(Linear Regression with Least Squares)

The technique of regression, in particular linear regression, is one of the most popular statistical tool. A major purpose of regression is to explore the dependence of one variable on others. There are all forms of regression: linear, nonlinear, simple, multiple, parametric, nonparametric, etc. The word regression is used in statistics to signify a relationship of a target variable (say, y_i) between other variables (say, $x_{i,p}$). More generally, we have a relationship of the form

$$y_{n\times 1} = \mathbf{f}(X_{p\times n}) + \epsilon_{n\times 1},$$

where n is the realization of the observable random variables, and the \mathbf{f} is an arbitrary function; $\epsilon_{1\times n}$ is the random vector decribes the deviations or errors. It is also common to suppose it has zeros mean $\mathbb{E}(\epsilon) = 0$; that is

$$\mathbb{E}(y|X) = \mathbf{f}(X).$$

When we refer to regression that is linear (more precisely, affine), we mean that the conditional expectation of Y given X is a linear function of X (i.e. the term linear regression refers to a specification that is linear in the parameters). Hence we have the linear model

$$y_{n\times 1} = X_{n\times p+1}\beta_{p+1\times 1} + \epsilon_{n\times 1} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1,p} \\ 1 & x_{21} & x_{22} & \dots & x_{2,p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{n,p} \end{pmatrix} \beta_{p+1\times 1} + \epsilon_{n\times 1},$$

where the all-ones column represents the intercept. Now we shall derive the estimator for β , as well as accurately describe what a "good" estimator is. A very common way is to use the least squares criterion; that is

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} (Y - X\beta)^T (Y - X\beta) = \underset{\beta}{\operatorname{arg\,min}} (\epsilon^T \epsilon).$$

We can differentiate $\epsilon^T \epsilon$ to get

$$\hat{\beta} = (X^T X)^{-1} X^T y,$$

such that

$$\hat{y} = X\hat{\beta},$$

where it can be shown that X^TX is nonsingular if and only if the rank of X equals p+1. Otherwire, we can take the pseudo-inverse of X^TX .

Now we define the minimum deviations as the residual sum of squares (RSS) or the unexplained variation by

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
.

In addition, we define total variation as $\sum_{i=1}^{n} (y_i - \overline{y})^2$; explained variation as $\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$. Hence,

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

total variation = explained variation + unexplained variation.

The coefficient of determination is r^2 :

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}.$$

The coefficient of determination increases with the proportion of explained variation by the linear relation above. In the extreme cases where $r^2 = 1$, all of the variation is explained by the linear regression. The other extreme, $r^2 = 0$, is where the empirical covariance of X and y is zero. However, the coefficient of determination is influenced by the number of regressors p. For a given sample size n, the r^2 value will increase by adding more regressors into the linear model. The value of r^2 may therefore be high even if possibly irrelevant regressors are included. A corrected coefficient of determination for p regressors and a constant intercept (p+1) parameters is

$$r_{\text{adj}}^2 = r^2 - \frac{p(1-r^2)}{n-(p+1)}.$$

Now we consider a data set consisting of 10 measurements of 4 variables. The story: A textile shop manager is studying the sales of "classic blue" pullovers over 10 periods. He uses three different marketing methods and hopes to understand his sales as a fit of these variables using statistics. The variables measured are

 X_1 : Numbers of sold pullovers,

 X_2 : Price (in EUR),

 X_3 : Advertisement costs in local newspapers (in EUR), X_4 : Presence of a sales assistant (in hours per period).

	Sales	Price	Advert.	Ass. Hours
1	230	125	200	109
2	181	99	55	107
3	165	97	105	98
4	150	115	85	71
5	97	120	0	82
6	192	100	150	103
7	181	80	85	111
8	189	90	120	93
9	172	95	110	86
10	170	125	130	78

Now please answer the following questions

- (a) Find the least square estimate $\hat{\beta}$.
 - Solution: $\hat{\beta} = [65.6696, -0.2158, 0.4852, 0.8437]^T$.
- (b) Find the coefficient of determination.
 - Solution: The coefficient of determination can be calculated as

$$r^2 = 1 - \frac{e^T e}{\sum (y_i - \overline{y})^2} = 0.9067.$$

We conclude that the variation of sales is well approximated by the linear relation.

- (c) Find the corrected coefficient of determination.
 - Solution:

$$r_{\rm adj}^2 = 0.8601.$$

This means that 86% of the variation of the target variable is explained by the explanatory variables.