Comparison of Several Multivariate Means

Shyh-Kang Jeng Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking and Multimedia

Outline

- Comparing Several Multivariate Population Means (One-Way MANOVA)
- Simultaneous Confidence Intervals for Treatment Effects
- Testing for Equality of Covariance Matrices
- **Two-Way ANOVA**
- Two-Way Multivariate Analysis of Variance

Outline

- Introduction
- Comparison of Univariate Means
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

2

Outline

- Profile Analysis
- →ANOVA for Repeated Measures
- Repeated Measures Designs and Growth Curves
- Perspectives and Strategy for Analyzing Multivariate Models

Outline

- Introduction
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

Outline

- Introduction
- Comparison of Univariate Means
- Paired Comparisons and a Repeated Measures Design
- Comparing Mean Vectors from Two Populations
- Comparison of Several Univariate
 Population Mean (One-Way ANOVA)

Introduction

 Extend previous ideas to handle problems involving the comparison of several mean vectors

Questions

- What is the paired comparison?
- How to design experiments for paired comparison?
- How to test if the population means of paired groups are different?
- How to compute the confidence interval for the difference of population means of paired groups?

Questions

- How to compare population means of two populations without paired experiments?
- In such a case, how to estimate the common variance?

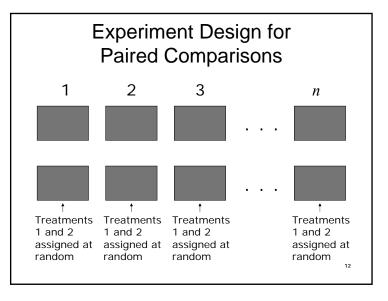
Paired Comparisons

- Measurements are recorded under different sets of conditions
- See if the responses differ significantly over these sets
- Two or more treatments can be administered to the same or similar experimental units
- Compare responses to assess the effects of the treatments

11

Scenarios

- To test if the differences are significant between
 - Teaching using Power Point vs. using chalks and blackboard only
 - Drug vs. placebos
 - Processing speed of MP3 player model I of brand A vs. model G of brand B
 - Performance of students going to cram schools vs. those not



Single Response (Univariate) Case

$$D_{j} = X_{j1} - X_{j2}, j = 1, 2, \dots, n$$

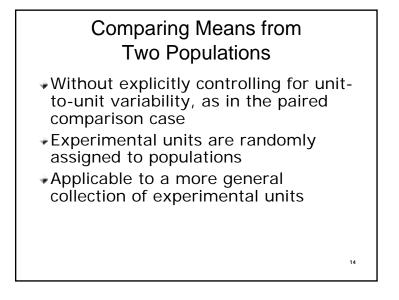
$$D_{j} : N(\delta, \sigma_{d}^{2})$$

$$t = \frac{\overline{D} - \delta}{s_{d} / \sqrt{n}} : t_{n-1}$$
Reject $H_{0} : \delta = 0$ in favor of $H_{1} : \delta \neq 0$ if $|t| > t_{n-1}(\alpha/2)$
100(1- α)% confidence interval for δ

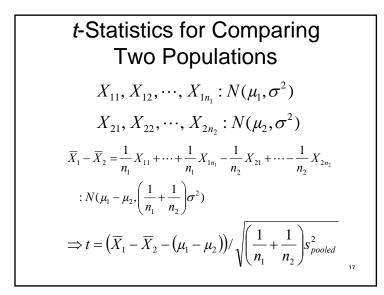
$$\overline{d} - t_{n-1}(\alpha/2) \frac{s_{d}}{\sqrt{n}} \le \delta \le \overline{d} + t_{n-1}(\alpha/2) \frac{s_{d}}{\sqrt{n}}$$

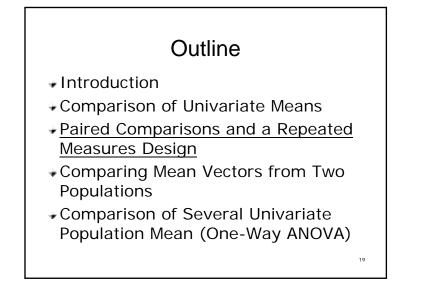
Assumptions Concerning the Structure of Data

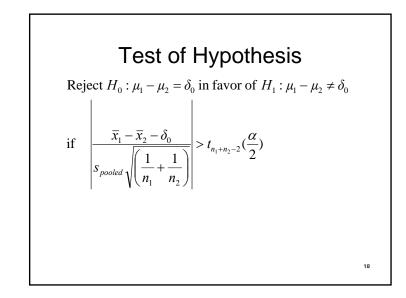
 $X_{11}, X_{12}, \dots, X_{1n_1} : \text{random sample from univariate}$ population with mean μ_1 and variance σ_1^2 $X_{21}, X_{22}, \dots, X_{2n_2}$: random sample from univariate population with mean μ_2 and variance σ_2^2 $X_{11}, X_{12}, \dots, X_{1n_1}$ are independent of $X_{21}, X_{22}, \dots, X_{2n_2}$ Further assumptions when n_1 and n_2 small : Both populations are univariate normal $\sigma_1^2 = \sigma_2^2$

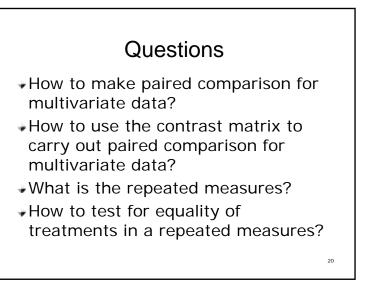


$$\begin{aligned} & \text{Pooled Estimate of} \\ & \text{Pooled Formulation Variance} \\ & \sum_{j=1}^{n_1} (x_{j1} - \overline{x_1}) (x_{j1} - \overline{x_1}) \approx (n_1 - 1) \sigma^2 \\ & \sum_{j=1}^{n_2} (x_{j2} - \overline{x_2}) (x_{j2} - \overline{x_2}) \approx (n_2 - 1) \sigma^2 \\ & \text{S}_{j=1}^{2} (x_{j2} - \overline{x_2}) (x_{j2} - \overline{x_2}) \approx (n_2 - 1) \sigma^2 \\ & \text{S}_{pooled}^2 = \frac{\sum_{j=1}^{n_1} (x_{j1} - \overline{x_1}) (x_{j1} - \overline{x_1}) + \sum_{j=1}^{n_2} (x_{j2} - \overline{x_2}) (x_{j2} - \overline{x_2})}{n_1 + n_2 - 2} \\ & = \frac{n_1 - 1}{n_1 + n_2 - 2} S_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_2^2 \end{aligned}$$



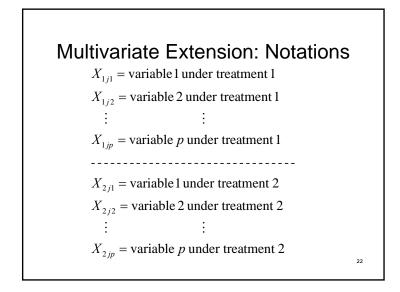




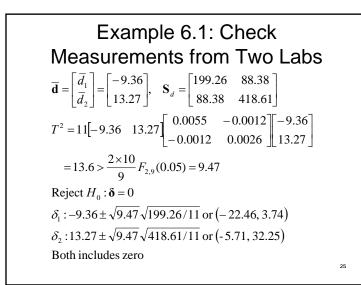


Effluent Data from Two Labs				
	Commercial lab		State lab of hygiene	
Sample j	x_{1j1} (BOD)	$x_{1/2}$ (SS)	x_{2j1} (BOD)	$x_{2j2}(SS)$
1	6	27	25	15
2	6	23	28	13
3	18	64	36	22
4	8	44	35	29
5	11	30	15	31
6	34	75	44	64
7	28	26	42	30
8	71	124	54	64
9	43	54	34	56
10	33	30	29	20
11	20	14	39	21

Result 6.1	
$D_{j1} = X_{1j1} - X_{2j1}$	
$D_{j2} = X_{1j2} - X_{2j2}$	
$D_{jp} = X_{1jp} - X_{2jp}$	
$\mathbf{D}_{j} = \begin{bmatrix} D_{j1}, D_{j2}, \cdots, D_{jp} \end{bmatrix}$	
$\mathbf{D}_j: N_p(\mathbf{\delta}, \mathbf{\Sigma}_d), j = 1, 2, \cdots, n$	
$T^{2} = n(\overline{\mathbf{D}} - \boldsymbol{\delta}) \mathbf{S}_{d}^{-1} (\overline{\mathbf{D}} - \boldsymbol{\delta}) : \frac{(n-1)p}{(n-p)} F_{p,n-p}$	
$\overline{\mathbf{D}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{D}_{j}, \mathbf{S}_{d} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{D}_{j} - \overline{\mathbf{D}}) (\mathbf{D}_{j} - \overline{\mathbf{D}})$	23

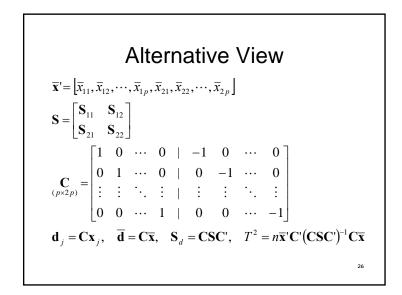


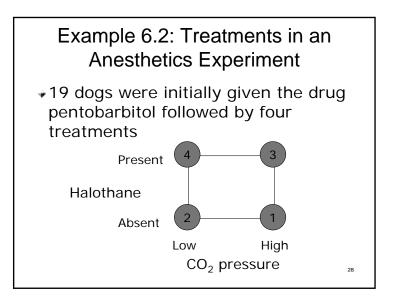
Test of Hypotheses and Confidence Regions
$\mathbf{d}_{j} = [d_{j1}, d_{j2}, \cdots, d_{jp}]$: observed differences
Reject $H_0: \mathbf{\delta} = 0$ in favor of $H_1: \mathbf{\delta} \neq 0$ if
$T^{2} = n\overline{\mathbf{d}}'\mathbf{S}_{d}^{-1}\overline{\mathbf{d}} > \frac{(n-1)p}{n-p}F_{p,n-p}(\alpha)$
Confidence regions: $(\overline{\mathbf{d}} - \boldsymbol{\delta}) \mathbf{S}_{d}^{-1} (\overline{\mathbf{d}} - \boldsymbol{\delta}) \leq \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$
$\delta_i: \overline{d}_i \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{d_i}^2}{n}}, \delta_i: \overline{d}_i \pm t_{n-1}\left(\frac{\alpha}{2p}\right) \sqrt{\frac{s_{d_i}^2}{n}}$
24



Repeated Measures Design for Comparing Measurements

- *q* treatments are compared with respect to a single response variable
- Each subject or experimental unit receives each treatment once over successive periods of time

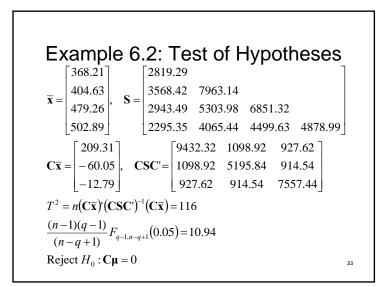


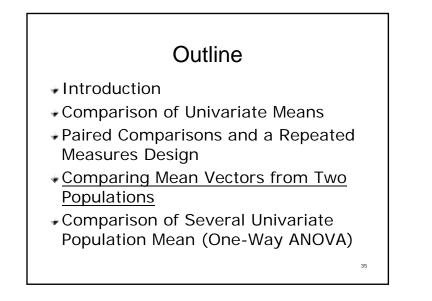


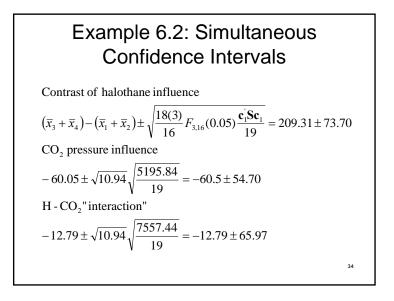
			3	Dog D	
(14a)glar (76	0.(252).0	Treat	ment	multivariete pe	
Dog	1	2	3	4	
n of the unity	426	609	556	600	
2	253	236	392	395	
3	359	433	349	357	
4	432	431	522	600	
5	405	426	513	513	
6	324	438	507	539	
7	310	312	410	456	
8	326	326	350	504	
9	375	447	547	548	
10	286	286	403	422	
11	349	382	473	497	
12	429	410	488	547	
13	348	377	447	514	
12.00014	412	473	472	446	
15	347	326	455	468	
16	434	458	637	524	
17	364	367	432	469	
18 19	420 397	395 556	508 645	531 625	

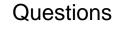
 $\begin{aligned} & \text{The set of Equality of Treatments in a generated Measures Design} \\ & \text{Step equation of the set of Equation of the set of t$

$$\mathbf{Contrast Matrix}$$
$$\mathbf{X}_{j} = \begin{bmatrix} X_{j1} \\ X_{j2} \\ \vdots \\ X_{jq} \end{bmatrix}, \quad j = 1, 2, \dots, n \quad \mathbf{\mu} = E(\mathbf{X}_{j})$$
$$\begin{bmatrix} \mu_{1} - \mu_{2} \\ \mu_{1} - \mu_{3} \\ \vdots \\ \mu_{1} - \mu_{q} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{q} \end{bmatrix} = \mathbf{C} \mathbf{\mu}$$









- How to compare mean vectors from two populations, not forming paired comparison groups?
- How to pool covariance matrices from two populations?
- How to find simultaneous confidence intervals for comparing mean vectors from two populations?

Questions • What is the multivariate Behrensfisher problem and how to solve it?

Assumptions Concerning the Structure of Data

 $\begin{aligned} \mathbf{X}_{11}, \mathbf{X}_{12}, \cdots, \mathbf{X}_{1n_1} : \text{random sample from } p - \text{variate} \\ \text{population with mean vector } \mathbf{\mu}_1 \text{ and covariance } \mathbf{\Sigma}_1 \\ \mathbf{X}_{21}, \mathbf{X}_{22}, \cdots, \mathbf{X}_{2n_2} : \text{random sample from } p - \text{variate} \\ \text{population with mean vector } \mathbf{\mu}_2 \text{ and covariance } \mathbf{\Sigma}_2 \\ \mathbf{X}_{11}, \mathbf{X}_{12}, \cdots, \mathbf{X}_{1n_1} \text{ are independent of } \mathbf{X}_{21}, \mathbf{X}_{22}, \cdots, \mathbf{X}_{2n_2} \\ \text{Further assumptions when } n_1 \text{ and } n_2 \text{ small}: \\ \text{Both populations are multivariate normal} \\ \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2 \end{aligned}$

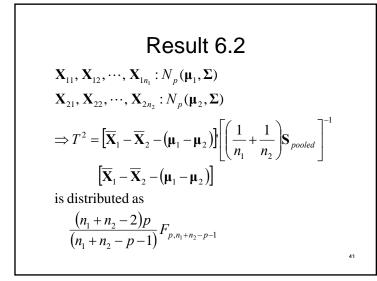
Comparing Mean Vectors from Two Populations

- Populations: Sets of experiment settings
- Without explicitly controlling for unitto-unit variability, as in the paired comparison case

38

- Experimental units are randomly assigned to populations
- Applicable to a more general collection of experimental units

 $\begin{aligned} & \text{Pooled Estimate of} \\ & \text{Pooled Ion Covariance Matrix} \end{aligned}$ $\begin{aligned} & \sum_{j=1}^{n_1} \left(\mathbf{x}_{j1} - \overline{\mathbf{x}}_1 \right) \left(\mathbf{x}_{j1} - \overline{\mathbf{x}}_1 \right) \approx (n_1 - 1) \Sigma \\ & \sum_{j=1}^{n_2} \left(\mathbf{x}_{j2} - \overline{\mathbf{x}}_2 \right) \left(\mathbf{x}_{j2} - \overline{\mathbf{x}}_2 \right) \approx (n_2 - 1) \Sigma \\ & \mathbf{S}_{pooled} = \frac{\sum_{j=1}^{n_1} \left(\mathbf{x}_{j1} - \overline{\mathbf{x}}_1 \right) \left(\mathbf{x}_{j1} - \overline{\mathbf{x}}_1 \right) + \sum_{j=1}^{n_2} \left(\mathbf{x}_{j2} - \overline{\mathbf{x}}_2 \right) \left(\mathbf{x}_{j2} - \overline{\mathbf{x}}_2 \right) \\ & = \frac{n_1 - 1}{n_1 + n_2 - 2} \mathbf{S}_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} \mathbf{S}_2 \end{aligned}$



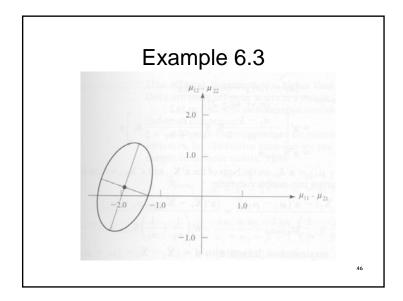
١	Wishart Distribution	
	$ \mathbf{A} ^{(n-p-2)/2}e^{-\mathrm{tr}[\mathbf{A}\boldsymbol{\Sigma}^{-1}]/2}$	
$W_{n-1}(\mathbf{A} \mid \mathbf{\Sigma})$	$= \frac{1}{2^{p(n-1)/2} \pi^{p(p-1)/4} \mathbf{\Sigma} ^{(n-1)/2} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n-1)/2 \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}\right)^{(n-1)/2} \prod_{i$	(n-i)
A: positive	e definite	
Properties	:	
$\mathbf{A}_1: W_{m_1}(\mathbf{A}$	$_{1} \Sigma), A_{2}: W_{m_{2}}(A_{2} \Sigma) \Rightarrow$	
$\mathbf{A}_1 + \mathbf{A}_2$	$: W_{m_1+m_2}(\mathbf{A}_1 + \mathbf{A}_2 \mid \boldsymbol{\Sigma})$	
$\mathbf{A}: W_m(\mathbf{A})$	$\Sigma) \Longrightarrow \mathbf{CAC'}: W_m(\mathbf{CAC'} \mathbf{C\Sigma\Sigma'})$	
		43

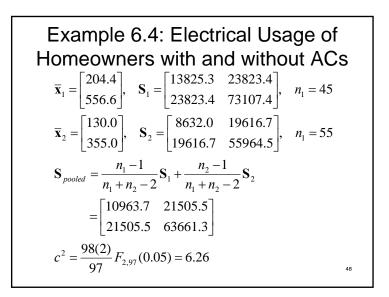
$$\begin{aligned} & \mathbf{Proof of Result 6.2} \\ \overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} = \frac{1}{n_{1}} \mathbf{X}_{11} + \dots + \frac{1}{n_{1}} \mathbf{X}_{1n_{1}} - \frac{1}{n_{2}} \mathbf{X}_{21} + \dots - \frac{1}{n_{2}} \mathbf{X}_{2n_{2}} \\ & : N_{p}(\mathbf{\mu}_{1} - \mathbf{\mu}_{2}, \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \mathbf{\Sigma}) \\ & (n_{1} - 1) \mathbf{S}_{1} : W_{n,-1}(\mathbf{\Sigma}), \quad (n_{2} - 1) \mathbf{S}_{2} : W_{n_{2} - 1}(\mathbf{\Sigma}) \\ & (n_{1} - 1) \mathbf{S}_{1} + (n_{2} - 1) \mathbf{S}_{2} : W_{n_{1} + n_{2} - 2}(\mathbf{\Sigma}) \\ T^{2} = \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)^{-1/2} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2}) \right] \mathbf{S}^{-1}_{pooled} \\ & \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)^{-1/2} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2}) \right] \\ & = N_{p}(\mathbf{0}, \mathbf{\Sigma}) \cdot \left[\frac{W_{n_{1} + n_{2} - 2}(\mathbf{\Sigma})}{n_{1} + n_{2} - 2} \right]^{-1} N_{p}(\mathbf{0}, \mathbf{\Sigma}) : \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p, n_{1} + n_{2} - p - 1} \end{aligned}$$

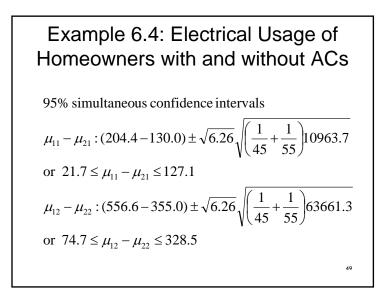
 $\begin{aligned} & \operatorname{Full} \mathbf{F}(\mathbf{x}_{1}) = \mathbf{x}_{2} = \mathbf{\delta}_{0} \text{ in favor of } H_{1} : \mathbf{\mu}_{1} - \mathbf{\mu}_{2} \neq \mathbf{\delta}_{0} \\ & \text{if } T^{2} = (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - \mathbf{\delta}_{0}) \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{pooled} \right]^{-1} (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - \mathbf{\delta}_{0}) \\ & > \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p,n_{1} + n_{2} - p - 1}(\alpha) \\ & \text{Note } E(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}) = \mathbf{\mu}_{1} - \mathbf{\mu}_{2} \\ & \operatorname{Cov}(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}) \\ & = \operatorname{Cov}(\overline{\mathbf{X}}_{1}) - \operatorname{Cov}(\overline{\mathbf{X}}_{1}, \overline{\mathbf{X}}_{2}) - \operatorname{Cov}(\overline{\mathbf{X}}_{2}, \overline{\mathbf{X}}_{1}) + \operatorname{Cov}(\overline{\mathbf{X}}_{2}) \\ & = \operatorname{Cov}(\overline{\mathbf{X}}_{1}) + \operatorname{Cov}(\overline{\mathbf{X}}_{2}) = \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{\Sigma} \end{aligned}$

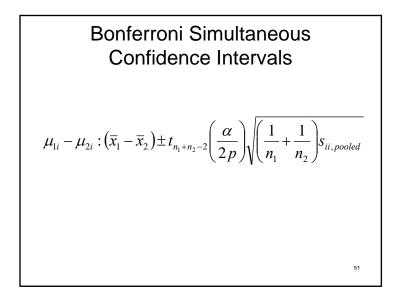
Example 6.3: Comparison of Soap Manufactured in Two Ways	S
$n_1 = n_2 = 50$	
$\overline{\mathbf{x}}_1 = \begin{bmatrix} 8.3\\ 4.1 \end{bmatrix}, \mathbf{S}_1 = \begin{bmatrix} 2 & 1\\ 1 & 6 \end{bmatrix}, \overline{\mathbf{x}}_2 = \begin{bmatrix} 10.2\\ 3.9 \end{bmatrix}, \mathbf{S}_2 = \begin{bmatrix} 2 & 1\\ 1 & 4 \end{bmatrix}$	
$\mathbf{S}_{pooled} = \frac{49}{98}\mathbf{S}_1 + \frac{49}{98}\mathbf{S}_2 = \begin{bmatrix} 2 & 1\\ 1 & 5 \end{bmatrix}, \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 = \begin{bmatrix} -1.9\\ 0.2 \end{bmatrix}$	
Eigenvalues and eigenvectors of \mathbf{S}_{pooled} :	
$\lambda_1 = 5.303, \mathbf{e}_1 = \begin{bmatrix} 0.290 & 0.957 \end{bmatrix}'$	
$\lambda_2 = 1.697, \mathbf{e}_1 = \begin{bmatrix} 0.957 & -0.290 \end{bmatrix}$	
$\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1} F_{p, n_1 + n_2 - p - 1}(0.05) = 0.25$	
$\sqrt{\lambda_1}\sqrt{0.25} = 1.15, \sqrt{\lambda_2}\sqrt{0.25} = 0.65$	45

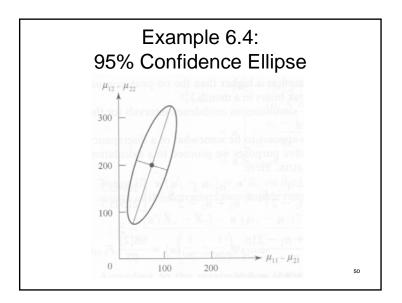
Result 6.3: Simultaneous Confidence Intervals	
$c^{2} = \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p, n_{1} + n_{2} - p - 1}(\alpha)$	
$\mathbf{a}'(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) \pm c \sqrt{\mathbf{a}'\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \mathbf{S}_{pooled} \mathbf{a}$	
will cover $\mathbf{a}'(\mathbf{\mu}_1 - \mathbf{\mu}_2)$ for all \mathbf{a}	
In particular, $\mu_{1i} - \mu_{2i}$ will be covered by	
$(\overline{X}_{1i} - \overline{X}_{2i}) \pm c \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} s_{ii, pooled}$	
	47

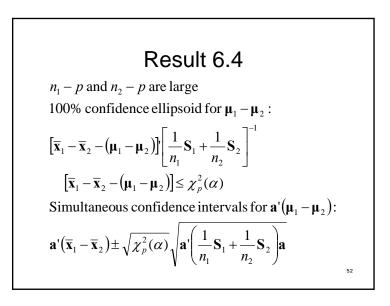


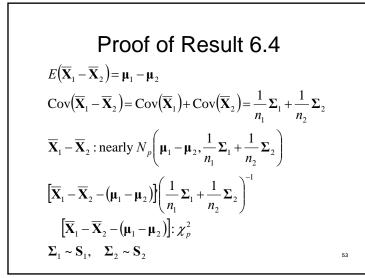












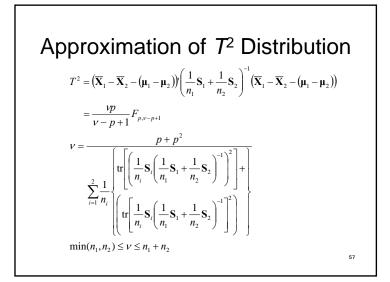
Example 6.5
Example 6.4 Data
$\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2 = \begin{bmatrix} 464.17 & 886.08\\ 886.08 & 2642.15 \end{bmatrix}$
$\mu_{11} - \mu_{21}$: 74.4 ± $\sqrt{5.99}\sqrt{464.17}$ or (21.7, 127.1)
$\mu_{12} - \mu_{22}$: 201.6 ± $\sqrt{5.99}\sqrt{2642.15}$ or (75.8, 327.4)
$H_0: \mathbf{\mu}_1 - \mathbf{\mu}_2 = 0$
$T^{2} = \left[\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right] \left[\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2}\right]^{-1} \left[\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right] = 15.66 > \chi_{2}^{2}(0.05) = 5.99$
Critical linear combination: $\left[\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2\right]^{-1} \left[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2\right] = \begin{bmatrix} 0.041\\ 0.063 \end{bmatrix}_{55}$

Remark
If
$$n_1 = n_2 = n$$

 $\frac{n-1}{n+n-2} = \frac{1}{2}$
 $\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2 = \frac{1}{n}(\mathbf{S}_1 + \mathbf{S}_2)$
 $= \frac{(n-1)\mathbf{S}_1 + (n-1)\mathbf{S}_2}{n+n-2} \left(\frac{1}{n} + \frac{1}{n}\right) = \mathbf{S}_{pooled}\left(\frac{1}{n} + \frac{1}{n}\right)$

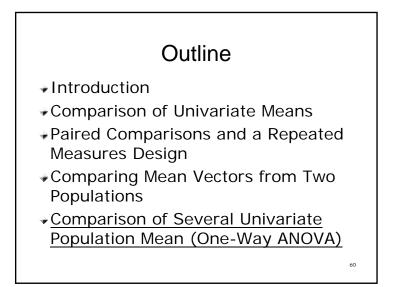
Multivariate Behrens-Fisher Problem

- Population covariance matrices are unequal
- Populations are multivariate normal
- Both sizes are greater than the number of variables



Example 6.6	
∓Example 6.4 data	
$\frac{1}{n_1} \mathbf{S}_1 \left(\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right)^{-1} = \begin{bmatrix} 0.776 & -0.060 \\ -0.092 & 0.646 \end{bmatrix}$	
$\frac{1}{n_2} \mathbf{S}_2 \left(\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right)^{-1} = \begin{bmatrix} 0.224 & -0.060\\ 0.092 & 0.354 \end{bmatrix}$	
v = 77.6	
$\frac{\nu p}{\nu - p + 1} F_{p,\nu - p + 1}(0.05) = \frac{155.2}{76.6} \times 3.12 = 6.32$	
$T^2 = 15.66 > 6.32, H_0 : \mathbf{\mu}_1 - \mathbf{\mu}_2 = 0 \text{ is rejected}$	59

$$\begin{aligned} &(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2}))\left(\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2}\right)^{-1}(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\mathbf{\mu}_{1} - \mathbf{\mu}_{2})) \\ &\leq \frac{\nu p}{\nu - p + 1}F_{p,\nu - p + 1}(\alpha) \end{aligned}$$



Questions

- Why paired comparisons are not good ways to compare several population means?
- How to compute summed squares (between)?
- How to compute summed squares (within)?
- How to compute summed squares (total)?

61

63

Questions

- How to compute the F value for testing of the null hypothesis?
- How are the three kinds of summed squares related?
- How to explain the geometric meaning of the degrees of freedom for a treatment vector?
- What is an ANOVA table?

Questions

- How to calculate the degrees of freedom for summed squares (between)?
- How to calculate the degrees of freedom for summed squares (within)?
- How to calculate the degrees of freedom for summed squares (total)?

62

64

Scenarios

- To test if the following statements are plausible
 - Music compressed by four MP3 compressors are with the same quality
 - Three new drugs are all as effective as a placebo
 - -Four brands of beer are equally tasty
 - Lectures, group studying, and computer assisted instruction are equally effective for undergraduate students

Comparing Four MP3 Compressors

- ✤Test four brands, A, B, C, D
- 10 subjects each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

Problem of Using a *t*-Test

- Must compare two brands at a time
- There are 6 possible comparisons
- Each has a 0.05 chance of being significant by chance
- Overall chance of significant result, even when no difference exist, approaches 1-(0.95)⁶ ~ 0.26

Hypotheses

Null hypothesis

$$H_0: \mu_A = \mu_B = \mu_C = \mu_D$$

- Alternative hypothesis
 - H_1 : Not all the μ s are equal

66

Subject	A	В	C	D
1	4	5	7	2
2	4	5	8	1
3	5	6	7	2
4	5	6	9	3
5	6	7	6	3
6	3	6	3	4
7	4	4	2	5
8	4	5	2	4
9	3	6	2	4
10	4	3	3	3
Mean	4.2	5.3	4.9	3.1

67

Thinking in Terms of Signals and Noises

Signals

- Overall difference among the means of the groups
- Sum of all the squared differences between group means and the overall means

Noises

- -Overall variability within the groups
- Sum of all the squared differences between individual data and their group means

$$SS(within) = \sum_{\ell} \sum_{j} \left(x_{\ell j} - \bar{x}_{\ell} \right)^{2}$$

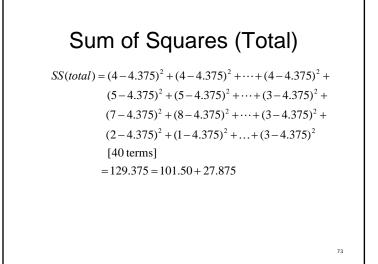
$$SS(within) = (4 - 4.2)^{2} + (4 - 4.2)^{2} + \dots + (4 - 4.2)^{2} + (5 - 5.3)^{2} + (5 - 5.3)^{2} + \dots + (3 - 5.3)^{2} + (7 - 4.9)^{2} + (8 - 4.9)^{2} + \dots + (3 - 4.9)^{2} + (2 - 3.1)^{2} + (1 - 3.1)^{2} + \dots + (3 - 3.1)^{2}$$

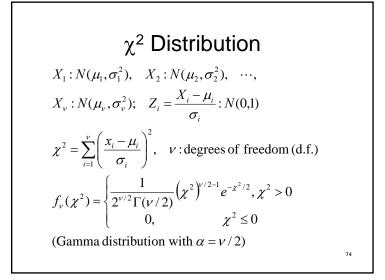
$$[40 \text{ terms}]$$

$$= 101.50$$

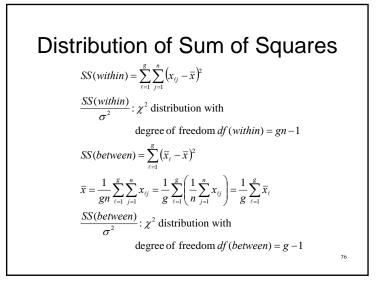
Sum of Squares (Between) $SS(between) = n \sum_{k} (\bar{x}_{\ell} - \bar{x})^{2}$ $SS(between) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$ = 27.875

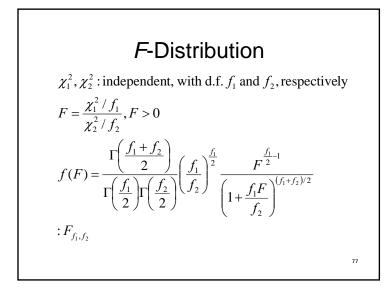
$\begin{aligned} & \text{Sum of Squares (Total)} \\ & S(total) = \sum_{\ell} \sum_{j} (x_{\ell j} - \bar{x})^{2} \\ & x_{\ell j} - \bar{x} = (x_{\ell j} - \bar{x}_{\ell}) + (\bar{x}_{\ell} - \bar{x}) \\ & (x_{\ell j} - \bar{x})^{2} = (x_{\ell j} - \bar{x}_{\ell})^{2} + 2(x_{\ell j} - \bar{x}_{\ell})(\bar{x}_{\ell} - \bar{x}) + (\bar{x}_{\ell} - \bar{x})^{2} \\ & \sum_{j} (x_{\ell j} - \bar{x}_{\ell}) = 0 \\ & \sum_{j} (x_{\ell j} - \bar{x}_{\ell})^{2} = \sum_{j} (x_{\ell j} - \bar{x}_{\ell})^{2} + n(\bar{x}_{\ell} - \bar{x})^{2} \\ & \text{St(total)} = St(within) + St(between) \end{aligned}$

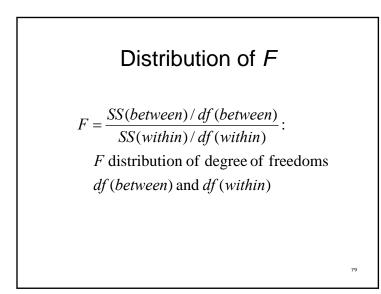


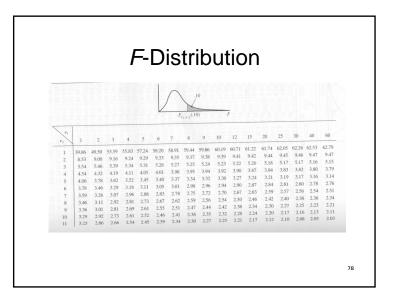


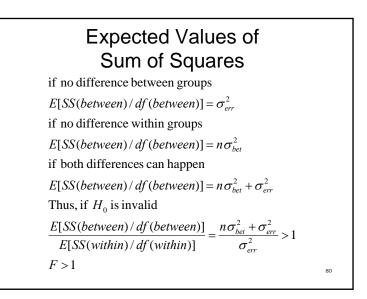
<equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>











Degrees of Freedom

df (between) = g - 1 = 4 - 1 = 3 df (within) = g(n - 1) = 4(10 - 1) = 36 df (total) = gn - 1 = gn - g + g - 1 = df (within) + df (between)= 40 - 1 = 39 = 36 + 3

81

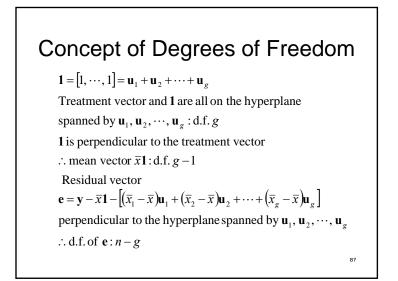
83

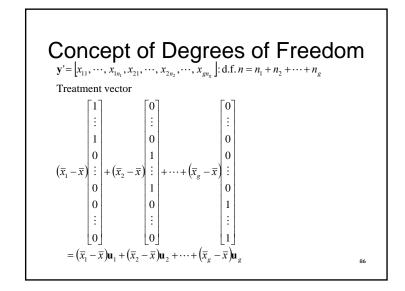
Hypothesis Testing $F = 3.296 > F_{3,36}(0.05) = 2.86$ reject $H_0: \mu_A = \mu_B = \mu_C = \mu_D$ at 0.05 significance level

ANOVA Summary					
Source	Sum of Squares	df	Mean square	F	
Between	27.875	3	9.292	3.296	
Within	101.500	36	2.819		
Total	129.375	39			
				82	

 $\begin{aligned} & \text{Univariate ANOVA} \\ & X_{\ell 1}, X_{\ell 2}, \cdots, X_{\ell n_{\ell}} : \text{random sample from } N(\mu_{\ell}, \sigma^{2}) \\ & \ell = 1, 2, \cdots, g \\ & \text{Nul hypothesis } H_{0} : \mu_{1} = \mu_{2} = \cdots = \mu_{g} \\ & \text{Reparameterization} \\ & \mu_{\ell} = \mu + \tau_{\ell} \\ & H_{0} : \tau_{1} = \tau_{2} = \cdots = \tau_{g} = 0 \\ & X_{\ell j} = \mu + \tau_{\ell} + e_{\ell j}, \quad e_{\ell j} : N(0, \sigma^{2}), \quad \sum_{\ell = 1}^{g} n_{\ell} \tau_{\ell} = 0 \\ & X_{\ell j} = \overline{x} + (\overline{x}_{\ell} - \overline{x}) + (x_{\ell j} - \overline{x}_{\ell}) \end{aligned}$

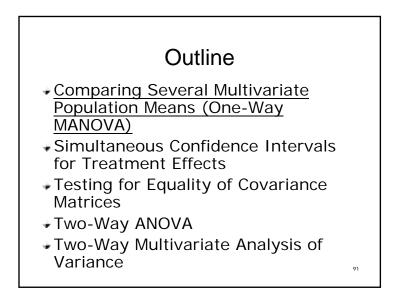
$$\begin{aligned} & \text{Univariate ANOVA} \\ (x_{ij} - \bar{x})^2 = (\bar{x}_{\ell} - \bar{x})^2 + (x_{ij} - \bar{x}_{\ell})^2 + 2(\bar{x}_{\ell} - \bar{x})(x_{ij} - \bar{x}_{\ell}) \\ \sum_{j=1}^{n_{\ell}} (x_{ij} - \bar{x}_{\ell}) = 0 \\ & \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^2 = n_{\ell} (\bar{x}_{\ell} - \bar{x})^2 + \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^2 \\ & \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^2 = \sum_{\ell=1}^{g} n_{\ell} (\bar{x}_{\ell} - \bar{x})^2 + \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^2 \\ & (SS_{cor}) = (SS_{tr}) + (SS_{res}) \\ & \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} x_{\ell j}^2 = (n_{1} + n_{2} + \dots + n_{\ell}) \bar{x}^2 + \sum_{\ell=1}^{g} n_{\ell} (\bar{x}_{\ell} - \bar{x})^2 + \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^2 \\ & (SS_{obs}) = (SS_{mean}) + (SS_{tr}) + (SS_{res}) \end{aligned}$$





ANOVA TABLE FOR	COMPARING UNIVARIATE POPU	LATION MEANS
Source of variation	Sum of squares (SS)	Degrees of freedom (d.f.)
Treatments	$SS_{tr} = \sum_{\ell=1}^{g} n_{\ell} (\bar{x}_{\ell} - \bar{x})^2$	g — 1
Residual (Error)	$SS_{res} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x}_{\ell})^2$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$SS_{cor} = \sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^2$	$\sum_{\ell=1}^{g} n_{\ell} - 1$

Univariate ANOVA Reject $H_0: \tau_1 = \tau_2 = \dots = \tau_g = 0$ at level α if $F = \frac{SS_{tr}/(g-1))}{SS_{res}} > F_{g-1,\sum n_\ell - g}(\alpha)$ $\frac{1}{1+SS_{tr}/SS_{res}} = \frac{SS_{res}}{SS_{res} + SS_{tr}}$



Examples 6.7 & 6.8

$$\begin{pmatrix} 9 & 6 & 9 \\ 0 & 2 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 4 \\ 4 & 4 \\ 4 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 4 & 4 \\ -3 & -3 \\ -2 & -2 & -2 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

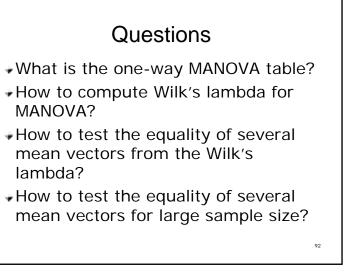
$$SS_{obs} = 216, SS_{mean} = 128$$

$$SS_{re} = 78, d.f. = 3 - 1 = 2$$

$$SS_{res} = 10, d.f. = (3 + 2 + 3) - 3 = 5$$

$$F = \frac{SS_{tr} / (g - 1)}{SS_{res} / \sum n_{\ell} - g} = \frac{78/2}{10/5} = 19.5 > F_{2,5}(0.01) = 13.27$$

$$H_0: \tau_1 = \tau_2 = \tau_3 = 0 \text{ is rejected at the 1\% level}$$



Questions

What are other statistics used in statistical software package for oneway MANOVA?

One-Way MANOVA

93

95

Population 1: $\mathbf{X}_{11}, \mathbf{X}_{12}, \dots, \mathbf{X}_{1n_1}$ Population 2: $\mathbf{X}_{21}, \mathbf{X}_{22}, \dots, \mathbf{X}_{2n_2}$ \vdots \vdots Population $g: \mathbf{X}_{g1}, \mathbf{X}_{g2}, \dots, \mathbf{X}_{gn_g}$ MANOVA (Multivariate ANalysis Of VAriance) is used to investigate whether the population mean vectors are the same, and, if not, which mean components differ significantly Scenario: Example 6.10, Nursing Home Data

- Nursing homes can be classified by the owners: private (271), non-profit (138), government (107)
- Costs: nursing labor, dietary labor, plant operation and maintenance labor, housekeeping and laundry labor
- To investigate the effects of ownership on costs

Assumptions about the Data

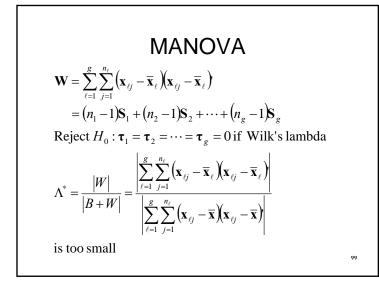
94

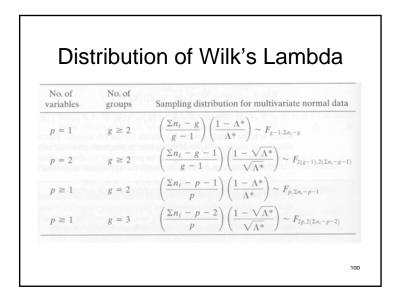
96

X_{ℓ1}, X_{ℓ2}, ..., X_{ℓnℓ}: random sample from a population with mean μ_ℓ, ℓ = 1, 2, ..., g
Random sample from different populations are independent
All populations have a common covariance matrix Σ
Each population is multivariate normal

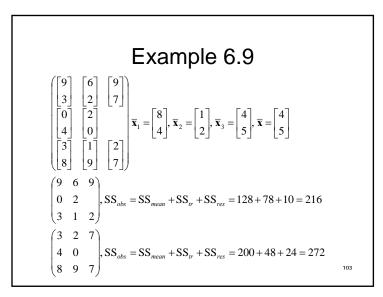
$$\begin{aligned} \mathbf{MANOVA} \\ \mathbf{X}_{\ell j} &= \mathbf{\mu} + \mathbf{\tau}_{\ell} + \mathbf{e}_{\ell j}; \ j = 1, 2, \cdots, n_{\ell}; \ \ell = 1, 2, \cdots, g \\ \mathbf{e}_{\ell j} &: N_{p}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{\mu}: \text{ overall mean (level)} \\ \mathbf{\tau}_{\ell} &: \ell \text{th treatment effect}, \ \sum_{\ell=1}^{g} n_{\ell} \mathbf{\tau}_{\ell} = \mathbf{0} \\ \mathbf{x}_{\ell j} &= \overline{\mathbf{x}} + (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}) + (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) = \hat{\mathbf{\mu}} + \hat{\mathbf{\tau}}_{\ell} + \hat{\mathbf{e}}_{\ell j} \\ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}_{\ell j} - \overline{\mathbf{x}}_{\ell}) = \mathbf{B} + \mathbf{W} \\ &+ \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) = \mathbf{B} + \mathbf{W} \end{aligned}$$

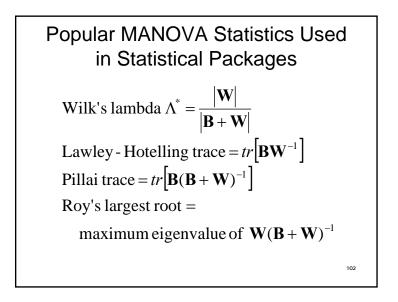
MANOVA TABLE F	OR COMPARING POPULATION MEAN VE	CTORS
Source of variation	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.)
Treatment	$\mathbf{B} = \sum_{\ell=1}^{s} n_{\ell} (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\ell} - \overline{\mathbf{x}})'$	g - 1
Residual (Error)	$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell})'$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$\mathbf{B} + \mathbf{W} = \sum_{\ell=1}^{g} \sum_{i=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})'$	$\sum_{\ell=1}^{g} n_{\ell} - 1$

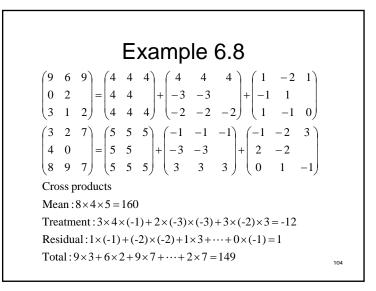




Test of Hypothesis for Large Size
If
$$H_0$$
 is true and $\sum n_\ell = n$ is large,
 $-\left(n-1-\frac{p+g}{2}\right)\ln\Lambda^*$: $\chi^2_{p(g-1)}$
Reject H_0 at significance level α if
 $-\left(n-1-\frac{p+g}{2}\right)\ln\left(\frac{|\mathbf{W}|}{|\mathbf{B}+\mathbf{W}|}\right) > \chi^2_{p(g-1)}(\alpha)$

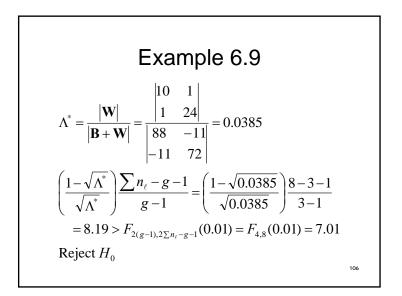


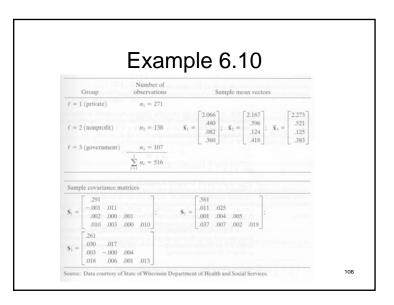


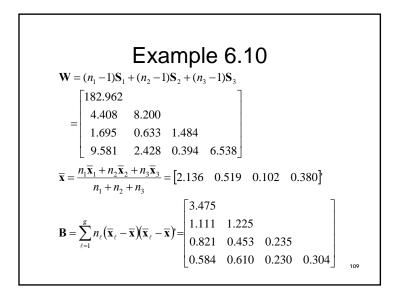


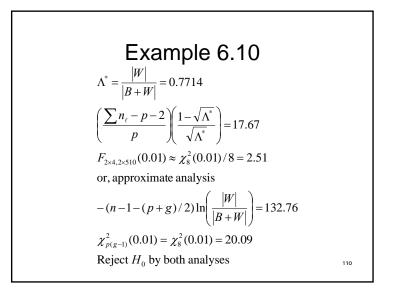
Source of variation	Matrix of sum of squares and cross products	Degrees of freedom
Treatment	$\begin{bmatrix} 78 & -12 \\ -12 & 48 \end{bmatrix}$	3 - 1 = 2
Residual	$\begin{bmatrix} 10 & 1 \\ 1 & 24 \end{bmatrix}$	3 + 2 + 3 - 3 = 5
Total (corrected)	$\begin{bmatrix} 88 & -11 \\ -11 & 72 \end{bmatrix}$	7

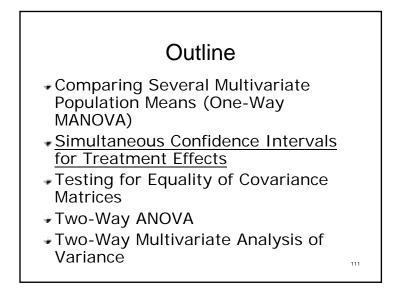
- Nursing homes can be classified by the owners: private (271), non-profit (138), government (107)
- Costs: nursing labor, dietary labor, plant operation and maintenance labor, housekeeping and laundry labor
- To investigate the effects of ownership on costs

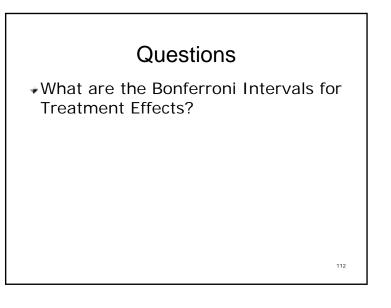


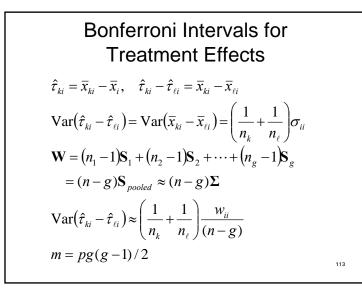




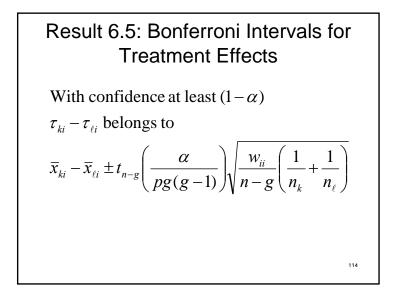


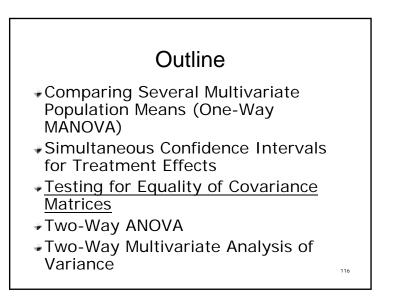


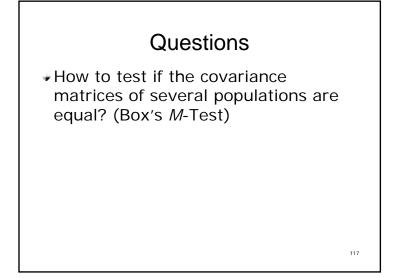


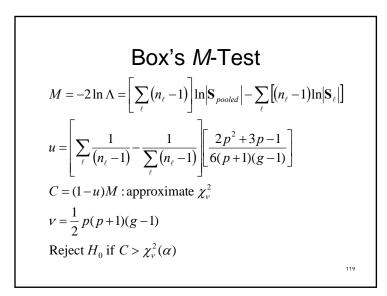


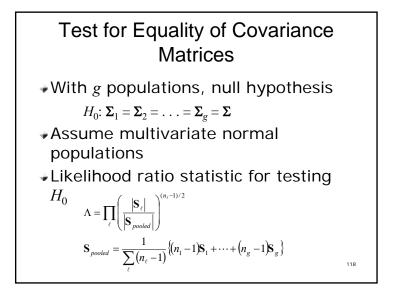
Example 6.11: Example 6.10 Data
$\hat{\tau}_1 = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}} = \begin{bmatrix} -0.070 & -0.039 & -0.020 \end{bmatrix}$
$\hat{\boldsymbol{\tau}}_3 = \overline{\mathbf{x}}_3 - \overline{\mathbf{x}} = \begin{bmatrix} 0.137 & 0.002 & 0.023 & 0.003 \end{bmatrix}$
$\hat{\tau}_{13} - \hat{\tau}_{33} = -0.20 - 0.023 = -0.043, n = 516$
$\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_3}\right)\frac{w_{33}}{n-g}} = \sqrt{\left(\frac{1}{271} + \frac{1}{107}\right)\frac{1.484}{516-3}} = 0.00614$
$t_{513}(0.05/4 \times 3 \times 2) = 2.87$
95% simultaneous confidence interval for $\tau_{13} - \tau_{33}$
$-0.043 \pm 2.87 \times 0.00614$ or $(-0.061, -0.025)$
95% simultaneous confidence intervals for
$\tau_{13} - \tau_{23}$ and $\tau_{23} - \tau_{33}$: (-0.058, -0.026), (-0.021, 0.019)

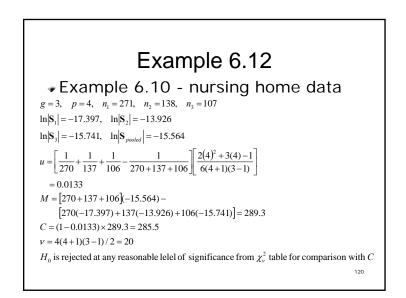






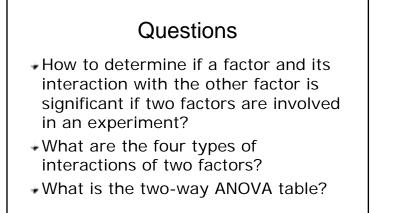






$x_1 = $ tear resistance,	$x_2 = \text{gloss}, \text{and}$	$x_3 = 0$	opacit	ty		AVO	1AM
		Fa	actor	2: Amo	unt of	additi	ve
	9.28150020	Lo	w (1.0	0%)	Hig	gh (1.	5%)
Factor 1: Change	Low (-10)%				$\frac{x_1}{[6.9]}$ [7.2 [6.9] [6.1] [6.3]		5.7] 2.0]
in rate of extrusion	High (10%)	$\frac{x_1}{[6.7]}$ [6.6 [7.2] [7.1] [6.8]	$\frac{x_2}{9.1}$ 9.3 8.3 8.4 8.5	$\frac{x_3}{2.8]} \\ 4.1] \\ 3.8] \\ 1.6] \\ 3.4]$	$\frac{x_1}{[7.1]}$ [7.0 [7.2] [7.5] [7.6]	9.2 8.8 9.7 10.1	$\frac{x_3}{8.4]}$ 5.2] 6.9] 2.7] 1.9]

Outline Comparing Several Multivariate Population Means (One-Way MANOVA) Simultaneous Confidence Intervals for Treatment Effects Testing for Equality of Covariance Matrices Two-Way ANOVA Two-Way Multivariate Analysis of Variance



Scenarios To observe if effects of factors in the following scenarios are significant Ratings of music compressed by MP3 compressors: brands vs. ages of the subjects Performance of Teaching: methods (Lectures, group studying, and computer assisted instruction) vs. genders of undergraduate students

123

	0		vs. Ger erall Me	
Gender	CAI	Lecture	Group Studying	Mean
Boys	50	50	50	50
Girls	50	50	50	50
Mean	50	50	50	50
				125

	0		vs. Ger ts, and Colur	
Gender	CAI	Lecture	Group Studying	Mean
Boys	50	40	30	40
Girls	70	60	50	60
Mean	60	50	40	50
				127

	0		vs. Ger nd Row E	
Gender	CAI	Lecture	Group Studying	Mean
Boys	40	40	40	40
Girls	60	60	60	60
Mean	50	50	50	50
				126

	•		vs. Ger ion Teri	
Gender	CAI	Lecture	Group Studying	Mean
Boys	65	40	15	40
Girls	55	60	65	60
Mean	60	50	40	50
				128

Comparing Four MP3 Compressors

- ✤Test four brands, A, B, C, D
- 10 subjects, 5 young and 5 senior, each brand (40 in total) to provide a satisfaction rating on a 10-point scale
- Assume that the rating to each brand is a normal distribution, but all four distributions are with the same variance

Sample Data	
-------------	--

		А	В	С	D	Mean
	1~4	4	5	7	2	
	5~8	4	5	8	1	
Young	9~12	5	6	7	2	5.05
Subjects	13~16	5	6	9	3	5.05
	17~20	6	7	6	3	1
	Mean	4.8	5.8	7.4	2.2	

		San	nple l	Data		
		А	В	C	D	Mean
Senior Subjects	21~24	3	6	3	4	
	25~28	4	4	2	5	
	29~32	4	5	2	4	3.70
	33~36	3	6	2	4	1
	37~40	4	3	3	3	
	Mean	3.6	4.8	2.4	4.0	1
		А	В	C	D	Mean
Brand Mean		4.2	5.3	4.9	3.1	4.375

Sum of Squares (Young/Senior) $SS(young / senior) = bn \sum_{\ell}^{\infty} (\bar{x}_{\ell \bullet} - \bar{x})^2$ $SS(young / senior) = 20[(5.05 - 4.375)^2 + (3.70 - 4.375)^2]$ =18.225 132

Sum of Squares (Brands)

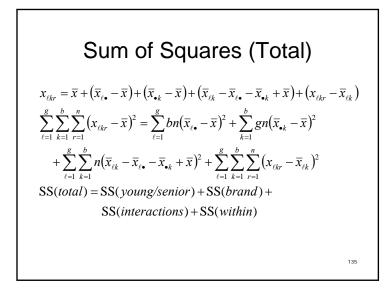
$$SS(brands) = gn \sum_{k=1}^{b} (\bar{x}_{\bullet k} - \bar{x})^{2}$$

$$SS(brands) = 10[(4.2 - 4.375)^{2} + (5.3 - 4.375)^{2} + (4.9 - 4.375)^{2} + (3.1 - 4.375)^{2}]$$

$$= 27.875$$

$$Ss(within) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} \sum_{\gamma=1}^{n} (x_{\ell k \gamma} - \bar{x}_{\ell k})$$

$$Ss(within) = (4 - 4.8)^{2} + (4 - 4.8)^{2} + \dots + (6 - 4.8)^{2} + (5 - 5.8)^{2} + \dots + (7 - 5.9)^{2} + \dots + (4 - 4.0)^{2} + (5 - 4.0)^{2} + \dots + (3 - 4.0)^{2} + (4 - 4.0)^{2} + (5 - 4.0)^{2} + \dots + (3 - 4.0)^{2} +$$



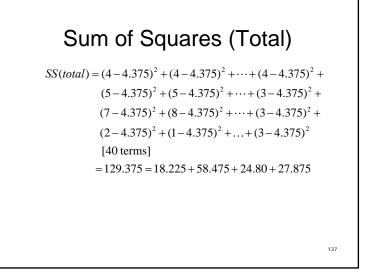
Sum of Squares (Interactions)

$$S(interactions) = n \sum_{\ell=1}^{g} \sum_{k=1}^{b} (\bar{x}_{\ell k} - \bar{x}_{\ell k} - \bar{x}_{\ell k})^{2}$$

$$S(interactions) = 5[(4.8 - 4.875)^{2} + (3.6 - 3.525)^{2} + (-4.6) - 2.425)^{2}]$$

$$[8 terms]$$

$$= 58.475$$



Degrees of Freedom

$$df (young / senior) = g - 1 = 2 - 1 = 1$$

$$df (brand) = b - 1 = 4 - 1 = 3$$

$$df (within) = bg(n - 1) = 8(5 - 1) = 32$$

$$df (interactions) = (b - 1)(g - 1) = (4 - 1)(2 - 1) = 3$$

$$df (total) = bgn - 1 = bg(n - 1) + (b - 1)(g - 1) + b - 1 + g - 1$$

$$= df (within) + df (interactions) + df (brand) + df (young / senior)$$

$$= 40 - 1 = 39 = 32 + 3 + 3 + 1$$

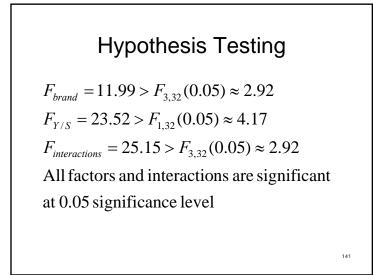
Expected Values of Sum of Squares

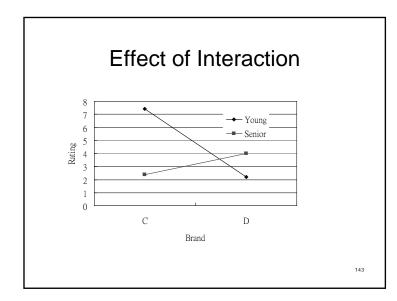
 $E[SS(brand) / df(brand)] \text{ contains } \sigma_{brand}^{2}, \sigma_{interactions}^{2}, \sigma_{err}^{2}$ $E[SS(within) / df(within)] = \sigma_{err}^{2}$ Thus, if brand effect is significant $\frac{E[SS(brand) / df(brand)]}{E[SS(within) / df(within)]} > 1$ $F_{brand} > 1$

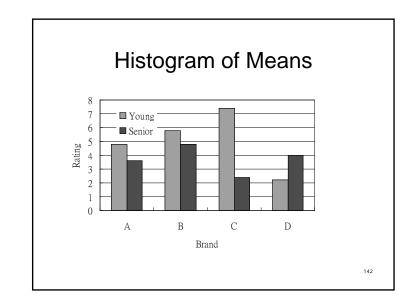
138

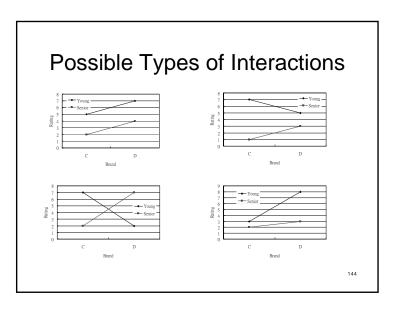
Two-way ANOVA Summary

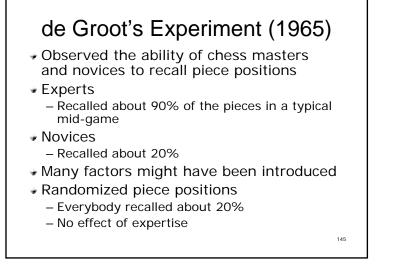
Source	Sum of	df	Mean	F
	Squares		square	
Brand	27.875	3	9.29	11.99
Young/ Senior	18.225	1	18.23	23.52
Brand X Y/S	58.475	3	19.49	25.15
Within	24.80	32	0.78	
Total	129.375	39		140

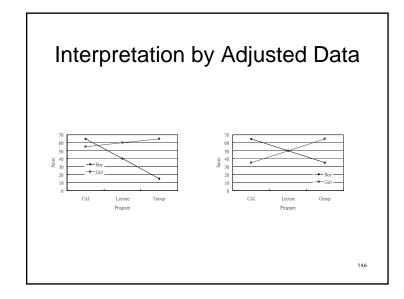


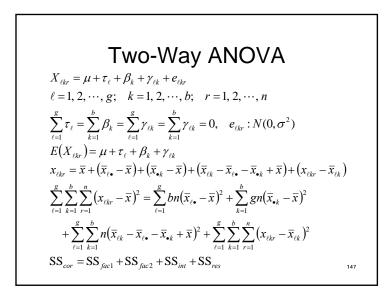


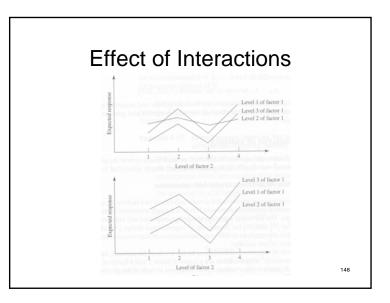


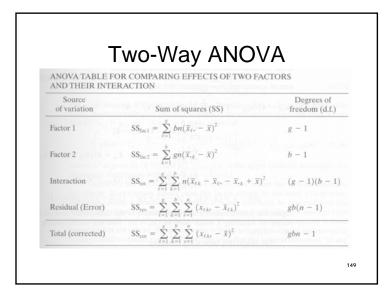


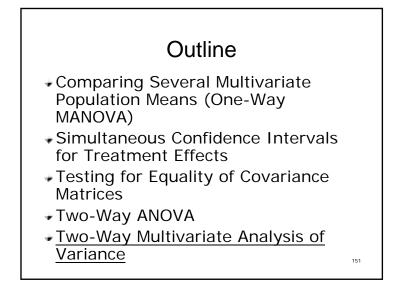


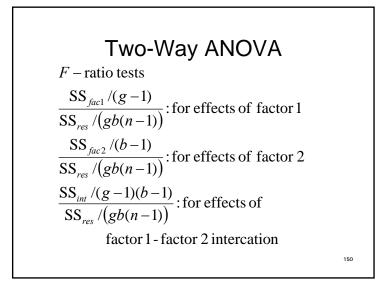


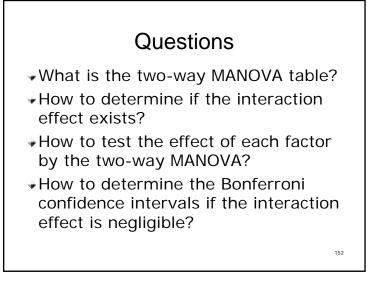






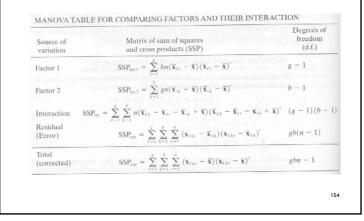




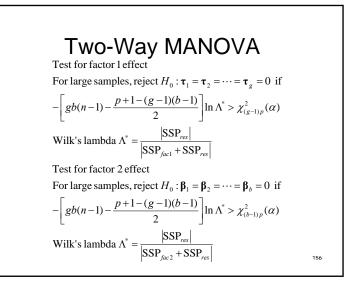


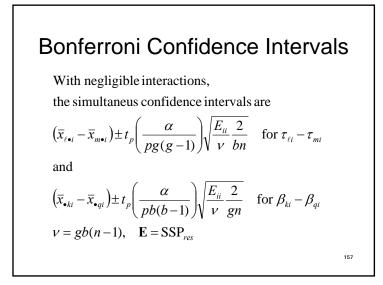
$$\begin{aligned} \mathbf{Fwo-Way} \ \mathbf{MANOVA} \\ \mathbf{X}_{tkr} &= \mathbf{\mu} + \mathbf{\tau}_{t} + \mathbf{\beta}_{k} + \mathbf{\gamma}_{tk} + \mathbf{e}_{tkr} \\ \ell = 1, 2, \cdots, g; \quad k = 1, 2, \cdots, b; \quad r = 1, 2, \cdots, n \\ \sum_{\ell=1}^{s} \mathbf{\tau}_{\ell} &= \sum_{k=1}^{b} \mathbf{\beta}_{k} = \sum_{\ell=1}^{s} \mathbf{\gamma}_{\ell k} = \sum_{k=1}^{b} \mathbf{\gamma}_{\ell k} = 0, \quad \mathbf{e}_{\ell kr} : N_{p}(\mathbf{0}, \mathbf{\Sigma}) \\ \mathbf{x}_{\ell kr} &= \mathbf{\overline{x}} + (\mathbf{\overline{x}}_{\ell \bullet} - \mathbf{\overline{x}}) + (\mathbf{\overline{x}}_{\star k} - \mathbf{\overline{x}}) + (\mathbf{\overline{x}}_{\ell \bullet} - \mathbf{\overline{x}}_{\star \bullet} + \mathbf{\overline{x}}) + (\mathbf{x}_{\ell kr} - \mathbf{\overline{x}}_{\ell k}) \\ \sum_{\ell=1}^{s} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{\ell kr} - \mathbf{\overline{x}}) (\mathbf{x}_{\ell kr} - \mathbf{\overline{x}})^{*} = \\ \sum_{\ell=1}^{g} bn(\mathbf{\overline{x}}_{\ell \bullet} - \mathbf{\overline{x}})(\mathbf{\overline{x}}_{\ell \bullet} - \mathbf{\overline{x}})^{*} + \sum_{k=1}^{b} gn(\mathbf{\overline{x}}_{\bullet k} - \mathbf{\overline{x}})(\mathbf{\overline{x}}_{\bullet k} - \mathbf{\overline{x}})^{*} \\ &+ \sum_{\ell=1}^{s} \sum_{k=1}^{b} n(\mathbf{\overline{x}}_{\ell k} - \mathbf{\overline{x}}_{\ell \bullet} - \mathbf{\overline{x}}_{\epsilon k} + \mathbf{\overline{x}})(\mathbf{\overline{x}}_{\ell k} - \mathbf{\overline{x}}_{\epsilon \bullet} - \mathbf{\overline{x}}_{\epsilon k} + \mathbf{\overline{x}})^{*} \\ &+ \sum_{\ell=1}^{s} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{\ell kr} - \mathbf{\overline{x}}_{\ell k})(\mathbf{x}_{\ell kr} - \mathbf{\overline{x}}_{\ell k})^{*} \end{aligned}$$

Two-Way MANOVA



$\begin{array}{l} \textbf{Free Properties} \\ \textbf{Free Properies} \\ \textbf{Free Properties} \\ \textbf{$

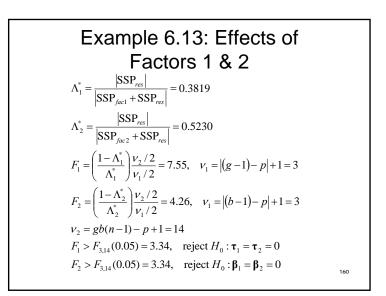


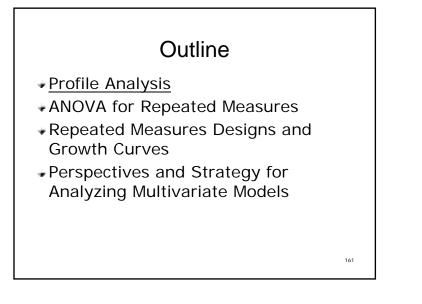


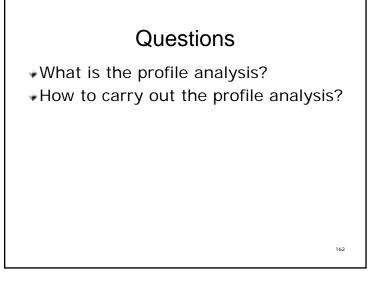
Example 6.13: Interaction
$$\begin{split} & \int_{a}^{*} = \frac{|SP_{res}|}{|SSP_{int} + SSP_{res}|} = 0.7771 \\ & (g-1)(b-1) = 1 \\ & F = \left(\frac{1-\Lambda^{*}}{\Lambda^{*}}\right) \frac{(gb(n-1)-p+1)/2}{(|(g-1)(b-1)-p|+1)/2} : F_{v_{1},v_{2}} \\ & v_{1} = |(g-1)(b-1)-p|+1 = 3 \\ & v_{2} = gb(n-1)-p+1 = 14 \\ & F = 1.34 < F_{3,14}(0.05) = 3.34 \\ & H_{0}: \gamma_{11} = \gamma_{12} = \gamma_{21} = \gamma_{22} = 0 \text{ (no interaction) is not rejected} \end{split}$$

Example 6.13: MANOVA Table

Source of variation		SSP		d.f.
Factor 1: change in rate of extrusion	[1.7405	-1.5045 1.3005	.8555 7395 .4205	1
Factor 2: amount of additive	.7605	.6825 .6125	1.9305 1.7325 4.9005	1
Interaction	.0005	.0165 .5445	.0445 1.4685 3.9605	1
Residual	[1.7640	.0200 2.6280	-3.0700 5520 64.9240	16
Total (corrected)	4.2655	7855 5.0855	2395 1.9095 74.2055	19





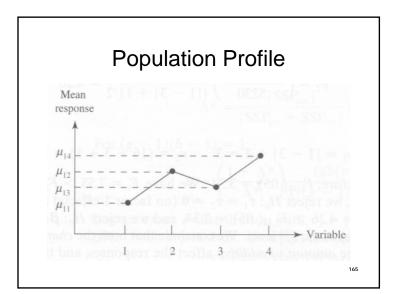


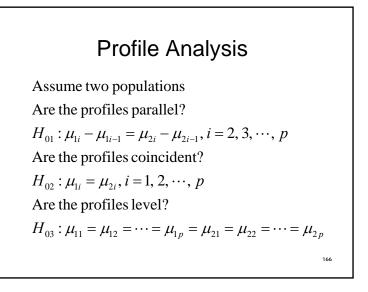
Profile Analysis A battery of p treatments (tests, questions, etc.) are administered to two or more group of subjects The question of equality of mean vectors is divided into several specific possibilities Are the profiles parallel? Are the profiles coincident?

163

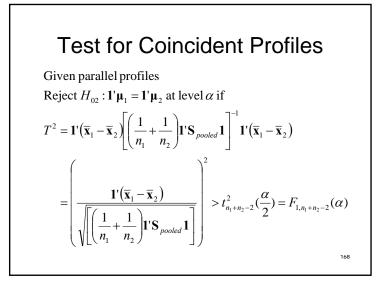
-Are the profiles level?

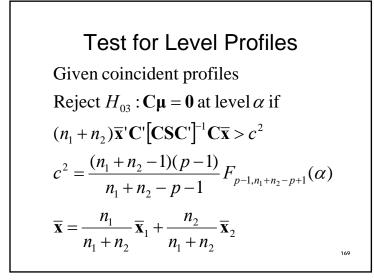
<section-header><figure><figure><list-item><list-item><list-item><list-item><list-item><list-item>

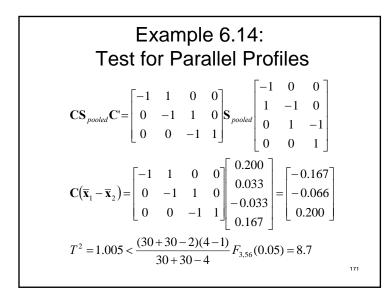


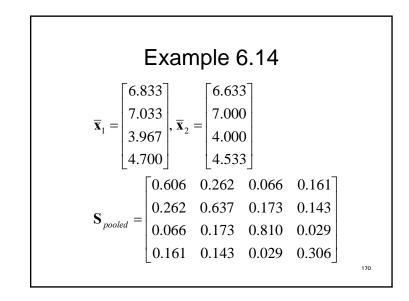


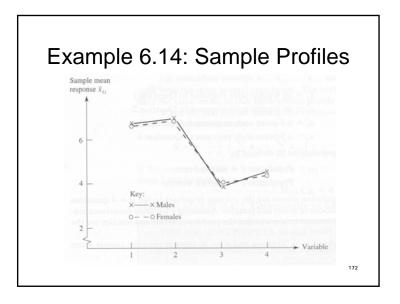
Test for Parallel Profiles
$\begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$
$\mathbf{C} = \begin{bmatrix} 0 & -1 & 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$
$\mathbf{C}_{(p-1)\times p} = \begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathbf{CX}_{1j}: N_{p-1}(\mathbf{C}\boldsymbol{\mu}_1, \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}'), \mathbf{CX}_{2j}: N_{p-1}(\mathbf{C}\boldsymbol{\mu}_2, \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}')$
Reject H_{01} : $\mathbf{C}\mathbf{\mu}_1 = \mathbf{C}\mathbf{\mu}_2$ at level α if
$T^{2} = \left(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right)^{\prime} \mathbf{C}^{\prime} \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \mathbf{C} \mathbf{S}_{pooled} \mathbf{C}^{\prime} \right]^{-1} \mathbf{C} \left(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}\right) > c^{2}$
$c^{2} = \frac{(n_{1} + n_{2} - 2)(p - 1)}{n_{1} + n_{2} - p} F_{p-1,n_{1}+n_{2}-p}(\alpha)$ ¹⁶⁷

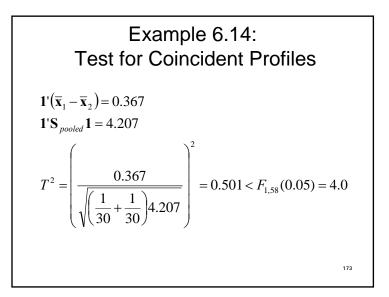




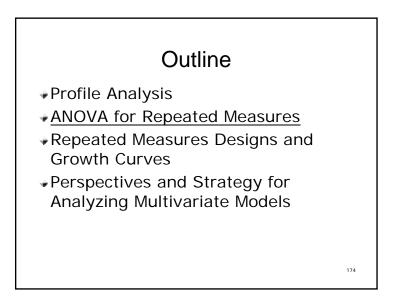








- What are repeated measures?
- How to view the data for repeated measures in a two-way ANOVA view?
- How to test the null hypothesis in repeated measures?



Repeated-Measures ANOVA

- Drugs A, B, C are tested to see if they are equally effective for pain relief
- Subjects are to take all of the drugs, in turn, suitably blinded and after a suitable washout period
- Subjects rate the degree of pain belief on a 1 to 6 scale (1: no relief, 6 complete relief)

175

Avoiding Order Effects

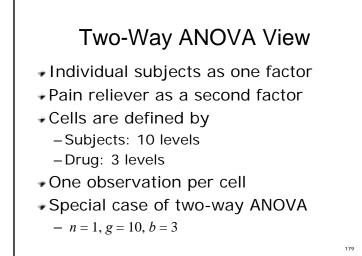
- Randomize the order of treatment
 -1/3 get drug A first, 1/3 get drug B first, 1/3 get drug C first
- People in a long, natural healing course may grow tolerant of the irritant and learn to tune them out

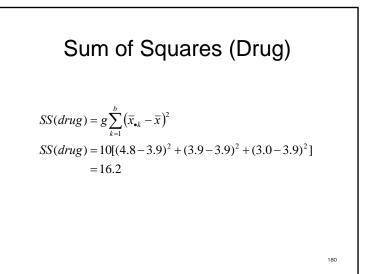
 The last medication may work the best
 - -Order effects

177

Sample Data Subject А В С Average 1 5 3 2 3.33 2 5 4 3 4.00 3 5 6 5 5.33 4 2 4.00 4 6 5 6 6 6 6.00 6 4 2 1 2.33 3 7 4 4 3.67 8 4 5 5 4.67 9 4 2 2 2.67 5 3 3.00 10 1 4.80 3.90 3.00 Means 3.90

*Adapted from: G. R. Norman and D. L. Streiner, *Biostatistics*, 3rd ed.





$$SS(subjects) = b \sum_{\ell=1}^{g} (\bar{x}_{\ell \bullet} - \bar{x})^{2}$$

$$SS(subjects) = 3[(3.33 - 3.90)^{2} + (4.00 - 3.90)^{2} + \dots + (3.00 - 3.90)^{2}]$$

$$= 36.7$$

181

Sum of Squares (Within) $SS(within) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} (x_{\ell k \gamma} - \bar{x}_{\ell k}) = 0$

Sum of Squares (Interaction)

$$SS(interaction) = \sum_{\ell=1}^{g} \sum_{k=1}^{b} (\bar{x}_{\ell k} - \bar{x}_{\ell \bullet} - \bar{x}_{\bullet k} + \bar{x})^{2}$$

$$SS(interaction) = [(5 - 4.23)^{2} + (3 - 3.3)^{2} + (-1 - 2.10)^{2}]$$

$$[30 \text{ terms}]$$

$$= 15.8$$

<equation-block><equation-block><equation-block><equation-block><equation-block>

Signal vs. Noise

- To determine if there is any significant difference in relief from different pain relievers

 Main effect of Drug
- SS(within) = 0
- Choose SS(interaction) as error term
 Reflects the extent to which different subjects respond differently to the different drug types

Hypothesis Testing

 $F_{Drug} = 9.225 > F_{2,18}(0.05) \approx 3.55$

Drug effect is significant (i.e., difference exists) at 0.05 significance level

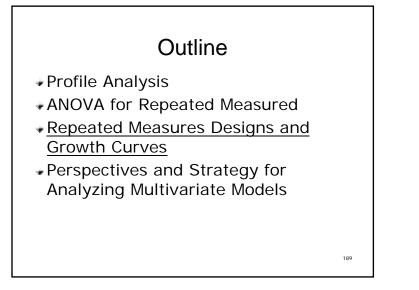
ANOVA Table

Source	Sum of	df	Mean	F
	Squares		square	
Drug	16.2	2	8.100	9.225
Subject	36.7	9	4.078	
Drug X Subject	15.8	18	0.878	
Totals	68.7	29		
				186

ANOVA Table for Same Data as a One-Way ANOVA Test

Source	Sum of Squares	df	Mean square	F
Drug	16.2	2	8.100	4.107
Error	52.5	27	1.944	
Totals	68.7	29		
				188

187

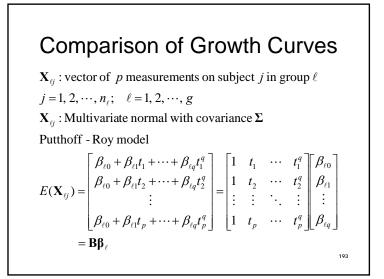


	0011	rol Gro	μμ	
Subject	Initial	1 year	2 year	3 year
1	87.3	86.9	86.7	75.5
2	59.0	60.2	60.0	53.6
3	76.7	76.5	75.7	69.5
0 4	70.6	76.1	72.1	65.3
08.5	54.9	55.1	57.2	49.0
6	78.2	75.3	69.1	67.6
7	73.7	70.8	71.8	74.6
8	61.8	68.7	68.2	57.4
9	85.3	84.4	79.2	67.0
10	82.3	86.9	79.4	77.4
11	68.6	65.4	72.3	60.8
12	67.8	69.2	66.3	57.9
13	66.2	67.0	67.0	56.2
14	81.0	82.3	86.8	73.9
15	72.3	74.6	75.3	66.1
Mean	72.38	73.29	72.47	64.79



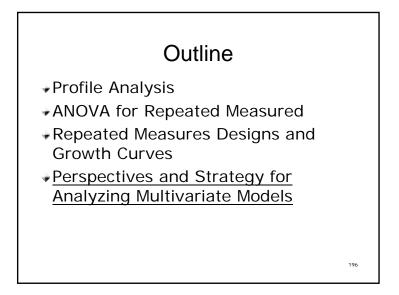
Example 6.15: Ulna Data,	
Treatment Group	

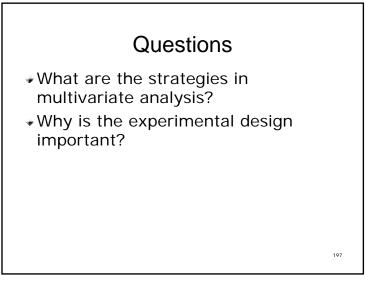
1	83.8	85.5	86.2	81.2
2	65.3	66.9	67.0	60.6
3	81.2	79.5	84.5	75.2
08 4	75.4	76.7	74.3	66.7
5	55.3	58.3	59.1	54.2
6	70.3	72.3	70.6	68.6
7	76.5	79.9	80.4	71.6
8 8	66.0	70.9	70.3	64.1
9	76.7	79.0	76.9	70.3
10	77.2	74.0	77.8	67.9
.0711	67.3	70.7	68.9	65.9
12	50.3	51.4	53.6	48.0
13	57.7	57.0	57.5	51.5
14	74.3	77.7	72.6	68.0
15	74.0	74.7	74.5	65.7
16	57.3	56.0	64.7	53.0
Mean	69.29	70.66	71.18	64.53



Example 6.15
Use quadratic growth model
$\begin{bmatrix} \hat{\beta}_1 & \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 73.0701(2.58) & 70.1387(2.50) \\ 3.6444(0.83) & 4.0900(0.80) \\ -2.0274(0.28) & -1.8534(0.27) \end{bmatrix}$
Control Group: $73.07 + 3.64t - 2.03t^2$
Treatment Group: $70.14 + 4.09t - 1.85t^2$
$\Lambda^* = 0.7627$
$-(N-(p-q+g)/2)\ln\Lambda^* = 7.86 < \chi^2_{(4-2-1)2}(0.01) = 9.21$
195

$$\begin{aligned} & \textbf{Comparison of Growth Curves} \\ \text{Maximum likelihood estimators of } \boldsymbol{\beta}_{\ell} : \\ & \hat{\boldsymbol{\beta}}_{\ell} = \left(\mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \mathbf{B} \right)^{-1} \mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \overline{\mathbf{X}}_{\ell} \\ & \boldsymbol{S}_{pooled} = \frac{1}{N-g} ((n_{1}-1)\mathbf{S}_{1} + \dots + (n_{g}-1)\mathbf{S}_{g}) = \frac{\mathbf{W}}{N-g} \\ & \boldsymbol{N} = \sum_{\ell=1}^{g} n_{\ell}, \quad \hat{Cov}(\hat{\boldsymbol{\beta}}_{\ell}) = \frac{k}{n_{\ell}} (\mathbf{B}^{*} \mathbf{S}_{pooled}^{-1} \mathbf{B})^{-1} \\ & \boldsymbol{k} = (N-g)(N-g-1)/(N-g-p+q)(N-g-p+q+1) \\ & \mathbf{W}_{q} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{X}_{\ell j} - \mathbf{B}\hat{\boldsymbol{\beta}}_{\ell}) (\mathbf{X}_{\ell j} - \mathbf{B}\hat{\boldsymbol{\beta}}_{\ell}), \quad \Lambda^{*} = \frac{|\mathbf{W}|}{|\mathbf{W}_{q}|} \end{aligned}$$
Reject the null hypothesis that the polynomial is adequate if $-(N-(p-q+g)/2) \ln \Lambda^{*} > \chi_{(p-q-1)g}^{2}(\alpha) \end{aligned}$





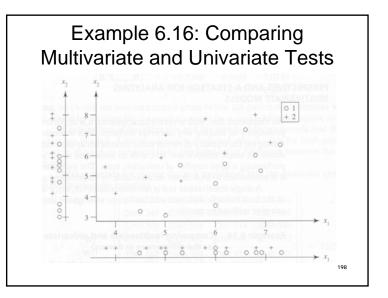
Example 6.16: Comparing Multivariate and Univariate Tests

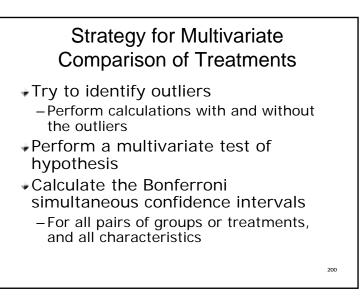
Univariate test on x_1 : $F = 2.46 < F_{1,18}(0.10) = 3.01$ Univariate test on x_2 : $F = 2.68 < F_{1,18}(0.10) = 3.01$ Accept $\mu_1 = \mu_2$

Hotelling's test :

$$T^{2} = 17.29 > c^{2} = \frac{18 \times 2}{17} F_{2,17}(0.01) = 12.94$$

Reject $\mu_{1} = \mu_{2}$





Importance of Experimental Design

- Differences could appear in only one of the many characteristics or a few treatment combinations
- Differences may become lost among all the inactive ones
- Best preventative is a good experimental design
 - Do not include too many other variables that are not expected to show differences