Clustering, Distance Methods, and Ordination

Shyh-Kang Jeng

Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking and Multimedia

Outlinet

- → Introduction
- → Similarity Measures
- → Hierarchical Clustering Methods
- → Nonhierarchical Clustering Methods
- Clustering Based on Statistical Models
- → Multidimensional Scaling

Outlinet

- **★** Introduction
- → Similarity Measures
- → Hierarchical Clustering Methods
- *Nonhierarchical Clustering Methods
- Clustering Based on Statistical Models
- Multidimensional Scaling

Clustering

- Searching data for a structure of "natural" groupings
- *An exploratory technique
- → Provides means for
 - Assessing dimensionality
 - Identifying outliers
 - Suggesting interesting hypotheses concerning relationships

Classification vs. Clustering

- Classification
 - Known number of groups
 - Assign new observations to one of these groups
- → Cluster analysis
 - No assumptions on the number of groups or the group structure
 - Based on similarities or distances (dissimilarities)

Outlinet

- → Introduction
- → Similarity Measures
- → Hierarchical Clustering Methods
- → Nonhierarchical Clustering Methods
- → Clustering Based on Statistical Models
- Multidimensional Scaling

Choice of Similarity Measure

- Nature of variables
- Discrete, continuous, binary
- - -Nominal, ordinal, interval, ratio
- Subject matter knowledge
- →Items: proximity indicated by some sort of distance
- Variables: grouped by correlation coefficient or measures of association

Some Well-known Distances

→ Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})'(\mathbf{x} - \mathbf{y})}$$

→ Statistical distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})' \mathbf{A} (\mathbf{x} - \mathbf{y})}$$

→ Minkowski metric

$$d(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{p} |x_i - y_i|^m\right]^{1/m}$$

Two Popular Measures of Distance for Nonnegative Variables

Canberra metric

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} \frac{|x_i - y_i|}{x_i + y_i}$$

Czekanowski coefficient

$$d(\mathbf{x}, \mathbf{y}) = 1 - \frac{2\sum_{i=1}^{p} \min(x_i, y_i)}{\sum_{i=1}^{p} (x_i + y_i)}$$

A Caveat

- → Use "true" distances when possible
 - -i.e., distances satisfying distance properties
- Most clustering algorithms will accept subjectively assigned distance numbers that may not satisfy, for example, the triangle inequality

Example of Binary Variable

		Variable							
	1	2	3	4	5				
Item i	1	0	0	1	1				
Item j	1	1	0	1	0				

Squared Euclidean Distance for Binary Variables

→ Squared Euclidean distance

$$d(\mathbf{x}_{i}, \mathbf{x}_{k}) = \sum_{j=1}^{p} (x_{ij} - x_{kj})^{2}$$

$$(x_{ij} - x_{kj})^{2} = \begin{cases} 0, & \text{if } x_{ij} = x_{kj} = 1 \text{ or } x_{ij} = x_{kj} = 0 \\ 1, & \text{if } x_{ij} \neq x_{kj} \end{cases}$$

- → Suffers from weighting the 1-1 and 0-0 matches equally
 - -e.g., two people both read ancient Greek is stronger evidence of similarity than the absence of this capability

Contir	ngency	Table
	,	

			n k	Totals
			0	Totals
Itama :	1	а	b	a+b
Item i	0	с	d	c+d
Totals		a+c	b+d	p = a + b + c + d

Some Binary Similarity Coefficients

Coefficient	Rationale					
1. $\frac{a+d}{p}$	Equal weights for 1-1 matches and 0-0 matches.					
2. $\frac{2(a+d)}{2(a+d)+b+c}$	Double weight for 1-1 matches and 0-0 matches.					
3. $\frac{a+d}{a+d+2(b+c)}$	Double weight for unmatched pairs.					
4. a/p	No 0-0 matches in numerator.					
5. $\frac{a}{a+b+c}$	No 0-0 matches in numerator or denominator. (The 0-0 matches are treated as irrelevant.)					
$6. \frac{2a}{2a+b+c}$	No 0-0 matches in numerator or denominator. Double weight for 1-1 matches.					
7. $\frac{a}{a+2(b+c)}$	No 0-0 matches in numerator or denominator. Double weight for unmatched pairs.					
8. $\frac{a}{b+c}$	Ratio of matches to mismatches with 0-0 matche excluded.					

Example 12.1

	Height	Weight	Eye color	Hair color	Handedness	Gender
Individual 1	68 in	140 lb	green	blond	right	female
Individual 2	73 in	185 Jb	brown	brown	right	male
Individual 3	67 in	165 lb	blue	blond	right	male
Individual 4	64 in	120 lb	brown	brown	right	female
Individual 5	76 in	210 lb	brown	brown	left	male

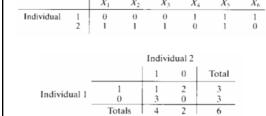
Example 12.1

$$X_1 = \begin{cases} 1 & \text{height} \ge 72 \text{ in.} \\ 0 & \text{height} < 72 \text{ in.} \end{cases} \qquad X_4 = \begin{cases} 1 & \text{blond hair} \\ 0 & \text{not blond hair} \end{cases}$$

$$X_2 = \begin{cases} 1 & \text{weight} \ge 150 \text{ lb} \\ 0 & \text{weight} < 150 \text{ lb} \end{cases} \qquad X_5 = \begin{cases} 1 & \text{right handed} \\ 0 & \text{left handed} \end{cases}$$

$$X_3 = \begin{cases} 1 & \text{brown eyes} \\ 0 & \text{otherwise} \end{cases} \qquad X_6 = \begin{cases} 1 & \text{female} \\ 0 & \text{male} \end{cases}$$

Example 12.1



Example 12.1: Similarity Matrix with Coefficient 1

Conversion of Similarities and Distances

→ Similarities from distances

$$-e.g., \, \tilde{s}_{ik} = 1/(1+d_{ik})$$

→ "True" distances from similarities

Matrix of similarities must be nonnegative definite

-e.g.,
$$d_{ik} = \sqrt{2(1-\widetilde{s}_{ik})}$$
, $\widetilde{s}_{ii} = 1$

20

Contingency Table

			ıble k	Totals
			0	Totals
Variable i	1	а	b	a + b
variable i	0	с	d	c+d
Totals		a+c	b+d	n = a + b + c + d

Product Moment Correlation as a Measure of Similarity

$$r = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

Related to the chi-square statistic $(r^2 = \chi^2/n)$ for testing independence

 For n fixed, large similarity is consistent with presence of dependence

22

Example 12.2 Similarities of 11 Languages

English (E)	Norwegian (N)	Danish (Da)	Dutch (Du)	German (G)	French (Fr)	Spanish (Sp)	Italian (I)	Polish (P)	Hungarian (H)	Finnish (Ti)
one	en	en	een	eins	un	uno	uno	jeden	egy	yksi
owl	to	to	twee	zwei	deux	dos	duc	dwa	ketto	kaksi
three	tre	tre	drie	drei	trois	tres	tre	trzy	harom	kolme
four	fire	fire	vier	vier	quatre	cuatro	quattro	cztery	negy	neljä
five	fem	fem	vijf	funf	cinq	cinco	cinque	piec	ot	viisi
six	seks	seks	255	sechs	six	seis	sei	SZESC	hat	kuusi
seven	sju	syv	zeven	sieben	sept	siete	sette	siedem	het	seitseman
eight	atte	otte	acht	acht	huit	ocho	otto	osiem	nyole	kahdeksan
nine	ni	ni	negen	neun	neuí	nueve	nove	dziewiec	kilenc	yhdeksan
ten	tí	tí	tien	zehn	dix	dicz	dieci	dziesiec	tiz	kymmenen

Example 12.2 Similarities of 11 Languages

	E	N	Da	Du	G	Fr	Sp	I	P	Н	Fi
E	10										
N	8	10									
Da	8	9	10								
Du	3	.5	4	10							
G	4	6	5	5	10						
Fr	4	4	4	1	3	10					
Sp	4	4	5	1	3	8	10				
r.	4	4	5	1	3	9	9	10			
P	3	3	4	0	2	5	7	6	10		
Н	1	2	2	2	1	0	0	()	0	10	
Fi	i i	1	1	1	1	1	1	1	1	2	10

Agglomerative Methods

- → Initially a many clusters as objects
- → The most similar objects are first grouped
- Initial groups are merged according to their similarities
- Eventually, all subgroups are fused into a single cluster

25

Outlinet

- → Introduction
- → Similarity Measures
- → Hierarchical Clustering Methods
- → Nonhierarchical Clustering Methods
- Clustering Based on Statistical Models
- → Multidimensional Scaling

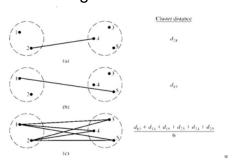
25

Divisive Methods

- Initial single group is divided into two subgroups such that objects in one subgroup are "far from" objects in the other
- → These subgroups are then further divided into dissimilar subgroups
- Continues until there are as many subgroups as objects

27

Inter-cluster Distance for Linkage Methods



Example 12.3: Single Linkage

$$\mathbf{D} = \{d_{ik}\} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & & & \\ 2 & 9 & 0 & & \\ 3 & 7 & 0 & & \\ 4 & 6 & 5 & 9 & 0 \\ 5 & 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$

Example 12.3: Single Linkage

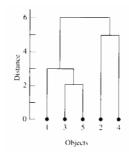
Example 12.3: Single Linkage

$$\begin{array}{cccc}
(135) & 2 & 4 \\
(135) & 0 & \\
2 & 7 & 0 \\
4 & 6 & 5 & 0
\end{array}$$

Example 12.3: Single Linkage

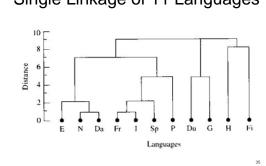
$$\begin{array}{ccc}
(135) & (24) \\
(135) \begin{bmatrix} 0 \\ 6 \end{bmatrix} & 0
\end{array}$$

Example 12.3: Single Linkage Resultant Dendrogram

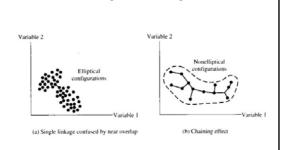


Example 12.4 Single Linkage of 11 Languages

Example 12.4 Single Linkage of 11 Languages



Pros and Cons of Single Linkage



$$\mathbf{D} = \{d_{ik}\} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & & & \\ 2 & 9 & 0 & & \\ 3 & 7 & 0 & & \\ 4 & 6 & 5 & 9 & 0 \\ 5 & 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$

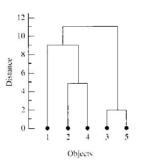
Example 12.5: Complete Linkage

38

Example 12.5: Complete Linkage

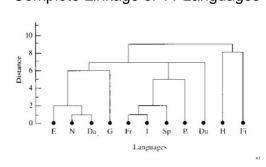
$$\begin{array}{ccc}
(35) & (24) & 1 \\
(35) & 0 & \\
(24) & 10 & 0 \\
1 & 9 & 0
\end{array}$$

Example 12.5: Complete Linkage

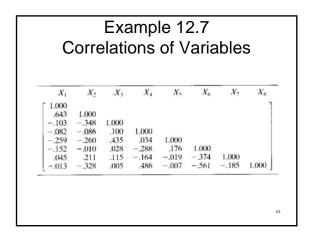


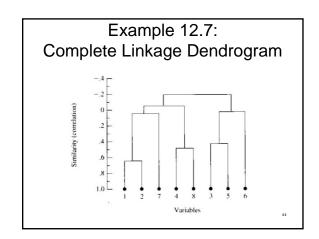
39

Example 12.6 Complete Linkage of 11 Languages



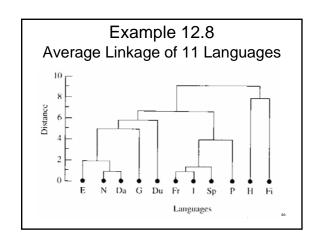
Example 12.7 Clustering Variables





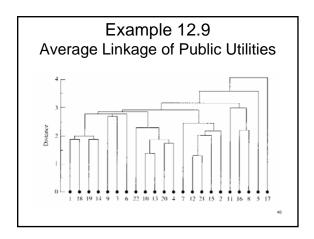
Average Linkage

$$d_{(UV)W} = \frac{\sum_{i} \sum_{k} d_{ik}}{N_{(UV)} N_{W}}$$



Example 12.9 Average Linkage of Public Utilities

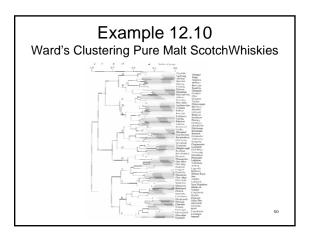
```
| Table 12.8 | Distances Revenue 22 tritimes | First | 100 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 100 | 11 | 12 | 13 | 14 | 15 | 36 | 17 | 18 | 19 | 20 | 21 | 22 | 100 | 100 | 1 | 100 | 100 | 1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
```



Ward's Hierarchical Clustering Method

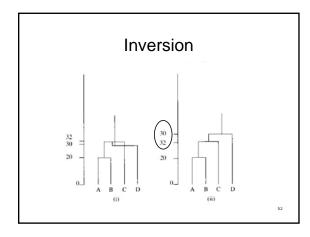
- For a given cluster k, let ESS_k be the sum of the squared deviation of every item in the cluster from the cluster mean
- At each step, the union of every possible pair of clusters is considered
- The two clusters whose combination results in the smallest increase in the sum of Ess₂ are joined

49



Final Comments

- *Sensitive to outliers, or "noise points"
- No reallocation of objects that may have been "incorrectly" grouped at an early stage
- Good idea to try several methods and check if the results are roughly consistent
- ♦ Check stability by perturbation



Outlinet

- → Introduction
- → Similarity Measures
- → Hierarchical Clustering Methods
- → Nonhierarchical Clustering Methods
- Clustering Based on Statistical Models
- → Multidimensional Scaling

K-means Method

- → Partition the items into K initial clusters
- Proceed through the list of items, assigning an item to the cluster whose centroid is nearest
- → Recalculate the centroid for the cluster receiving the new item and for the cluster losing the item
- → Repeat until no more reassignment

Example 12.11 K-means Method

	Observations				
Item	x_1	x_2			
А	5	3			
В	-1	1			
С	1	-2			
D	-3	-2			

Example 12.11 K-means Method

	Coordinates of Centroid					
Cluster	x1	x2				
(AB)	(5+(-1))/2 = 2	(3+1)/2 = 2				
(CD)	(1+(-3))/2=-1	(-2+(-2))/2=-2				

56

Example 12.11 K-means Method

$$\overline{x}_{i,new} = \frac{n\overline{x}_i + x_{ji}}{n+1}$$

if the jth item is added to a group

$$\overline{x}_{i,new} = \frac{n\overline{x}_i - x_{ji}}{n - 1}$$

if the jth item is removed from a group

Example 12.11 Final Clusters

	Squared distances to group centroids							
	Item							
Cluster	Α	В	С	D				
А	0	40	41	89				
(BCD)	52	4	5	5				

F Score

 $F_{nuc} = \frac{\text{mean square percent nuclear between clusters}}{\text{mean square percent nuclear within clusters}}$

Outlinet

- → Introduction
- → Similarity Measures
- → Hierarchical Clustering Methods
- → Nonhierarchical Clustering Methods
- <u>
 ▼Clustering Based on Statistical Models</u>
- → Multidimensional Scaling

Normal Mixture Model

$$f_{Mix}(\mathbf{x}) = \sum_{k=1}^{K} p_k f_k(\mathbf{x})$$

$$p_k \ge 0, \quad \sum_{k=1}^{K} p_k = 1, \quad f_k(\mathbf{x}) : N_p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$f_{Mix}(\mathbf{x} | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K)$$

$$= \sum_{k=1}^{K} \frac{p_k}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)' \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

Likelihood

$$\begin{split} &L(p_1, \cdots, p_k, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \cdots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K) \\ &= \prod_{j=1}^N f_{Mix}(\mathbf{x}_j | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \cdots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K) \\ &= \prod_{j=1}^N \sum_{k=1}^K \frac{p_k}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_k|^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{x}_j - \boldsymbol{\mu}_k)^{\mathsf{T}} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_j - \boldsymbol{\mu}_k)\right) \end{split}$$

62

Statistical Approach

Obtain the maximum likelihood estimates and

$$L_{\max} = L(\hat{p}_1, \cdots, \hat{p}_k, \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\Sigma}}_1, \cdots, \hat{\boldsymbol{\mu}}_K, \hat{\boldsymbol{\Sigma}}_K)$$

Determine K via maximizing

AIC =
$$2 \ln L_{\text{max}} - 2N \left(K \frac{1}{2} (p+1)(p+2) - 1 \right)$$

or

BIC =
$$2 \ln L_{\text{max}} - 2 \ln(N) \left(K \frac{1}{2} (p+1)(p+2) - 1 \right)$$

BIC for Special Structures

Assumed form for Σ_k	Total number of parameters	BIC
$\Sigma_{i} = \eta 1$	K(p + 1)	$\ln L_{\text{max}} - 2\ln(N)K(p+1)$
$\Sigma_i = \eta_i \mathbf{I}$	K(p + 2) - 1	$\ln L_{\text{max}} - 2\ln(N)(K(p+2) - 1)$
$\Sigma_k = \eta_k \operatorname{Diag}(\lambda_1, \lambda_2, \dots, \lambda_p)$	K(p+2) + p - 1	$\ln L_{\text{max}} - 2 \ln(N)(K(p+2) + p - 1)$

64

Software Package MCLUST

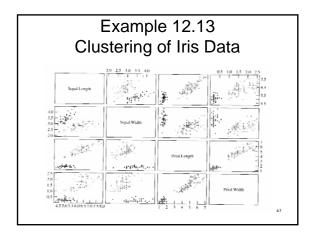
- → Combines hierarchical clustering, EM algorithm, and BIC
- In the E step of EM, a matrix is created whose jth row contains the estimates of the conditional probabilities that observation \mathbf{x}_j belongs to cluster 1, 2, . . . , K
- →At convergence x_j is assigned to cluster k for which the conditional probability of membership is largest ωs

Example 12.13 Clustering of Iris Data

$$K = 3$$

 $p = 4$, $\Sigma_k = \eta_k \mathbf{I}$, $k = 1,2,3$
 $\hat{\eta}_1 = 0.076$, $\hat{\eta}_2 = 0.163$, $\hat{\eta}_3 = 0.163$
 $\hat{p}_1 = 0.3333$, $\hat{p}_2 = 0.4133$, $\hat{p}_3 = 0.2534$
BIC = -853.8

$$\boldsymbol{\mu}_1 = \begin{bmatrix} 5.01 \\ 3.43 \\ 1.46 \\ 0.25 \end{bmatrix}, \quad \boldsymbol{\mu}_2 = \begin{bmatrix} 5.90 \\ 2.75 \\ 4.40 \\ 1.43 \end{bmatrix}, \quad \boldsymbol{\mu}_3 = \begin{bmatrix} 6.85 \\ 3.07 \\ 5.73 \\ 2.07 \end{bmatrix}$$

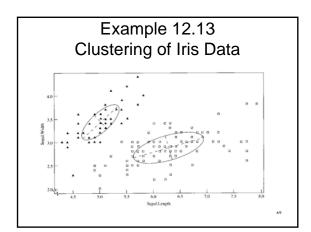


Example 12.13 Clustering of Iris Data

$$K = 2 \text{ is the best solution}$$

$$\hat{p}_1 = 0.3333, \quad \hat{p}_2 = 0.6667 \quad \mu_1 = \begin{bmatrix} 5.01 \\ 3.43 \\ 1.46 \\ 0.25 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} 6.26 \\ 2.87 \\ 4.91 \\ 1.68 \end{bmatrix}$$

$$\hat{\Sigma}_1 = \begin{bmatrix} .1218 & .0972 & .0160 & .0101 \\ .0972 & .1408 & .0115 & .0091 \\ .0160 & .0115 & .0296 & .0059 \\ .0101 & .0091 & .0059 & .0109 \end{bmatrix} \quad \hat{\Sigma}_2 = \begin{bmatrix} .4530 & .1209 & .4489 & .1655 \\ .1209 & .1096 & .1414 & .0792 \\ .4489 & .1414 & .6748 & .2858 \\ .1655 & .0792 & .2858 & .1786 \end{bmatrix}$$



Outlinet

- → Introduction
- → Similarity Measures
- Hierarchical Clustering Methods
- → Nonhierarchical Clustering Methods
- Clustering Based on Statistical Models
- Multidimensional Scaling

Multidimensional Scaling (MDS)

- → Displays (transformed) multivariate data in low-dimensional space
- → Different from plots based on PC
 - Primary objective is to "fit" the original data into low-dimensional system
 - Distortion caused by reduction of dimensionality is minimized
- Distortion
 - -Similarities or dissimilarities among data

Multidimensional Scaling

- → Given a set of similarities (or distances) between every pair of N items
- Find a representation of the items in few dimensions
- → Inter-item proximities "nearly" match the original similarities (or distances)

Non-metric and Metric MDS

- → Non-metric MDS
 - Uses only the rank orders of the N(N-1)/2 original similarities and not their magnitudes
- → Metric MDS
 - Actual magnitudes of original similarities are used
 - Also known as principal coordinate analysis

73

Objective

N items, M = N(N-1)/2 similarities

Find a q - dimensional configuration, such that

$$d_{i_1k_1}^{(q)} > d_{i_2k_2}^{(q)} > \cdots > d_{i_Mk_M}^{(q)}$$

 $S_{i_1k_1} < S_{i_2k_2} < \cdots < S_{i_Mk_M}$

74

Kruskal's Stress

$$Stress(q) = \left\{ \frac{\sum_{k} \sum_{i < k} \left(d_{ik}^{(q)} - \hat{d}_{ik}^{(q)} \right)^{2}}{\sum_{k} \sum_{i < k} \left[d_{ik}^{(q)} \right]^{2}} \right\}^{1/2}$$

 $\hat{d}_{ik}^{(q)}$ are numbers known to satisfy the ordering They are not distances, and merely reference numbers

75

Takane's Stress

SStress =
$$\left\{ \frac{\sum_{i < k} \sum_{i < k} (d_{ik}^2 - \hat{d}_{ik}^2)^2}{\sum_{k} \sum_{i < k} d_{ik}^4} \right\}^{1/2}$$

76

Basic Algorithm

- → Obtain and order the M pairs of similarities
- \star Try a configuration in q dimensions
 - Determine inter-item distances and reference numbers
 - Minimize Kruskal's or Takane's stress
- Move the points around to obtain an improved configuration
- Repeat until minimum stress is obtained

Example 12.14 MDS of U.S. Cities

