Multivariate Statistical Analysis, Exercise 5, Fall 2011, Prof. S.K. Jeng November 11, 2011 TA: H.C. Cheng

- (1) (t Distribution) The random sample in this exercise is an $M \times n$ matrix **X**. For this exercise, M = 1000, n = 20. The element of each row of **X**, x_1, x_2, \ldots, x_n , are iid normal distribution with mean $\mu = 10$, variance $\sigma^2 = 9$; there sample mean $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2$. Then the number of rows M is the number of independent realization of each random row vector. Additionally, let Z be a standard normal distribution, and $U \sim \chi_n^2$ be the chi-square distribution with degrees of freedom n. Please answer the following questions.
 - (a) Here we briefly show why $\frac{\overline{x}-\mu}{s/\sqrt{n}} \sim t_{n-1}$.

If Z and U are independent, then the distribution $Z/\sqrt{U/n}$ is called the t distribution with n degrees of freedom with probability density function

$$f_n(t) = \frac{\Gamma[(n+2)/2]}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2}$$

,

where the gamma function $\Gamma(\cdot)$ is defined by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \ x \in \mathbb{R}.$$

Now we first check that $(n-1)s^2/\sigma^2$ is the chi-square distribution with n-1 degrees of freedom. Note that

$$\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)^2 \sim \chi_n^2.$$

Also,

$$\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 = \frac{1}{\sigma^2} \sum_{i=1}^n \left[(x_i - \overline{x}) + (\overline{x} - \mu) \right]^2.$$

Expanding the square and using the fact that $\sum_{i=1}^{n} (x_i - \overline{x}) = 0$, we obtain

$$\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 = \frac{1}{\sigma^2} (x_i - \overline{x})^2 + \left(\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}\right)^2$$
(1)

$$\Rightarrow W = \frac{(n-1)s^2}{\sigma^2} + V, \qquad (2)$$

, where $W \sim \chi_n^2$, and $V \sim \chi_1^2$.

At this moment, it can be shown geometrically that the random variable \overline{x} and the vector of random variables $(x_1 - \overline{x}, x_2 - \overline{x}, \dots, x_n - \overline{x})$ are independent. Hence, W is independent of V. Consequently, $(n-1)s^2/\sigma^2$ is the chi-square distribution with n-1 degrees of freedom. Next we show that

$$\frac{\overline{x} - \mu}{s/\sqrt{n}} = \frac{\left(\frac{\overline{x} - \mu}{\sigma/\sqrt{n}}\right)}{\sqrt{s^2/\sigma^2}} = \frac{Z}{\sqrt{s^2/\sigma^2}}.$$

Hence it is a t distribution with n-1 degrees of freedom. Now from the random sample of this exercise, we make the transformation

$$y_m = \frac{\sum_{n=1}^{N} \mathbf{X}_{m,n}/N - \mu}{s/\sqrt{N}}, \quad m = 1, 2, \dots, M;$$

that is, y_m is the M times realization of \overline{x} . Make the histogram of y_m , $m = 1, 2, \ldots M$ and also plot the pdf curve of the t distribution with degrees of freedom n-1 on the same figure (the pdf of t distribution can be plotted by the Matlab function tpdf).

- Solution: See Fig. 1.
- (2) (Confidence Interval from Point Estimation) Here we will illustrate the insight behind the confidence interval. But before going on, we will first introduce the concept of estimation. A point estimation is a function $\hat{\theta} = g(x)$ of the observation vector $x = [x_1, \ldots, x_n]$. The corresponding random variable $\hat{\theta} = g(\mathbf{x})$ is the point estimator of θ . Recall that any function of the sample vector $\mathbf{x} = [\mathbf{x}_1, \ldots, \mathbf{x}_n]$ is called a statistic. Thus a point estimator is a statistic. Can we draw the near certainty a conclusion about the true value of θ ? We cannot do so if we claim that θ equals its point estimate $\hat{\theta}$ or any other constant. We can, however, conclude with near certainty that θ equals $\hat{\theta}$ within specified tolerance limits. This leads to the concept of interval estimate. An interval estimate of a parameter θ is an interval (θ_1, θ_2) , the endpoints of which are functions $\theta_1 = g_1(x)$ and $\theta_2 = g_2(x)$ of the observation vector x. The corresponding random interval (θ_1, θ_2) is the interval estimator of θ . We shall say that (θ_1, θ_2) is a γ confidence interval of θ if

$$\Pr(\theta_1 < \theta < \theta_2) = \gamma = 1 - \alpha.$$

The constant γ is the *confidence coefficient* of the estimate and α is the *confidence (significance) level*. Consequently, a *confidence interval* for a population parameter θ is a random interval, calculated from the sample which

contains θ with some specified probability. For example, a $100(1-\alpha)\%$ confidence interval for θ is a random interval that contains θ with probability $1-\alpha$.

(a) Here we wish to estimate the mean μ of the normal random vector $x = [x_1, \ldots, x_n]$. We use the sample mean $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ as the point estimate of μ . Suppose first that the variance σ^2 of x is known. Hence the point estimator \overline{x} of μ is $\mathcal{N}(\mu, \sigma^2/n)$. Denoting by z(u) the point beyond which the standard normal distribution has probability u, we conclude that

$$\Pr\left(-z(\alpha/2) \le \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} \le z(\alpha/2)\right)$$
(3)

$$= \Pr\left(\mu - z(\alpha/2)\frac{\sigma}{\sqrt{n}} \le \overline{x} \le \mu + z(\alpha/2) + z(\alpha/2)\frac{\sigma}{\sqrt{n}}\right) \quad (4)$$

$$= \Pr\left(\overline{x} - z(\alpha/2)\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z(\alpha/2)\frac{\sigma}{\sqrt{n}}\right)$$
(5)

$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha.$$
 (6)

Thus we can state with significance level α that μ is in the confidence interval $\overline{x} \pm z(\alpha)\sigma/\sqrt{n}$.

If σ is unknown, then we cannot use the above derivations (equation (3)-(6)). Since the sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ is an unbiased estimate of σ^2 and it tends to σ^2 as $n \to \infty$. Hence, for large n we can use the approximation $s \simeq \sigma$ in the above derivations $(\frac{\overline{x}-\mu}{\sigma/\sqrt{n}})$. However, because the estimator \mathbf{s} is also the random variable, the random variable $\frac{\overline{x}-\mu}{s/\sqrt{n}}$ is no longer normal distributed. Fortunately, from question (1) we know that it has a Student t distribution with n-1 degrees of freedom. Denoting by $t_{n-1}(u)$ that point beyond which t_{n-1} has probability u, we conclude that

$$\Pr\left(-t_{n-1}(\alpha/2) \le \frac{\overline{x} - \mu}{s/\sqrt{n}} \le t_{n-1}(\alpha/2)\right)$$
$$= \Pr\left(\overline{x} - t_{n-1}(\alpha/2)\frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{n-1}(\alpha/2)\frac{s}{\sqrt{n}}\right)$$
$$= 1 - \alpha$$

Note that the random sample x in this exercise has M realizations, please plot the figure of the confidence interval of μ with unknown σ^2 form 1st to 20th realizations with significance level $\alpha = 0.1$ and the true

papulation value μ . Additionally, calculate the percentage that μ falls in the confidence interval of M realizations. (*Hint*: $t_{n-1}(\alpha/2)$ can be calculated by the Matlab function tinv)

- Solution: See Fig. 2. The percentage percentage that μ falls in the confidence interval of M realizations is 0.9980.
- (b) Now we want to derive the confidence interval of the variance σ^2 of the normal random vector $x = [x_1, \ldots, x_n]$. We assume first that the mean μ of x is known and we use the point estimator of σ^2 as

$$\hat{s}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2.$$
(7)

The reason that we choose this point estimator is that it is not only the *maximum likelihood estimator*, but also the *consistent estimator*; that is, it can be shown that

$$\begin{aligned} \mathbb{E}(\hat{s}^2) &= \sigma^2; \\ \sigma_{\hat{s}^2}^2 &= \frac{2\sigma^4}{n} &\to 0 \quad \text{as } n \to \infty. \end{aligned}$$

Now we find the confidence interval of it. Recall that $n\hat{s}^2/\sigma^2$ is a χ_n^2 distribution with degrees of freedom n. To determine the confidence interval, we introduce two constant c_1 and c_2 such that

$$\Pr\left(\frac{n\hat{s}}{\sigma^2} \le c_1\right) = \alpha/2$$
$$\Pr\left(\frac{n\hat{s}}{\sigma^2} \ge c_2\right) = \alpha/2.$$

Without loss of generality, we choose $c_1 = \chi_n^2(1 - \alpha/2)$, $c_2 = \chi_n^2(\alpha/2)$ for convenience, which yields

$$\Pr\left(\chi_n^2(1-\alpha/2) \le \frac{n\hat{s}^2}{\sigma^2} \le \chi_n^2(\alpha/2)\right)$$
$$= \Pr\left(\frac{n\hat{s}^2}{\chi_n^2(\alpha/2)} \le \sigma^2 \le \frac{n\hat{s}^2}{\chi_n^2(1-\alpha/2)}\right)$$
$$= 1-\alpha.$$

If μ is unknown, we can only use the sample mean $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ to replace μ in equation (7); that is

$$n\hat{s}^2/\sigma^2 \rightarrow (n-1)s^2/\sigma^2.$$

Noting that $(n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$, hence

$$\Pr\left(\chi_{n-1}^{2}(1-\alpha/2) \le (n-1)s^{2}/\sigma^{2} \le \chi_{n-1}^{2}(\alpha/2)\right)$$

=
$$\Pr\left(\frac{(n-1)s^{2}}{\chi_{n-1}^{2}(\alpha/2)} \le \sigma^{2} \le \frac{(n-1)s^{2}}{\chi_{n-1}^{2}(1-\alpha/2)}\right)$$

= $1-\alpha$.

Therefore, a $100(1-\alpha)\%$ confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{n-1}(\alpha/2)}, \frac{(n-1)s^2}{\chi^2_{n-1}(1-\alpha/2)}\right).$$

Similar with question (2)(b), plot the figure of the confidence interval of σ^2 with unknown μ form 1st to 20th realizations with significance level $\alpha = 0.1$ and the true papulation value σ^2 . Additionally, calculate the percentage that σ^2 falls in the confidence interval of M realizations. (*Hint*: $\chi^2_{n-1}(\alpha/2)$ can be calculated by the Matlab function chi2inv)

• Solution: See Fig. 3. The percentage percentage that σ^2 falls in the confidence interval of M realizations is 0.9100.

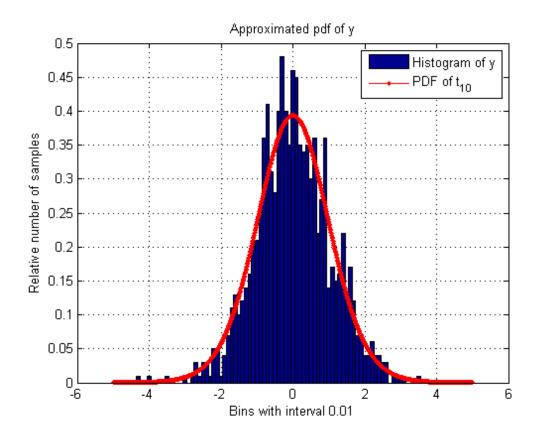


Figure 1: Approximated probability density function of t distribution

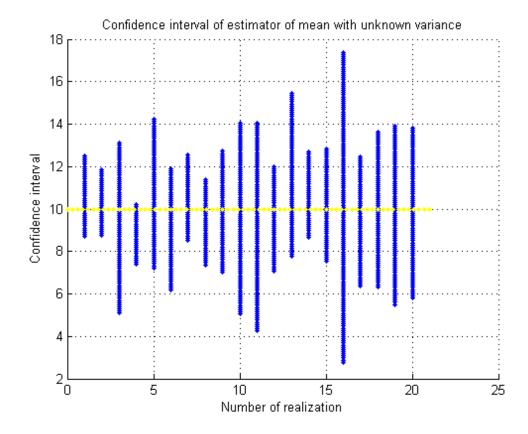


Figure 2:

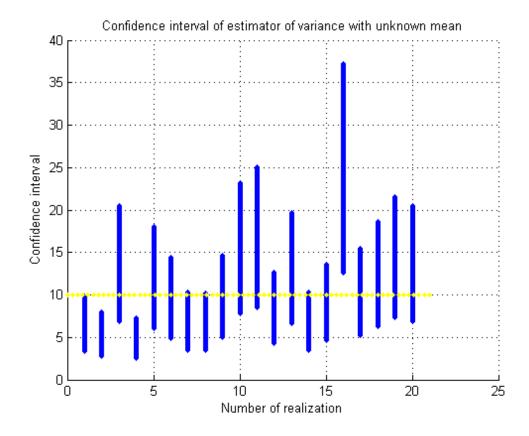


Figure 3: