Multivariate Statistical Analysis, Exercise 6, Fall 2011, Prof. S.K. Jeng November 17, 2011 TA: H.C. Cheng

(Comparing Tow Mean Vector) Assume there are two populations $X_{i1} \sim N_p(\mu_1, \Sigma_1)$, with $i = 1, \ldots, n_1$ and $X_{i2} \sim N_p(\mu_2, \Sigma_2)$, with $j = 1, \ldots, n_2$, where all the variables are independent. The realizations are recorded in the data set as 200×6 matrix where the observations $1 \sim 100$ come from the first population and the other 100 observations are the second one. The number of variate p = 6. Now we want to compare the tow mean vector; that is

$$H_1: \mu_1 = \mu_2$$
, vs. $H_2: \mu_1 \neq \mu_2$.

Please answer the following questions.

(a) We first consider the problem with the same covariance matrix $\Sigma_1 = \Sigma_2 = \Sigma$. Let \overline{x}_k , S_k , k = 1, 2 and $\delta = \mu_1 - \mu_2$. we have

$$(\overline{x}_1 - \overline{x}_2) \sim N_p \left(\delta, \frac{n_1 + n_2}{n_1 n_2} \Sigma\right)$$
$$n_1 S_1 + n_2 S_2 \sim W_p(\Sigma, n_1 + n_2 - 2).$$

Let $S = (n_1 + n_2)^{-1}(n_1S_1 + n_2S_2)$ be the weighted mean of S_1 and S_2 . Since the two samples are independent and since S_k is independent of $\overline{x}_k, k = 1, 2$, it follows that S is independent of $(\overline{x}_1 - \overline{x}_2)$. Hence,

$$\frac{(n_1n_2)(n_1+n_2-2)}{(n_1+n_2)^2}\{(\overline{x}_1-\overline{x}_2)-\delta\}^T S^{-1}\{(\overline{x}_1-\overline{x}_2)-\delta\}\sim T^2(p,n_1+n_2-2),$$

or

$$\{(\overline{x}_1 - \overline{x}_2) - \delta\}^T S^{-1}\{(\overline{x}_1 - \overline{x}_2) - \delta\} \sim \frac{p(n_1 + n_2)^2}{(n_1 + n_2 - p - 1)n_1 n_2} F_{p, n_1 + n_2 - p - 1},$$

where $T^2(p, n)$ is the Hotelling T^2 -distribution with p and n degrees of freedom, and $F_{1-\alpha;n,m}$ is the $1-\alpha$ quantile of the F-distribution with n and mdegrees of freedom.

This result can be used to test $H_1: \delta = 0$ or to construct confidence region for $\delta \in \mathbb{R}^p$. The rejection region is given by:

$$\frac{n_1 n_2 (n_1 + n_2 - p - 1)}{p (n_1 + n_2)^2} (\overline{x}_1 - \overline{x}_2)^T S^{-1} (\overline{x}_1 - \overline{x}_2) \ge F_{1 - \alpha; p, n_1 + n_2 - p - 1}.$$

A $(1-\alpha)$ confidence region for δ is given by the ellipsoid centered at $(\overline{x}_1 - \overline{x}_2)$ $\{\delta - (\overline{x}_1 - \overline{x}_2)\}^T S^{-1} \{\delta - (\overline{x}_1 - \overline{x}_2)\} \leq \frac{p(n_1 + n_2)^2}{(n_1 + n_2 - p - 1)(n_1 n_2)} F_{1-\alpha;p,n_1+n_2-p-1},$

and the simultaneous confidence intervals for all linear combinations $a^T \delta$ of the elements δ are given by

$$a^{T}\delta \in a^{T}(\overline{x}_{1} - \overline{x}_{2}) \pm \sqrt{\frac{p(n_{1} + n_{2})^{2}}{(n_{1} + n_{2} - p - 1)(n_{1}n_{2})}}F_{1-\alpha;p,n_{1}+n_{2}-p-1}a^{T}Sa$$

In particular we have at the $(1 - \alpha)$ level, for $j = 1, \ldots, p$,

$$\delta_j \in (\overline{x}_{1j} - \overline{x}_{2j}) \pm \sqrt{\frac{p(n_1 + n_2)^2}{(n_1 + n_2 - p - 1)(n_1 n_2)}} F_{1-\alpha;p,n_1+n_2-p-1} S_{jj}.$$

With $\alpha = 0.05$, do we reject the hypothesis? Please calculate the confidence intervals for the differences $\delta_j = \mu_{1j} - \mu_{2j}, j = 1, \dots, p$.

(b) For the case of unequal covariance matrices and large samples, we have

$$(\overline{x}_1 - \overline{x}_2) \sim N_p\left(\delta, \frac{\Sigma_1}{n_1} + \frac{\Sigma_2}{n_2}\right).$$

Therefore,

$$(\overline{x}_1 - \overline{x}_2)^T \left(\frac{\Sigma_1}{n_1} + \frac{\Sigma_2}{n_2}\right)^{-1} (\overline{x}_1 - \overline{x}_2) \sim \chi_p^2.$$

Since S_k is a consistent estimator of Σ_k for k = 1, 2, we have

$$(\overline{x}_1 - \overline{x}_2)^T \left(\frac{S_1}{n_1} + \frac{S_2}{n_2}\right)^{-1} (\overline{x}_1 - \overline{x}_2) \to \chi_p^2$$
 in distribution.

Hence the rejection region for $\delta = 0$ at the level α will be

$$(\overline{x}_1 - \overline{x}_2)^T \left(\frac{\Sigma_1}{n_1} + \frac{\Sigma_2}{n_2}\right)^{-1} (\overline{x}_1 - \overline{x}_2) > \chi_{1-\alpha,p}$$

where $\chi^2_{1-\alpha,p}$ is the $1-\alpha$ quantile of the χ^2 distribution with p degrees of freedom.

The $(1 - \alpha)$ confidence intervals for $\delta_j, 1, \ldots, p$ are

$$\delta_j \in (\overline{x}_1 - \overline{x}_2) \pm \sqrt{\chi_{1-\alpha,p}^2 \left(\frac{S_{1,jj}}{n_1} + \frac{S_{2,jj}}{n_2}\right)}.$$

Similarly, Do we reject the hypothesis with $\alpha = 0.05$ and what are the confidence interfvals of $\delta_j, j = 1, \ldots, 5$.