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Questions

» What is the univariate normal
distribution?

« What is the multivariate normal
distribution?

» Why to study multivariate normal
distribution?

Multivariate Normal Distribution

» Generalized from univariate normal
density

» Base of many multivariate analysis
techniques

- Useful approximation to “true”
population distribution

» Central limit distribution of many
multivariate statistics

» Mathematical tractable
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Questions

« What is the formula for the
probability density function of a
univariate normal distribution?

» What are the probability meaning of
parameters x and o?

» How much probability are in the
intervals (u-o, u+o) and (u-20, u+20)?

» How to look up the accumulated
univariate normal probability in Table
1, Appendix?




Questions

» What is the Mahalanobis distance for
univariate normal distribution?

« What is the Mahalanobis distance for
multivariate normal distribution?

» What are the symbol for and the
formula of the probability density of
a p-dimensional multivariate normal
distribution?

Questions

» What are the possible shapes in a
surface diagram of a bivariate
normal density?

- What is the constant probability
density contour for a p-dimensional
multivariate normal distribution?

- What are the eigenvalues and
eigenvectors of the inverse of £?
(Result 4.1)

Questions

» What is the region that the total
probability inside equals 1-a?

-~ What is the probability distribution
for a linear combination of p random
variables with the same multivariate-
normal distribution? (Result 4.2)

» How to find the marginal distribution

of a multivariate-normal distribution
by Result 4.2?

Questions

» What is the probability distribution
for a random vector obtained by
multiplying a matrix to a random
vector of p random variables with the
same multivariate-normal
distribution? (Result 4.3)

« What is the probability distribution of
a random vector of multivariate
normal distribution plus a constant
vector? (Result 4.3)




Questions

» Given the mean and covariance
matrix of a multivariate random
vector, and the random vector is
partitioned, how to find the mean
and covariance matrix of the two
parts of the partitioned random
vector? (Result 4.4)

Questions

» What are the if-and-only-if conditions
for two multivariate normal vectors
X, and X, to be independent? (Result
4.5)

« If two multivariate normal vectors X;
and X, are independent, what will be
the probability distribution of the
random vector partitioned into X;
and X,? (Result 4.5)

Questions

« A random vector X is partitioned into
X, and X,, then what is the
conditional probability distribution od
X, given X, = X,? (Result 4.6)

» What is the probability distribution
for the square of the Mahalanobis
distance for a multivariate normal
vector? (Result 4.7)

Questions

« How to find the value of the
Mahalanobis distance for a
multivariate normal vector when the
probability inside the corresponding
ellipsoid is specified? (Result 4.7)




Questions Univariate Normal Distribution

» What is the shape of a chi-square Ny, c?)
distribution curve? 1 )

» How to look up the accumulated chi- f(X)=ﬁe’[("’”)’”] " —o<x<o
square probability from Table 3, 2no

Appendix?

» What is the joint distribution of two
random vectors which are two linear
combinations of n different
multivariate random vectors? (Result
4.8)

Square of Distance
Table 1, Appendix (Mahalanobis distance)
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p-dimensional Normal Density
N,(n,X)

1
JX) =7
(27[)" ‘Z‘

—o<x; <o, i=12-p

~(x—p)Z ™ (x-p)/2

x is a sample from random vector
X':[Xll XZ’ cee, Xp]

Example 4.1 Bivariate Normal

= E(X,), 1, = E(X,)
oy, = Var(X,), o, = Var(X,)

P =0y, /(\/0'_11\/0'_22)2 Corr(X,, X,)

o O, 1 o -0
2 11 12 27 22 12
L o } l 01,0 oy { o 0 }
21 22 11~ 22 12 12 11

2 2
01,05, — 01y = 01,0, (1- pyy)

Example 4.1 Squared Distance

(x—p)Z7(x—p)

=[x, =4, %, — ];
Porme 0-110'22(1_,0122)

l: O _p12\/o'711\/0'722}{x1_ﬂ1}
~ P \/0'711\/0'722 On X K

2 2
__ 1 [xl_:ulJ _I{xz_ﬂzJ ~2p [xl_ﬂlJ{xz_ﬂzJ
2 12
1-p |\ you V02 On \O2

Example 4.1 Density Function

1
27 \/ 01,0, (1- p122)

- 1 Y~ H 2 Xo = Ho 2

Pt 2(1—pfz)[( Vo ] { Jon ]
_ X H | X
(522 22

S (x,x,) =




Example 4.1 Bivariate Distribution

Oy = G0 P, = 0

Example 4.1 Bivariate Distribution

Oy = O 1 = 0.75

Contours

Constant probability density contour
= {all xsuch that (x—p) £ (x-p) = c? }
= surface of an ellipsoid centered at p

axes:tcq/ e,

Xe,=/Ae, i=12--p

Result 4.1

X : positive definite
Ye=lde=X" :%e

(1,e) for T = (1/1,e) for £*
X positive definite




Example 4.2 Bivariate Contour

Bivariate normal, o, =o0,,

eigenvalues and eigenvectors
.1 1
=0,+t0,, € =|—F=,—F=
ﬂ'l 11 12 1 [ /_2 /_2]

, 1 -1
A, =0y — 01y, € :[ﬁ’ﬁ]

Example 4.2 Positive Correlation

Probability Related to
Squared Distance

Solid ellipsoid of x valuessatisfying

(x-p) I (x—p) < 7, ()
has probability 1— o

Probability Related to
Squared Distance




Result 4.2

X:N,(n,E)=
aX=aqX +a,X,++a,X,:
N(a'p,a'Xa)
a'X:N(a'p,a'Xa)foreverya=
X mustbe N, (n, X)

Example 4.3 Marginal Distribution
X=[X,, X, X,]"N,(nE)
a'=[10,---,0], a'X=JX,
ap=yy, aXa=oy
a'X:N(a'p,a'Xa)=N(y,0y)
Marginal distribution of X, in X:

N(u,0,)

Result 4.3

X:N, (1)

ay X, +-+a,X

p

anX;+-+a,, X

p . 1
AX = IN, (AR, AZA)

_aqu1+---+aqup_

X+d:N,(n+d,X)

Proof of Result 4.3;: Part 1

Any linear combination b'(AX) = a'X,
a=A'b=>
(b'A)X: N((b'A)p,(b'A)X(A'D))
=
b'(AX): N(b'(Apn),b'(AZA')b)
valid foreveryb = AX: N _(Ap, AXA')




Proof of Result 4.3: Part 2

a'(X+d)=a'X+a'd
a'X:N(a'pn,a'xa)
a'X+a'd:N(a'n+a'd,a'Xa)
aisarbitrary =
X+d:N,(p+d,X)

Example 4.4 Linear Combinations
X1 Ny(n,X)

Xl
X,-Xx,] [1 -1 0
= X, |=AX
X,-x,| |0 1 -1
X,
Au{/va—uz}
Hy — Mg

01, — 203, + 0y O1p+ 03— 0p — 0'13:|

AXA'= {
01+ 053 =0y —Oy3 Oy = 20,3+ 07y

AX:N,(Ap,AZA")
can be verified withY, = X, - X,, ¥, = X, - X,

Result 4.4
XZNp(u,Z)
(EE%) 1y , | Z,
X: —-——— | u: -———, Z: —_— + —_—
X, R, X, | Xy
((p-9)x1)
jxl:Nq(ul’le)
Proof :Set A :[ | 0 Jin Result 4.3
(g9%xp) (9%xq) (gx(p—9))

Example 4.5 Subset Distribution

X:N;(n,X)

X o o
X1:|: 2} ul:|:/u2} 211:|: 22 24}
X, Hy Oy Oy

10



Result 4.5

(@) X, , X, :independent, Cov(X,,X,)= 0

(:x1) (g2x1) (q1xq7)
X, ] ., | Xy
O) =[Ny [} +
XZ ) 2“21 | 2'zz
= X,,X, :independent if and onlyif X, =0

(©) X, i Ny (my, X4y). X, 0N, (. E5p) independent

Example 4.6 Independence

X: N, (. E)
4 1 0
x=|1 3 0
0 0 2

X,, X, :not independent

X,
X, = {Xl} and X, are independent
2

()X, isindependent of X, and also .X,)

X, 0, . | 0
=== Ny, |- + ——=

X, ) 0 | Zp “1

Result 4.6

I X, ny
X=|-==|'N,(n.X), pn=-—-|

| X, K,

[z, | Z,
Z=l-—— + ———| [Z,[>0=

L X | Xy

conditional distribution of X, given X, =x, is
normal with mean = p, + £, X1 (x, —,) and
covariance=X, - X, X, -

Proof of Result 4.6

I I _21222
A=|—— + ——— |

0 | 1

X, —m- 2122;; (X, -n,)
AX-p)=| —————————————— :
X, —n,
joint normal with covariance
2"11 - 2"12}:';;221 | 0

11



Proof of Result 4.6

X, -, —Z,X5 (X, —n,)and X, —p, are independent

A, Bindependent = P(A| B) = P(4,B)!/ P(B) = P(A)

S —m - Z1222 Xy —py) =% —p - Z1222 (X, —ny) |
X, =X,)=

X - - 2‘1222 (X, —py) =%, —p, — 2‘1222 (x,—n,))

X -m- 21222 (X;—p,): Nq 0,x, - 2122;221)

X, givenX, =x, :

Nq (my + 21222 (X, —my), Xy — 2122;221)

Example 4.7 Conditional Bivariate

X w|lo, o

AREEE
X2 Hy | [ O Oy
show that

2
O. O.
S| x,) :N(ﬂl"'&(xz _IUZ)!Gll_i

2 Oy

Example 4.1 Density Function

1
27 \/ 01,0, (1- p122)

S (x,x,) =

- 1 X —H 2 Xo—Ho 2

Pt 2(1—pfz)[( Vo ] { Jon ]
_ X H | X
(522 22

Example 4.7

2 2
1 [xl_yl " X2 —Hy ~2p, R ]
201~ pi,) \VOou Vo2 \VOou V02
2
1 O ] 1 (xz_,uz)z
T () | o )
20—11(1_,0122)[ S O v 2 oy

2”\/0'110'22 1-p3) = \/g\/o'u (1~ p)\ 2705,
SOl x) = f(x,x,)1 f(x,)
1

\/5\/ on(l- p122)

o~ ta=(012 1 02) (o= 1) 1204, (1)

12



Result 4.7
X:N,(nX), [E[>0
@ (X-p)E(X-p):zp
(b) The probability inside the solid ellipsoid
{x:(X-p)L'(X-p)< 77 (@)}isl-a,
where ;(rf («) denotes the upper (100«x)th

percentile of the ;(j distribution

v? Distribution

Xl:N(/ﬁ!O-f)l X, :N(/JZ!O-zz): Ty

X, -

X, N(u,, o), z =21 N0

2
2= Z(xi _”fJ , v :degreesof freedom (d.f.)
-1

O-i
1 2V 2
— x>0
I s
0, 7’ <0
(Gamma distribution with o =v/2)

x? Distribution Curves

J&2)

Table 3, Appendix

13



Proof of Result 4.7 (a)

(X—p)ZH(X-p) =) —(X-p)ee,(X—p)

i
=

{ e (X - u)} ZZ,?, Z=A(X-p):N,(0,AZA")

ell\/7
. eé/\/z |:p } ¢ ¢, )
AzA'=| 2 Jee |- IR
gl 3
¢,/\%,

7, N(OD), (X—p)'E (X —p) = izﬁ %

Proof of Result 4.7 (b)

P{(X—p)E*(X—p)<c?| is the probability
assigned to the ellipsoid by X: NV, (u, X)
(X—p)' (X —p) new random variable
distributed by 4

PIX-py = (X-p) < 22 (@)]=1-«

Result 4.8

X, X,, -+, X, : mutually independent
Xj : Np (ll, ’ Z)

V, =X, +¢,X, +++¢,X, :Np(chpj,(Zcf)E]
j=1 j=1
V, =bX, +b,X,+---+b,X, and V, and V, are joint normal
Q. cHE  (box

with covariance matrix| /=

(b'0)X (Zn;bf)z

Proof of Result 4.8

X'=[X;, X, X, ]: N, (. )

™ > 0 - 0
0 X - 0
n= ll:2 ’ ZX: : Dot :

ol ol el
BT B - b

Vl
JAX = v, ZNzP(Au,A):XA')
block diagonal terms of AX,A'": (Zc )E, (Zb )
j=1

off —diagonaltermsof AL A" (Zc )

J=L 56

14



Example 4.8 Linear Combinations

X, X,, X,, X, rindependent identical N,(p, X)

3 3 -11
p=|-1/X=/-1 1 0
1 1 0 2

a'X;:N(a'p,a'Xa)
a'n=3a,—a,+a,

a'Ya=3a’ +a’ +2a’ - 2a,a, +2a,a,

Example 4.8 Linear Combinations

1 1 1 1
Vl :EX1 +EX2 +EX3 +EX4:N3(HV1’ZV1)

6
4
By =D ch, =2p= {_ 2]

J=1

4
V, =X, +X, +X;-3X,, Cov(V,,V,)=(D c;b,)E=0
J=1

Outline

« INntroduction

» The Multivariate Normal Density
and Its Properties

» Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of x and
S

» Large-Sample Behavior of and S

Questions

- What are random samples?
- What is the likelihood?

» HOw to estimate the mean and
variance of a univariate normal
distribution by the maximum-
likelihood technique? (point
estimates)

» What is the multivariate normal
likelihood?

15



Questions

» What is the trace of a matrix?

- How to compute the quadratic form
using the trace of the matrix? (Result
4.9)

» How to express the trace of a matrix
by its eigenvalues? (Result 4.9)

» Result 4.10

Questions

» How to estimate the mean and
covariance matrix of a multivariate
normal vector? (Result 4.11)

» What is the invariance property of
the maximum likelihood estimates?

« What is the sufficient statistics?

Maximum-likelihood Estimation

L

Multivariate Normal Likelihood

X, X;, -, X, :randomsample from N (u, X)

Joint density of 1 *é(X,*u)'E’l(xfp)/Z
{leXZv“"Xn }:(27[)"17/2):;«/2 |
as a function of pand X for fixed x,,x,,--, X,
= likelihood

Maximum likelihood estimation

Maximum likelihood estimates

16



Trace of a Matrix
k
A =la,}=tr(A)=Ya,; cisascalar
i=1

(kxk)

(@) tr(cA) =ctr(A)

(b) tr(A£B) =tr(A) £ tr(B)
(c) tr(AB) =tr(BA)

(d) tr((BAB) = tr(A)

(e) tr(AA') = Zk: Zk: a;

i=1 j=1

Result 4.9

A : k x k symetric matrix
X .k x1vector
(@) x'Ax = tr(x' Ax) = tr(Axx')

(b) tr(A) = Zk: A,

Proof of Result 4.9 (a)

B :mxk matrix, C:kxm matrix
tr(BC) = tr(CB)

- tr(BC) = Z(Zk: bl.jc].,]

tr(CB) = zk;(z cﬁb,.j} - Z(i b,.j.cj,) ~ r(BC)

i=1 \_j=1

= tr(x'Ax) = tr((Ax)x") = tr(Axx')

Proof of Result 4.9 (b)

A=P'AP, P'P=1
A =diagi{i, 2y, A }
tr(A) = tr(P'AP)

=tr(APP') =tr(A) = Zk:/ll.

i=1

17



Likelihood Function
Z;:(X/ _u)zil(xf _”):tr 2712(’(/_ _”XX/ _ll)

J

Zn:(xf _FXX/ _")

Jj=1

:i(x_/. 7i+i7uXx_/. 7i+i7u)'

J=1

=36, =%, %)+ a3 - )E )
j1

1 | ,z:(x,-i)(x,-i)‘m(i-p)(?-,.)‘ 2
L(“'Z):WQ { [ H

Result 4.10

B : px p symmetric positive definite matrix
b : positive scalar

ib e—tr(E’lB)lz < ib (2 b)pb e_bp

= B]

for all positive definite X , with equality

(pxp)

holding only for X = (1/25)B

Proof of Result 4.10

tr(EilB) _ tr[(Z’lB“z )Bllz ] _ tr[BllZZ‘lem]
7, - eigenvalues of BY>XB"?, all positive

) L
tr(E’lB)=277i, ‘2713‘ =117 =B/
i=1 i=1

b
»
1; N
ﬁeanz*s)/z _ [11—1][317] 67,2,1:,7’/2 _ ﬁﬁﬂx‘be%/z
i1

n'e™"? hasa maximum (2b) ¢ atyy = 2b .. &e’"“’i“)’ 2< ﬁ(Zb)pbe"”’

upper bound is attained when X = (1/ 2b)B such that BV £ 'B"? = 2bI

Result 4.11 Maximum Likelihood
Estimators of p and X

X;, X,, -+, X, rrandomsample from N (n, X)
=X
A 1Y - - n-1
2-=Y (X, -X)x,-X)="=s
na n

18



Proof of Result 4.11

Exponent of L(p, X):

_;t{z-{g(xj_x)(xj_x>ﬂ_;n(x_p>'z-l<x—u>

J=1

Invariance Property

6 : maximum likelihood estimator of

h(é) :maximum likelihood estimator of /(&)
Examples:

MLE of gL n=p'S"p
MLE of \/o, =./5,

6, =1¥ (x, - X,f =MLE of Var(x,)
noa

Sufficient Statistics

Joint density of
X, X,, -, X

n

1 ‘t’{z’l[i(xf-i)(xl -f)'+n(f—u)(i—u)'ﬂlz

=

nl2

R

depends on the whole set of observations

X, X,, X, throughxand S

~.xand S are sufficient statistics of a multivariate
normal population

Outline

« INntroduction

- The Multivariate Normal Density
and Its Properties

- Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

- The Sampling Distribution of ¥ and
S

.-Earge—SampIe Behavior of and S
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Questions

» What is the distribution of sample
mean for multivariate normal
samples?

» What is the distribution of sample
covariance matrix for multivariate
normal samples?

Distribution of Sample Mean

X, X,, -+, X, rrandomsample from N (p, X)
Univariate case: p =1
X :N(u,0%1n)
Multivariate case:
X:N,(n,X/n)
cf.Result 4.8

Sampling Distribution of S

X, Xy, X, t random sample from N, (u, £)
Univariate case: p =1

(n-1)s*= Z(Xj —)?)2 e
=1
(n-1)s? =O'ZZZ]?, oz, :N(0,5?%)
j=1
Multivariate case :
Z,=X,-X:N,(0,%)

(n-DS= Z Z,.Z"f : Wishart distribution w,_, ((n-1)S | X)
j=1

79

Wishart Distribution

(n—p—2)/26-tr[Az’1]/2

("_1)/2ﬁF(;(n—i)j

A

Wn—l(A | 2“) =

2p(nfl)/2ﬂ_p(p—l)/4|2

A : positive definite

Properties :

AW, (A ]X), A, w,, (A, X)) =
A+AW, .., (A, +A,|X)

AW, (A|E)= CAC: W, (CAC|CEC')

20



Outline

» Introduction

- The Multivariate Normal Density
and Its Properties

«» Sampling from a Multivariate
Normal Distribution and Maximum
Likelihood Estimation

» The Sampling Distribution of and
S

- Large-Sample Behavior of X and S

Questions

« What is the univariate central limit
theorem?

» What is the law of large numbers, for
the univariate case and the
multivariate case? (Result 4.12)

« What is the multivariate central limit
theorem? (Result 4.13)

Questions

» What is the limit distribution for the
square of statistical distance?

Univariate Central Limit Theorem

X : determined by a large number of independent
causesV,, V,, -+, V,
V. :random variables having approximately
the same variability
X=V+V,+---+V,
= X has a nearly normal distribution
X is also nearly normal for large sample size

21



Result 4.12 Law of Large Numbers

1.,Y,.---,Y, rindependent observations from a
population (may not be normal) with E(Y;) = u
=

v =27 convergesin probability
n
tou

That is, for any prescribed & > 0,
Pl-e<Y-u<e]l—>lasn— o

Result 4.12 Multivariate Cases

X,, X,, -+, X, independent observations from
population (may not be multivariate normal)
with mean E(X;) =p=

X convergesin probability top

S convergesin probability to X

Result 4.13 Central Limit Theorem

X, X,, -+, X, :independent observation from a
population with mean p and finite
covariance X
= /n(X —p) is approximately N, (0, X)
for large samplesize n >> p
(quite good approximation for moderate » when
the parent population is nearly normal)

Limit Distribution of
Statistical Distance

X : nearly N, (n, 1):) for large samplesize n >> p
n

n(X—p) (X - p) :approximately
for large n-p

S close to X with high probability when
nis large

- n(X—p)'S™ (X —p) :approximately >
for large n-p

22



Outline

» Assessing the Assumption of

Normality
- Detecting Outliers and Cleaning Data

» Transformations to Near Normality

Questions

« How to determine if the samples
follow a normal distribution?

- What is the Q-Q plot? Why is it
valid?

- How to measure the straightness in a
Q-Q plot?

Questions

» How to use Result 4.7 to check if the
samples are taken from a
multivariate normal population?

» What is the chi-square plot? How to
use it?

Q-Q Plot

Xy S Xy <o+ < X,y Observations on X,

Let x,, be distict and » moderate to large, e.g., n > 20
. 1

Portion of x<x, :j/n— (j_E)/n

j-1/2
n

ay 1 2
P[qu(j)]=-[mﬁe dZ=

Plot (q( X0 )to seeif they are approximately
linear, since x, ;, ~ og, ;, + 4 if the data are from
a normal distribution

23



Example 4.9

Ordered
hearuath Probability levels ] Vo] |
observations : Standard normal

j— n quantiles g
j 03 1.645
15 1.036
1 25 674
41 35 385
2 45 125
i 55 125
1.2¢ A3 385
1.54 75 674
i =5 (136
2 95 45

Example 4.9

A ®
..
1L e
L ]
L]
®
° ¢
_ Ny
-~ .: 7.
. — 14

Histogram of MidTerm Scores of
Students of This Course in 2006

Q-Q Plot of MidTerm Scores of
Students of This Course in 2006

n = 33, r, = 0.946652

24



Example 4.10 Radiation Data of
Closed-Door Microwave Oven

Measurement of Straightness

Zn:(x(_/) -X)q,-9)

o= p
\/Z () —%)° \/Z (90—
j=1 j=1
Reject the normality hypothesis at level of
significance « if 7, falls below the appropriate

valuein Table 4.2

Table 4.2 Q-Q Plot Correlation
Coefficignt__Te_st_

sample size

\\\\\

Example 4.11

For data from Example 4.9, x =0.770,4 =0

10 10
Z(’x(j) _)_C)g(j) 28584’ Z(x(j) _3_5)2 =8.472

J=1 j=1

10

> q;,=8.795 1,=0.994

j=1

n :101 a= 0.10

1, >0.9351= Do not reject normality hypothesis

100
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Evaluating Bivariate Normality

Check if roughly 50% of sample observations
liein the ellipse given by
fall x such that (x—x)'S *(x - X) < #2(0.5)}

Example 4.12

X sales x, = profits X assets
Company (millions of dollars) (millions of dollars) (millions of dollars)

General Motors -

Ford

Exxon

IBM

Example 4.12

- {62.309} _ {10,005.20 255.76} <10°
2927 | 255.76  14.30

72(0.5)=1.39

e {xl - 62.309H 0.000184 - 0.003293}{x1 - 62.309} 10"

x,—2927 || -0.003293 0.128831 || x,—2927

[x,,x,]=[126.974,4224] = d* = 4.34 >1.39

Seven out of 10 observations are with ¢ <1.39

Greater than 50% = reject bivariate normality

However, samplesize (n =10) is too small to reach the conclusion

103

Chi-Square Plot

d? = (x-Xx)S™(x—x) :squared distance
Order the squared distance d(yy <dj, <---<d;,,
P j—%)/n) 100( j—%)/n quantile of the

chi-square distribution with p degrees of freedom

1
Graphall (g, ((j=>)/n). dgy)

The plot should resemble a straight line through
the origin having slope 1

Note that qL,vp((j—%)/n) = ;(f,(l—(j—%)/n)
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Example 4.13 Chi-Square Plot
for Example 4.12

Example 4.13 Chi-Square Plot
for Example 4.12

Chi-Square Plot for Computer
Generated 4-variate Normal Data

Outline

« Assessing the Assumption of
Normality

» Detecting Outliers and Cleaning Data
« Transformations to Near Normality
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Steps for Detecting Outliers
» Make a dot plot for each variable

» Make a scatter plot for each pair of
variables

« Calculate the standardized values.
Examine them for large or small
values

» Calculated the squared statistical
distance. Examine for unusually
large values. In chi-square plot,
these would be points farthest from
the origin.

Outline

» Assessing the Assumption of
Normality

- Detecting Outliers and Cleaning Data
» Transformations to Near Normality

Questions

» How to transform sample counts,
proportion, and correlation, such that
the new variable is more near to a
univariate normal distribution?

» What is Box and Cox’s univariate
transformation?

» How to extend Box and Cox’s
transformation to the multivariate
case?

Questions

- How to deal with data including large
negative values?
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Helpful Transformation to
Near Normality

Original Scale Transformed Scale

Counts, y
VY
Proportions, 7 . p
P p Iogit(p):llog[ pA]
2 1-p
Correlations, r Fisher's z(r)=%log(i+—r)
—r

Box and Cox’s
Univariate Transformations

xt -1
x(z){ 7 A#=0

Inx, A=0
Choose /4 to maximize

oA)= —Zln{li(xjﬂ —Wj ]+(/1—1)ﬁ|n X,
n =

J=L

o _1<- W
X = Z Xj
n‘s

114

Example 4.16 (A) vs. A

Example 4.16 Q-Q Plot
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Transforming Multivariate

Observations
Ay Agseee5 A, - power transformations for

the p characteristics
Select 4, to maximize

0,(2)= —g |nbi(x;;~> —F]z}(z—l)z Inx,

J=1 J=1

o _1<- . w
xk =;ijk

j=1
. ) _ () _ Gy) _
x(”'—{xﬂ 1 x7'-1 x," =1
W= - - -
A
ji ﬂfz p 117

More Elaborate Approach

A5 Ayy e, A, - power transformations for

the p characteristics
Selectd = [ﬂ,l,/lz,---,/lp]to maximize

)4 n
Ay, e 2, )= —gln\S(x)\JrZ(,zk ~1)YInx,
k=1 j=1
S(1) is computed from

(&) _ () _ (4)
T B S ) S S

' A z A

P

X

Example 4.17 Original Q-Q Plot for
Open-Door Data

, e

Example 4.17 Q-Q Plot of
Transformed Open-Door Data
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Example 4.17 Contour Plot of
for Both Radiation Data

o =
e /-/"l._'// - T \
— \
vd e g \ \
,/ g \ I":
e -

- ///
-~ — — 7 //

Transform for Data Including
Large Negative Values

{x+1y 12 ¥20,1%0

x(i)— |Og(x+1) XZO,A/:O

exr1f i cali2e-a) x<0,4%2
~log(-x+1) x<0,A=2
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