
Multivariate Statistical Analysis, Exercise 5, Fall 2011, Prof. S.K. Jeng

November 11, 2011 TA: H.C. Cheng

(1) (t Distribution) The random sample in this exercise is an M × n matrix
X. For this exercise, M = 1000, n = 20. The element of each row of X,
x1, x2, . . . , xn, are iid normal distribution with mean µ = 10, variance σ2 = 9;
there sample mean x = 1

n

∑n
i=1 xi and sample variance s2 = 1

n−1
∑n

i=1(xi−x)2

Then the number of rows M is the number of independent realization of each
random row vector. Additionally, let Z be a standard normal distribution,
and U ∼ χ2

n be the chi-square distribution with degrees of freedom n. Please
answer the following questions.

(a) Here we briefly show why x−µ
s/
√
n
∼ tn−1.

If Z and U are independent, then the distribution Z/
√
U/n is called

the t distribution with n degrees of freedom with probability density
function

fn(t) =
Γ[(n+ 2)/2]√
nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

,

where the gamma function Γ(·) is defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt, x ∈ R.

Now we first check that (n− 1)s2/σ2 is the chi-square distribution with
n− 1 degrees of freedom. Note that

1

σ2

n∑
i=1

(xi − µ)2 =
n∑
i=1

(
xi − µ
σ

)2

∼ χ2
n.

Also,
1

σ2

n∑
i=1

(xi − µ)2 =
1

σ2

n∑
i=1

[(xi − x) + (x− µ)]2 .

Expanding the square and using the fact that
∑n

i=1(xi − x) = 0, we
obtain

1

σ2

n∑
i=1

(xi − µ)2 =
1

σ2
(xi − x)2 +

(
x− µ
σ/
√
n

)2

(1)

⇒ W =
(n− 1)s2

σ2
+ V, (2)
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, where W ∼ χ2
n, and V ∼ χ2

1.

At this moment, it can be shown geometrically that the random variable
x and the vector of random variables (x1 − x, x2 − x, . . . , xn − x) are
independent. Hence, W is independent of V . Consequently, (n−1)s2/σ2

is the chi-square distribution with n− 1 degrees of freedom.

Next we show that

x− µ
s/
√
n

=

(
x−µ
σ/
√
n

)
√
s2/σ2

=
Z√
s2/σ2

.

Hence it is a t distribution with n− 1 degrees of freedom.

Now from the random sample of this exercise, we make the transforma-
tion

ym =

∑N
n=1Xm,n/N − µ

s/
√
N

, m = 1, 2, . . . ,M ;

that is, ym is the M times realization of x. Make the histogram of
ym, m = 1, 2, . . .M and also plot the pdf curve of the t distribution
with degrees of freedom n−1 on the same figure (the pdf of t distribution
can be plotted by the Matlab function tpdf).

• Solution: See Fig. 1.

(2) (Confidence Interval from Point Estimation) Here we will illustrate the in-
sight behind the confidence interval. But before going on, we will first intro-
duce the concept of estimation. A point estimation is a function θ̂ = g(x)
of the observation vector x = [x1, . . . , xn]. The corresponding random vari-
able θ̂ = g(x) is the point estimator of θ. Recall that any function of the
sample vector x = [x1, . . . ,xn] is called a statistic. Thus a point estimator
is a statistic. Can we draw the near certainty a conclusion about the true
value of θ? We cannot do so if we claim that θ equals its point estimate
θ̂ or any other constant. We can, however, conclude with near certainty
that θ equals θ̂ within specified tolerance limits. This leads to the concept
of interval estimate. An interval estimate of a parameter θ is an interval
(θ1, θ2), the endpoints of which are functions θ1 = g1(x) and θ2 = g2(x) of
the observation vector x. The corresponding random interval (θ1, θ2) is the
interval estimator of θ. We shall say that (θ1, θ2) is a γ confidence interval
of θ if

Pr(θ1 < θ < θ2) = γ = 1− α.
The constant γ is the confidence coefficient of the estimate and α is the con-
fidence (significance) level. Consequently, a confidence interval for a popu-
lation parameter θ is a random interval, calculated from the sample which
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contains θ with some specified probability. For example, a 100(1−α)% con-
fidence interval for θ is a random interval that contains θ with probability
1− α.

(a) Here we wish to estimate the mean µ of the normal random vector
x = [x1, . . . , xn]. We use the sample mean x = 1

n

∑n
i=1 xi as the point

estimate of µ. Suppose first that the variance σ2 of x is known. Hence
the point estimator x of µ is N (µ, σ2/n). Denoting by z(u) the point
beyond which the standard normal distribution has probability u, we
conclude that

Pr

(
−z(α/2) ≤ x− µ

σ/
√
n
≤ z(α/2)

)
(3)

= Pr

(
µ− z(α/2)

σ√
n
≤ x ≤ µ+ z(α/2) + z(α/2)

σ√
n

)
(4)

= Pr

(
x− z(α/2)

σ√
n
≤ µ ≤ x+ z(α/2)

σ√
n

)
(5)

= 1− α

2
− α

2
= 1− α. (6)

Thus we can state with significance level α that µ is in the confidence
interval x± z(α)σ/

√
n.

If σ is unknown,then we cannot use the above derivations (equation (3)-
(6)). Since the sample variance s2 = 1

n−1
∑n

i=1(xi − x)2 is an unbiased
estimate of σ2 and it tends to σ2 as n→∞. Hence, for large n we can
use the approximation s ' σ in the above derivations ( x−µ

σ/
√
n
). However,

because the estimator s is also the random variable, the random variable
x−µ
s/
√
n

is no longer normal distributed. Fortunately, from question (1) we

know that it has a Student t distribution with n−1 degrees of freedom.
Denoting by tn−1(u) that point beyond which tn−1 has probability u,
we conclude that

Pr

(
−tn−1(α/2) ≤ x− µ

s/
√
n
≤ tn−1(α/2)

)
= Pr

(
x− tn−1(α/2)

s√
n
≤ µ ≤ x+ tn−1(α/2)

s√
n

)
= 1− α

Note that the random sample x in this exercise has M realizations,
please plot the figure of the confidence interval of µ with unknown σ2

form 1st to 20th realizations with significance level α = 0.1 and the true
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papulation value µ. Additionally, calculate the percentage that µ falls
in the confidence interval of M realizations. (Hint : tn−1(α/2) can be
calculated by the Matlab function tinv)

• Solution: See Fig. 2. The percentage percentage that µ falls in the
confidence interval of M realizations is 0.9980 .

(b) Now we want to derive the confidence interval of the variance σ2 of the
normal random vector x = [x1, . . . , xn]. We assume first that the mean
µ of x is known and we use the point estimator of σ2 as

ŝ2 =
1

n

n∑
i=1

(xi − µ)2. (7)

The reason that we choose this point estimator is that it is not only the
maximum likelihood estimator, but also the consistent estimator ; that
is, it can be shown that

E(ŝ2) = σ2;

σ2
ŝ2 =

2σ4

n
→ 0 as n→∞.

Now we find the confidence interval of it. Recall that nŝ2/σ2 is a χ2
n

distribution with degrees of freedom n. To determine the confidence
interval, we introduce two constant c1 and c2 such that

Pr

(
nŝ

σ2
≤ c1

)
= α/2

Pr

(
nŝ

σ2
≥ c2

)
= α/2.

Without loss of generality, we choose c1 = χ2
n(1 − α/2), c2 = χ2

n(α/2)
for convenience, which yields

Pr

(
χ2
n(1− α/2) ≤ nŝ2

σ2
≤ χ2

n(α/2)

)
= Pr

(
nŝ2

χ2
n(α/2)

≤ σ2 ≤ nŝ2

χ2
n(1− α/2)

)
= 1− α.

If µ is unknown, we can only use the sample mean x = 1
n

∑n
i=1 xi to

replace µ in equation (7); that is

nŝ2/σ2 → (n− 1)s2/σ2.
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Noting that (n− 1)s2/σ2 ∼ χ2
n−1, hence

Pr
(
χ2
n−1(1− α/2) ≤ (n− 1)s2/σ2 ≤ χ2

n−1(α/2)
)

= Pr

(
(n− 1)s2

χ2
n−1(α/2)

≤ σ2 ≤ (n− 1)s2

χ2
n−1(1− α/2)

)
= 1− α.

Therefore, a 100(1− α)% confidence interval for σ2 is(
(n− 1)s2

χ2
n−1(α/2)

,
(n− 1)s2

χ2
n−1(1− α/2)

)
.

Similar with question (2)(b), plot the figure of the confidence interval
of σ2 with unknown µ form 1st to 20th realizations with significance
level α = 0.1 and the true papulation value σ2. Additionally, calculate
the percentage that σ2 falls in the confidence interval of M realizations.
(Hint : χ2

n−1(α/2) can be calculated by the Matlab function chi2inv)

• Solution: See Fig. 3. The percentage percentage that σ2 falls in the
confidence interval of M realizations is 0.9100.
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Figure 1: Approximated probability density function of t distribution
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Figure 2:
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Figure 3:
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