Inferences about a Mean Vector

Shyh-Kang Jeng
Department of Electrical Engineering/
Graduate Institute of Communication/

Graduate Institute of Networking and
Multimedia

Outline
- Introduction

- Inferences about a Mean for
Univariate Normal Distribution

- The probability of g, as a value for a
Normal Population Mean

~ Hotelling’s 7% and Likelihood Ratio
Tests

» Confidence Regions and
Simultaneous Comparison of
Component Means

Outline

-Large Sample Inferences about a
Population Mean Vector

» Multivariate Quality Control Charts
- Inferences about Mean Vectors When
Some Observations Are Missing

- Difficulties Due to Time Dependence
in Multivariate Observations

Outline
« Introduction
- Inferences about a Mean for
Univariate Normal Distribution
- The probability of x4, as a value for a
Normal Population Mean
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» Confidence Regions and

Simultaneous Comparison of
Component Means

Questions

»What is a statistical inference?

- Give a sample scenario for making a
statistical inference

Inference

» Reaching valid conclusions
concerning a population on the basis
of information from a sample




Scenarios

- To test if the following statements

are plausible

—A claim by a cram school that their
course can increase the 1Q of your
children

—A diuretic is effective

—An MP3 compressor is with higher
quality

—A claim by a lady that she can
distinguish whether the milk is added
before making milk tea

Evaluating Normality of Univariate
Marginal Distributions

Number of samples within an interval :

bmomlaldlstrlbutlon( ]p‘q” 7
Yy

When ris large, [njp”q” ~ N(np,npq)
Yy

The distribution of p =2 is N(p, £9)
n n

Evaluating Normality of Univariate
Marginal Distributions
After checking symmetry of data,
P, : portion of data lyingin (x —/s,x +/s)
P, - portion of data lyingin (x - 25,5 + 2\/§)

either | p, —0.683| > 3, / (0.683)(0.317) _ 1396
n Jn
or [, ~0.954 >3 (0.954)(0.046) _ 0.628
n \/;

indicate departure from an assumed normal
distribution
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Questions

- What are the two-sided and the one-
sided tests of hypotheses?

»How to reject or accept a null
hypothesis?

»What is the Student’s t-statistics?

»What are the differences between
the normal distribution and the
Student’s t-distribution?

Questions

» What is the meaning of the
confidence interval for the population
mean u,?




Tests of Hypotheses

» Developed by Fisher, Pearson,
Neyman, etc.

» Two-sided
H,:pu=pu, (nullhypothesis)
H,:u+ u, (alternative hypothesis)
» One-sided
Hy:pu> p, (null hypothesis)
H,:pu<p, (alternative hypothesis)

Assumption under Null Hypothesis
X N(,uO,O'Z)
X :N(uy,0° In)
Z _ )_(_ILIO

_O'/\/;

:N(0,))

Rejection or Acceptance of
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Student’s t-distribution

el

Origin of the Name “Student”

- Pseudonym of William Gossett at
Guinness Brewery in Dublin around
the turn of the 20th Century

» Gossett used pseudonym because all
Guinness Brewery employees were
forbidden to publish

- Too bad Guinness doesn’t run our
universities

Test of Hypothesis
Reject H,, in favor of H,
at significance level « if

sin

= >t (al2)

ie.,

2 =0T po)s?) T - a1y) > 12, (a1 2)

Selection of

~ Often chosen as 0.05, 0.01, or 0.1

» Actually, Fisher said in 1956:

—No scientific worker has a fixed level of
significance at which year to year, and
in all circumstances, he rejects
hypotheses; he rather gives his mind to
each particular case in the light of his
evidence and hid ideas

Confidence Interval for
7‘!‘0

Pr X
sln

Prlr, ,(0.025)s /n > X - 1> ~1, ,(0.025)s/n)
~0.95

Pr(- X +1,,(0.025)s /v >~y > ~X ~1, ,(0.025)s/Vn)
~0.95

Pr{X +1,,(0.025)s/n > u> X —1,,(0.025)s//n)
~0.95

Cly (X1, ,(0.025)s/\n, X +1,,(0.025)5/Vn)

< t“(o.025)J =095

Neyman’s Interpretation
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Statistically Significant vs.
Scientifically Significant

- The cram school claims that its course
will increase the 1Q of your child
statistically significant at the 0.05
level

- Assume that 100 students took the
courses were tested, and the
population standard deviation is 15

- The actual 1Q improvement to be
statistically significant at 0.05 level is
SIMply (o/+/n)x zygy, =1.5x1.96 = 2.94 .
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Univariate Normal Distribution

- The probability of g, as a value for a
Normal Population Mean

~ Hotelling’s 7% and Likelihood Ratio
Tests

» Confidence Regions and
Simultaneous Comparison of
Component Means

Questions

«How to test a null hypothesis for a
multivariate normal distribution?

»How to convert Hotelling’s 77
distribution to the F distribution?

» Is the Hotelling’s 7? distribution
invariant with linear transformation?

Plausibility of p, as a Multivariate
Normal Population Mean
Null hypothesis H, :p =p,
(Two -sided) alternative hypothesis A, :p # p,
X, X,, -, X, : Random sample from a normal
population
Hotelling's 77 statistics :

T¢? as an F-Distribution

F-Distribution
22, 2% independent, with d.f. £; and f,, respectively

2
F=Alh pog
211>

F[fl +f2] N Ly
F(F)= z[fl F
il

2 (]

Er
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F-Distribution

Nature of 72-Distribution

$x,-X)x,-%) |
T2 = n(X = g )| | V(X 1)

n-1

multivariate normal | matrix

2 _ , multivariate normal
##1{ random vector d.f.

Wishart random ™
[random vector

-N,0, z)'[%l w,, 1(2)}\/” ©,3)

= by calculus, fxp L ,‘1=(n71)p
(df—p+2) PHPET (ep) P

Test of Hypothesis
Reject H, in favor of H,
at significance level « if

T? =n(X- UO)'S_l(i_uo)

> w Fp,nfp (a)
n—p

Example 5.1 Evaluating 72

6 9
9| _ |8 4 -3
X=[10 6|p,=|_|=>Xx=| _|S=
5 6 -3 9

8 3
L 13 19
19 4/27
1/3 1/9 8-9
7°=38-9 6-5 7!
1/9 4/27]6-5| 9
3-1)2
T ((3_ ;) F,, ,=4F,, )

Example 5.2 Testing a

Mean Vector
H,:w=[4 50 10] H,:p'%[4 50 10]
Testatalevel« =0.10. »n = 20, check normality

4.640 2.879 10.010 -1.810
X= {45.400:‘, S= {10.010 199.788 —5.640]
9.965 -1.810 -5.640 3.628
0.586 —-0.022 0.258
S*= {0.022 0.006 0.002],T2 =9.74
0.258 -0.002 0.402

Critical value: =92 & . (O.lO):wF (0.1)=8.18
(1—p) P 17 T

T? =9.74 > 8.18 = Reject H,, at the 10% level

Invariance of 72-Statistic
Y =CX+d, C:non-singular

y=Cx+d,S, :nl_ljril(y/'_)’)(yj' _Y):CSC'
ny =E(Y)=Cp+d,p,,=Cpy+d
r= ”(y_ﬂy,o)s;l(y_lly,o)
= n(X—p,)'C'(CSC) ' C(x—p,)
=n(X—po)'S ™ (X—n,)
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Questions

-What is the likelihood ratio test?

-How to derive the Hotelling’s 77
distribution using the likelihood ratio
test? (Result 5.1)

-What is the general likelihood ratio
method?

-What is the behavior of the general
likelihood ratio method when sample
size n is large?

T2?-Statistic from
Likelihood Ratio Test

T7?-Statistic from
Likelihood Ratio Test

1
LwE)=—— —npl2 n B 3 B
W ) (27)""x ‘ ;(’%‘"0)21("/_"0)—;”[2 1("1_"0X"1_"0)]
~ 1 _ ~ - 1 n
Z=;;(x —xXxj—x)' u=x=;;xj —tr Z-lz(xj_uoxxj_uo)
L(py.E) = ~ .
1 1 . max L(pg, L) =—————ze ™"
Wexr{zg(x,uo)z (X,-*uo)J T g
, o 13
Likelihood ratio=A=M Z, :*Z(X/ —uo)(x/- _“o)
m%xL(p_,E) nia
Result 4.10 Likelihood Ratio Test

B : px p symmetric positive definite matrix
b : positive scalar

ibeftr(z*ls)/z < ib (2 b)pb e—bp

=] B]

for all positive definite ( X ; with equality
pxp

holding only for £ = (1/26)B

A" = |E] /]3| - Wilks' lambdia
Likelihood ratio test of
H, p=p,against H, :p#p,
Reject H, at the level «

~ nl2
X

if A=| = =
2:0

nl2
n

2 (Xj - i)(xj - i)

J=1

n

Z(X,‘_Poxxj _Ho)

=l




Result 5.1

X, Xy,-+, X, rrandom sample from N (u, )

= T? test is equivalent to the likelihood test of
Hy:pn=n,Vvs.H :p+#p, because

2\
AZ’":(1+ d j
n-1

Proof of Result 5.1

Az | Ay
‘A‘ = ‘AZZHAJ.I - Ale;éAm‘ = ‘AMHAZZ - A21AI11A12

Proof of Result 5.1

D,k 5 enl o o)

Computing 77 from Determinants

, (n—l)‘f‘.o‘
; ) 4 I"=——-——-(n-1
- ;(xj ~x)x, - ) 7l—n(ifp0)'[;(xl -xx, —Y)J (xpoﬁ
/Z:,(X/ —ixx,- —i)+n(i—p,0)(i—po)':§(xl _Poxx, _Ho) (n —l) i(xj -1, XXJ, —l],o)
nAO:nA +L2 = nj:1 _(n_l)
‘ ; ‘ Az[l nil) Z(x/‘ —i)(xj _i)
B Ut .
General Likelihood Ratio Method Result 5.2

0 : unknown population parameters,0 €
L(0) : likelihood function by random sample
H,:0€0,
Rejects H, in favorof H,:0 ¢ O, if

max L(0)

— 0N <c
max L(0)
0O

when samplesize n is large,
max L(O)]

2InA=-2In| &
n;%xL(e)

is approximately a ;(f_% random variable, where
v -v, = (dimension of ®)—(dimension of ®,)
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= Introduction

- Inferences about a Mean for
Univariate Normal Distribution

» The probability of g, as a value for a
Normal Population Mean

»Hotelling’s 7% and Likelihood Ratio
Tests

» Confidence Regions and
Simultaneous Comparison of
Component Means

Questions

-How to find the confidence region for
the population mean vector of a
multivariate normal distribution?

- What are the axes of the confidence
ellipsoid?

-What are the simultaneous
confidence statements?

Questions

» How to find the confidence interval
for a linear combination of
multivariate normal random
variables?

» How to find the maximum of the t
value for all linear combination
coefficients?

»How to determine the 7% intervals?
(Result 5.2)

Questions

- What are the difference of trends for
t and T? intervals as the sample size n
increases?

- How to determine simultaneous 72
intervals?

« How to determine one-at-a-time
intervals?

Questions

» What is the Bonferroni inequality?

»How to find the simultaneous
Bonferroni intervals?

»What is the trend of the ratio
between the length of Bonferroni
interval to the length of 7*-Interval
with increasing sample size n under
different m?

100(1- )% Confidence Region

0 : unknown population parameters, 0 € ©
R(X) :region of likely 0 values determined
by data array X
100(1- )% confidence region : R(X) where
P[R(X) will cover the true 8]=1-«
Region consisting of all 8, for which the
test will not reject H,, : 0 =0, in favor of
H, atsignificance level «




100(1-a)% Confidence Region

Univariate Normal Case :
The interval of
_ 1/
n(F - (F- )< 12, (@)
Multivariate Normal Case :
The ellipsoid determined by all p such that

nE-wys G-w< 2D r (@)
n-p

Axes of the Confidence Ellipsoid

beginning at the center X, the axes are
p(n-1)
+JA |[—F a)e.
EJn(n_p) pp(@)e,
where Se, = e,

Example 5.3 :
Microwave Oven Radiation
x, = 4/measured radiation with door closed

x, = 4/measured radiation with door open

_ [o564] _ [00144 00117
10603 ° " |00117 00146

4 { 203.018 —163.391}

7|-163.391  200.228
2,=0.026, e, =[0.704 0.710]
2, =0.002, e,=[-0.710 0.704]

Example 5.3 :
95% Confidence Region

203018 —163.39170.564
42[0564— 1, 0.603 41, #
163391 200.228 | 0.603— 4,

2(41)
<550 Faue(0.05)=6.62

n'=[0.562 0.589]

203.018 -163.391| 0.564—-0.562
42[0.564-0.562 0.603—0.589{ }{ }

-163.391 200.228 | 0.603-0.589
=1.30<6.62
. pisin the 95% confidence region.

0.562
By thistest 4, :p = [0 589] would not be rejected

0.562
in favorof H, :p# at the significance level « = 0.05
0.589 s

Example 5.3 :
95% Confidence Ellipse for p
center:
x'=[0.564 0.603]
semi - major and semi - minor axes :

[p(n-1) _ 2(41)
JA p- F,, (a)=+0.026 20a0) (3.23)

=0.064
p(n-1) B 2(41)
JA pr F,, (a) =+0.002 12040) (3.23)
=0.018

Example 5.3 :
95% Confidence Ellipse for p

60
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Simultaneous
Confidence Statements

-Sometimes we need confidence
statements about the individual
component means

«All if the separate confidence
statements should hold
simultaneously with a specified high
probability

Concept of Simultaneously
Confidence Statements

62

Confidence Interval of Linear
Combination of Variables

Maximum # Value for All a

X:N,(nX), Z=a'X (x—n)P
! , max¢® = maxin(a (x—p)
U, =a'p, o.=a'Xa, Z:N(a'pa'Xa) a a a'Sa
F_a% s2—a'S P, o 2
Z=a’X, s'=a'Sa 1@ (?‘& 1)) S I € (X. )
f_ I My :\/;(a'i—a'p) a a'Sa a a'Sa
s/ Ja'Sa =n(X-p)S*(xX-p)=1"
<7 () maximum occurs for a proportional to
/ ] / 1 _1 —
a'x—1,,(a) a'Sa Sa'pSa'i+tH(a)7a Sa S (X_u)
’\/; ’\/; 63 64
Maximization Lemma Result 5.3: 77 Interval
B positive definite matrix, d given vector X, X,,, X, :random sample from N, (p, X)
max (xl‘d)2 —d'Bd Simultaneously for all a, the interval (72 interval)
=0 X'Bx determined by
maximum attained when x = cB™d for ¢ # 0 1)
Proof : a'i—\/p(n)vaﬂp(a)a'Sa and
n(n—p
(x'd)’ < (x'Bx)(d'Bd) .
x'Bx>0 a§+\/p(n— ) E,‘,,_p(a)a'Sa
(xa) n(n-p)
YBx <d'B™d will contain a'p with probability at least1— «

66
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Comparison of ¢- and 7?-Intervals

Simultaneous 7?-Intervals

p(n— 1) S P(’l 1)
(n=p) e OV SIER oo
pln- 1) Sa P(” 1
(n P) p /() <'u2 ) 1! -p

p(n-1) \/7 p(n-1) \/7
O R I T

68

Example 5.4: Shadows of the
Confidence Ellipsoid

Example 5.5
X, : CLEP score for social science and history
X, :CQT score for verbal
X, :CQT score for science

n=_87
526.59 5691.34 600.51 217.25
x=| 54.69 |, S=| 60051 126.05 23.37
25.13 217.25 2337 2311

Example 5.5
p(n-1 _3(87-1)
ﬁpr(a)_ o 3 F,, ,(0.05)=8.29

526.59-+/8.29 56(‘;17 34 1, <£526.59++/8.29 5698:;'34

503.30 < 1, <549.88, 51.22< u, <58.16, 23.65< y, <26.61
a'=[0,1—1]for x, — u,, end points of its confidence interval are

(fz_fa)i\/]()(n ]5) pnp(005)\/522+533*2523

n

i.e.,, 29.56+3.12 s an at - least 95% confidence interval for z, — 11,

71

Example 5.5: Confidence Ellipses
for Pairs of Means

12



One-at-a-Time Intervals

X -t (al2) % < <X +t,11(a/2)\/snj

X, —t,4(al2) Sf <, <X, +t,,(al?2) /%

X, ~t,a(al2) Sf Sp, <X, +tnl(a/2)\/?

Bonferroni Inequality

C, : confidence statement about a, z
P[Ctrue]=1-a,, i=12,---,m
Plall C, true]=1- P[at least one C, false]
>1-3" P[C, false]=1- 3 (1~ P[C, true])
i=1 i=1
:l—(oz1 +a, +~--+am)

Bonferroni Method of
Multiple Comparisons

a,=alm, m=p

P[Tc, J_rtn,l(—a j\/z contains ,u‘,allz} >
2m )\ n
1

& 7 7
X = %—1(2&]\ g <X +tn—1[ij u

p)\ n 2p )\ n
_ o N ) _ o S]
x, —f,,fl[g} f SHu,sx, HH(E] f

Example 5.6
p=2, «,=0.05/2=0.025

141(70'225) =2.327

X it41(0'0125)\/§ =0.564+2.327 0.0144
h 42

or 0.521< x4, £0.607

%, +1,(0.0125),|°2 =0.603+2.327 0.0146
n 42

or 0.560 < 11, <0.646

Example 5.6

(Length of Bonferroni Interval )/
(Length of 7*-Interval)

13



Outline

-Large Sample Inferences about a
Population Mean Vector

» Multivariate Quality Control Charts

- Inferences about Mean Vectors When
Some Observations Are Missing

- Difficulties Due to Time Dependence
in Multivariate Observations

Questions

-What is the limit distribution of the
square of the statistical distance?

» How to reject or accept a null
hypothesis when n-p is large?

-How to find the confidence interval
and the simultaneous confidence
statements for large n-p? (Result 5.5)

Limit Distribution of the Square of
Statistical Distance
X :nearly N, (p,%Z) for large samplesize n >> p
n(X—p)'£7(X—p) :approximately z>
for large n-p
S close to X with high probability when
nis large
2 n(X—p)'S™ (X —p):approximately 2
for large n-p

Result 5.4

X;, X,, -+, X, : random sample from a population
with mean p and positive definite covariance

n—plarge

H,:p=n, isrejected in favor of H, :p#p,,

at a level of significance approximately «, if

n(i_uo)ls_l(i_llo)> Zi(a)

82

Result 5.5

X,,X,,---, X, : random sample from a population
with mean p and positive definite covariance X
n— p large

— 2 a'Sa
a xi,/;(p(a)J p

will contain a'p, for every a, with probability
approximately 1— «

Result 5.5

100(1- )% simultaneous confidence statements

_ S. _ S.
xl—\/zf,(a),/f TS +\/z§(a),/f

_ N _ s
X, —\/zﬁ(a),/% <u, <X, +\/zf,(a),/f

for all pairs (u,, 11,)
-
- = Si Sik X~ H;
n[xi_Iui xk_luk:{ I:| { :|<)(§(Ol)
S Sw] [ Xk T My

contain (;,, 4, ) with confidence (1- &) s

14



Example 5.7: Musical Aptitude
Profile for 96 Finish Students

Example 5.7: Simultaneous 90%
Confidence Limits

fii./;(f(o.lo)\/sz, 22(0.10) =12.02
n

26.06 < 14, <30.14, 24.53< u, <28.67

34.05< 11, <36.75, 32.39< u, <36.01

22.27< g <2493, 20.61< p, <23.39

21.27< pu, <2413

Profile of American students

uy=[31 27 34 31 23 22 22]

melody, tempo, meter components are not plausible

86

One-at-a-Time and Bonferroni
Confidence Intervals

One -at - a - time confidence intervals

)@—Z(g)‘,& < U S)?i+z(gj i
2 )\ n 2 )\ n

Bonferroni confidence intervals

2p )\ n 2p )\ n

Large-Sample 95% Intervals for
Example 5.7

88

95% Intervals for Example 5.7

Outline

~Large Sample Inferences about a
Population Mean Vector

» Multivariate Quality Control Charts

 Inferences about Mean Vectors When
Some Observations Are Missing

~ Difficulties Due to Time Dependence
in Multivariate Observations

15



Questions

-What is the control chart?

»How to monitor a sample for
stability?

-How to draw an quality control
ellipse?

»How to draw an x chart?

-How to draw a 7? chart

Questions

-What is the distribution of 72 for an
individual future observation? (Result
5.6)

- How to find the control region for an
individual future observation?

«How to draw 7?-chart for future
observations?

-How to draw control chart based on
subsample means?

Control Chart

»Represents collected data to evaluate
the capabilities and stability of the
process

» ldentify occurrences of special
causes of variation that come from
outside of the usual process

Example 5.8: Overtime Hours for
a Police Department

Example 5.8
Univariate Control Chart

Monitoring a Sample for Stability

X, X,, -+, X, rindependently distributed as
N,(n,X)
E(X,-X)=0
Cov(X, -X) = n-ly
n
X, —Xis normal, but is not independent of S

Approximate (X, - X)'S (X, - X) asa chi-square
distribution

16



Example 5.9:
99% Ellipse Format Chart

Example 5.9: -Chart for X,

#

iu A I.'w\
b GRL A i \ o

Example 5.10: 77 Chart
for X, and X,

Example 5.11: Robotic Welders

X, : Voltage (volts)

X, : Current (amps)

X, : Feed speed (in/min)

X, : (inert) Gas flow (cfm)

Normal assumption is reasonable

No appreciable serial correlation for successive
observations on each variable

Example 5.11: 77 Chart

Example 5.11: 99% Quality Control
Ellipse for In(Gas flow) and voltage

. .'o‘ esed

\.s. ..-; /

17



X,, X;, -+, X, rindependently as N, (u, X)
X : future observation from
the same distribution

2 _ " (v ¥Y¥elvw %
T _n+1(x X)s*(X-X)

Example 5.11: -Chart for Control Regions for Future
In(Gas flow) Individual Observations
! - Set for future observations from
I collected data when process is stable
ﬁ' * Fln » Forecast or prediction region
3 AU R L /V —in which a future observation is
MY WA VY expected to lie
Result 5.6 Proof of Result 5.6

E(X-X)=0
Cov(X-X)=Cov(X)+Cov(X)=X 1y

_n+ly
n

n Evg . .
,/m(X—X). N,(0,%), S:W,, (%)

C (n-1p
is distributed as ————F, N wyelfv_w) 7-Dp
nep P :>n+1(x X)s*(x-X): "
Result 4.8 Example 5.12 Control Ellipse
X, X,,--+, X,, : mutually independent

X;:N,(n, %)

V, =X, +¢, X, +---+¢, X, :Np[chpj,(ch)z]

j=1 J=1
V, =bX, +b,X,+---+b,X, and V, are joint normal

QAT b

Jj=L

bor ()T

with covariance matrix

107

108
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T?-Chart for Future Observations
Plot

T2 = ﬁ(x ~x)S(x-%)

in time order
LCL=0

UCL = wFp ,_,(0.05)
(n-p) ~

Control Chart Based on
Subsample Means

Process: N, (u,X), m >1units besampled at the same time
= . ) = 1&-

X, :subsample mean at time j, X= ;;X]

X _X- (n-1)

X, -X: NP(O,WE)

“Cov(X, -X)

:Cov{(l—l)i, +i§1+-~-+£§H+£§M+~--+£§”}
n n n n n

1y <\ n-1 <
:[l—fj Cov(X/)+ 5 Cov(Xl)
n n

2
= {[1,1} + n;l}lz :ME
n n® |m nm

Control Chart Based on
Subsample Means

s:l(sl+sz+---+sn):W

; p.nm-n (

\/E(xj ~-X):¥,0.5)

= T2 =”—ml(ij —§)S*1(Yj —§):

b)

(nm—n)p
(nm—n—p+1)

Control Regions for Future
Subsample Observations

Process: N, (n,X), m >1units be sampled at the same time

ol

- 1e
- future subsample mean, X=*ZX/
n'3

= (n+1)
XN, (000 0y

ol

-+ Cov(X - X) = Cov(X) + Cov{i X+t li}
n n

- cov(X)+ Leov(x )= "y
n nm
R -X)sR-X)mmnp g

— m—n—p+1
n+1 (nm—-n—p+1) """

112

Control Chart Based on
Subsample Means

s=1(sl+s2+---+sn):vanm_n(Z)
n

\/E(xj -X):¥,0.5)

Outline
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» Multivariate Quality Control Charts
 Inferences about Mean Vectors When
Some Observations Are Missing
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Questions

-What is the EM algorithm?
-What are sufficient statistics?

- What are sufficient statistics for
multivariate normal distribution?

-How to estimate the mean and
variance-covariance matrix for
multivariate normal distribution
when some observations are
missing?

EM Algorithm

» Prediction step

—Given some estimate of the unknown
parameters, predict the contribution of
the missing observations to the
sufficient statistics

» Estimation step

—Use the predicted statistics to compute

a revised estimate of the parameters

- Cycle from one step to the other

Complete-Data Sufficient Statistics

T,=)X, =
J=1

T, = Z_l:x_,x_',. = (n-1)S+nXX'

Prediction Step for
Multivariate Normal Distribution
x' : missing components of x ,

x'?) : available components of x,

Given estimates ji, £

x® :E(X(.l) |x§2);ﬁ,i) i+

xﬂ” a E(X‘l 01X, Z)
=X, - E, A%, +XOFW

3,3 ( ll(z))

W@ _ ( Ow@1 (@~ ~),~(1)~(2)v
xOx = EIXT X7 X7 )= XX

118

Result 4.6
[ X, 1y
X=|-——[:N,(mXE), p=-——|
L X, B,
Z'11 | Z12
E=|-——- + ———| [Ey]>0=>
7221 | Z22

conditional distribution of X, given X, =x, is
normal with mean = p, + £, X2 (x, —p,) and
covariance=X,, — X, X %,

Estimation Step for
Multivariate Normal Distribution

Compute the revised maximum
likelihood estimates

i
p=—

n
E= L i

120
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Example 5.13: EM Algorithm

- 0 3
X = [ 61 =6 =1 u=4
51 2
- - 5
~  (6-6)+(7-6)+(5-6F+(6-6) 1
ou 4 2
Op = 533_§, 512_El 523_§, o =1
2 4 4

Example 5.13: Prediction Step

H ~(1 oy | Gn Oy 5 s
ll( ) I, | X,
- |-- = |-- + -= -
U=\ _ |=|—- X=| _ | - _|=-- + -=
H, ~(2) 01 Oy Op S s
~ ~ ~ o~ I, | X
Hs Oy | 0p Oy

Xu=H+I, ;;[xlz —H Xp— /73]': 5.73
x121 =0y - iuiiiin + ;121 =32.99

xll[xlz x13]: 5511["12 x13]: [0 17-18]

Example 5.13: Prediction Step
a1 £, | &

a=" { — 4 }
_| [ £, | I,

- ‘HGN

o aen ]

x| _[4106 8.27) [xg] _[320
P 827 197| |x,|[® |65

- 2
XX X

O3

02

|
|

e 4 o
|

O3

Example 5.13: Prediction Step

X Xy X+, | | 24.13
T, =| xpp + %, + X5 + Xy | =| 4.30
Xpg F Xpg + X33 + X5 16.00
148.05 27.27 101.18
T,=|27.27 697 2050
101.18 20.50 74.00

Example 5.13: Estimation Step

6.03
i-1T =108
" 1400
061 033 1.17
i:li—ﬁﬁ'z 0.33 059 0.83
" 117 083 250

Outline

~Large Sample Inferences about a
Population Mean Vector

» Multivariate Quality Control Charts

 Inferences about Mean Vectors When
Some Observations Are Missing

~ Difficulties Due to Time Dependence
in Multivariate Observations
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Question

-What is the confidence region for a
time-varying multivariate normal
distribution following AR(1) model?

Time Dependence in Observations

X, —pn=®(X,,—p)+eg, :AR(L)model
Q=g |¢<1

nominal 95% confidence interval

fall psuch that n(X—p)s*(X-p)< 72(0.05) |
actual coverage probability

Ply? <(1-g)1+ ) £2(0.05)]

Coverage Probability of
the 95% Confidence Ellipsoid
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