2 X, the second PC. Proceeding in this way and
writing in matrix notation, the result for a random variable X with E(X) = µ and
Var(X) = Σ = ΓΛΓT is the PC transformation which is defined as

Y = ΓT (X − µ).

Here we have centered the variable X in order to obtain mean PC variance Y .

In practice the PC transformation has to be replaced by the respective estimators:
µ becomes x, Σ is replaced by S (the empirical covariance matrix). If g1 denotes the
first eigenvector of S, the first principal component is given by y1 = (X−1nx

T )g1.
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More generally if S = GLGT is the spectral decomposition of S, then the PCs are
obtained by

Y = (X − 1nx
T )G.

Note that with the centering matrix H = I − (n−11n1Tn ) and H1nx
T = 0 we can

write

SY = n−1Y THY = n−1GT (X − 1nx
T )TH(X − 1nx

T )G

= n−1GTXTHXG = GTSG = L.

where L = diag(l1, . . . , lp) is the matrix of eigenvalues of S. Hence the variance of
yi equals the eigenvalue li.

The weighting of the PCs tells us in which directions, expressed in original coordi-
nates, the best variance explanation is obtained. A measure of how well the first
q PCs explain variation is given by the relative proportion:

Ψq =

∑q
j=1 λj∑p
j=1 λj

=

∑q
j=1 Var(Yj)∑p
j=1 Var(Yj)

.

The covariance between the PC vector Y and the original vector X is calculated
as

Cov(X, Y ) = E(XY T ) − E(X)E(Y T ) = E(XY T )

= E(XXTΓ) − µµTΓ = Var(X)Γ

= ΣΓ = ΓΛΓTΓ = ΓΛ.

Hence, the correlation coefficient ρXiYj , between variable Xi and the PC Yj is

ρXiYj =
γijλj

(σXiXi
λj)1/2

= γij

( λj
σXiXi

)1/2
.

Using actual data, this can be translated into

rXiYj = gij

( lj
sXiXi

)1/2
.

The correlations can be used to evaluate the relations between the PCs Yj where
j = 1, . . . , q, and the original variables Xi, where i = 1, . . . , p. Note that

p∑
j=1

r2XiYj
=

∑p
j=1 ljg

2
ij

sXiXi

=
sXiXi

sXiXi

= 1.

So the r2XiYj
may be seen as the proportion of variance of Xi explained by Yj.

The data set of this exercise comes from n random sample with variate 6. Please
answer the following questions
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(a) Please find the principal directions with respect to each eigenvalues

Solution: The vector of eigenvalues of S is

l = (2.985, 0.931, 0.242, 0.194, 0.085, 0.035)T .

The eigenvectors gj are given by the columns of the matrix

G =


−0.044 0.011 0.326 0.562 −0.753 0.098
0.112 0.071 0.259 0.455 0.347 −0.767
0.139 0.066 0.345 0.415 0.535 0.632
0.768 −0.563 0.218 −0.186 −0.100 −0.022
0.202 0.659 0.557 −0.451 −0.102 −0.035
−0.579 −0.489 0.592 −0.258 0.085 −0.046

 .

(b) Please plot the principal components 1 vs. 2, 2 vs. 3, 1 vs. 3 of the data
and mark the first 100 by “o” and others “+” respectively.

Solution: See figure 1.

(c) Please find the proportion of variance and the cumulated proportion of each
eigenvalue.

Solution:

eigenvalue proportion of variance cumulated proportion
2.985 0.67 0.67
0.931 0.21 0.88
0.242 0.05 0.93
0.194 0.04 0.97
0.085 0.02 0.99
0.035 0.01 1.00

(d) Please find the correlation coefficient rXiYj , i = 1, . . . , 6, j = 1, 2 and plot it
out. Which of the original variables are most strongly correlated with the
principal component Y1 and Y2?

Solution: See figure 2. The variables X4, X5 and X6 correspond to correla-
tions near the periphery of the circle and are thus well explained by the first
two principal components.
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Figure 1:

Figure 2:
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