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Questions

-What is the concept of the Principal
Components?

- What are the objectives of the
Principal Components?

Concept of Principal Components

X2

Principal Component Analysis

- Explain the variance-covariance
structure of a set of variables
through a few linear combinations of
these variables

- Objectives
—Data reduction
— Interpretation

- Does not need normality assumption
in general
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Questions

-How to find the Principal Components
for a Random vector with a known
probability distribution? (Result 8.1)

» What is the relationship between the
sum of all eigenvalues and the trace
of the covariance matrix? (Result 8.2)

- How to calculate the proportion of
total population variance due to the
kth principal component?

Questions

-What is the relationship between the
ith principal component and the ith
variable? (Result 8.3)

»What is the geometric interpretation
of the principal components?

Questions

-What are the principal components
for a diagonal covariance matrix?

- What are the principal components
for the special covariance matrix

. .. o? paz paz
- How to find the principal components po? o2 e pol
for a standardized random vector? =" SR
(Result 8.4) po? po? e o
Principal Components Result 8.1

Random vector X'=|X, X, - X, |has
the covariance matrix
Linear combination:¥, =a X, i=12,-, p
Var(¥,)=a.Xa,, Cov(Y,Y,)=aXa,
First principal component :
a,X that maximizes Var(a,X) subject toa.a, =1
ith principal component :
a,X that maximizes Var(a,X) subject toaja, =1
and Cov(a,X, a,X) =0 for k <i u

Covariance matrix X of random vector X

is with eigenvalue - eigenvector pairs (4, e, ),
where 4, > 4, >-->2 >0

The ith principal component is given by
Y,=eX, i=12-,p, with
Var(Y)=eXe,=1, i=12-p
Cov(Y,Y,)=eXe, =0,i#k

If some 4, are equal, the choice of corresponding

e, and hence Y, are not unique 2




Proof of Result 8.1

aza .
max =/, attained whena=e,
a#0 a'a

Xa

eje, =1, thus max > == =} =e,Xe, = Var(Y,)

az0 q'q

max A k=12, p-1

ale,...e, a'a
a=¢€,,, e;c+12ek+l = ﬂ'lﬁl = Var(Ykﬂ)
Cov(Y,Y,) =eXe, =e,Ae, =0foranyi=k
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Result 8.2

Covariance matrix X of random vector

X= [X1 X, - X/,]is with eigenvalue-
eigenvector pairs (4,,e, ) where , > 1, >---> 1, >0
The ith principal component is given by

Y,=eX, i=12-,p, then

P
Op+0y+t0,, = ZVar(X,.)
i=1

Y
= A+ A+ A, =Y Var(Y)
-1

Proof of Result 8.2
L=PAP', A=diagih, A, 4,
P=le, ¢, - ¢, PP=PP=I

oy +t0oy+to,, = zp:Val’(Xl.) = tr(Z)
i=1
=tr(PAP)=tr(AP'P)=1tr(A)

P
=h+A++4, =) Var(Y)

i=1

Proportion of Total Variance due to
the kth Principal Component

Proportion of total

population variance B A,
due to the kth principal | 4, + 4, +-+ 4,
component

Result 8.3

Y, = e,X are the principal components obtained
from the covariance matrix X, then

_ah k=12,

Py.x, = '
Ok

e p

are the correlation coefficients between ¥; and
variable X,.Heree, = [e[1 e, - e[p]is the
eigenvector of X corresponding to the eigenvalue
AAlso,X=[x, X, - Xx,]

Proof of Result 8.3
a,=[0 - 010 0]sothat X, =a, X
Cov(X,,Y)=Cov(a,X,eX) =2, Xe, = Le,
Var(Y,)=4,, Var(X,)=0,
_ Cov(X,,Y) _ Aey
Pr = JVar(r) Var(x,) Ao,

s i1a

Ok




Example 8.1

X'=[X, X, X,]| hasthecovariance matrix

1 -2 0

X=|-2 5 0}, whoseeigenvalue-eigenvector
0 0 2

pairsare

2,=583, ¢ =[0383 -0924 0]
2,=2.00, e,=[0 0 1]
2,=017, e =[0.924 0383 0]

Example 8.1

Principal components
Y, =¢,X=0.383X, -0.924X,
Y, =e, X=X,
Y, =e,X =0.924X, +0.383X,
Verification
Var(Y,) = (0.383)*Var(X,)
+2(0.383)(-0.924) Cov(X,, X,) +(-0.924)* Var(X,)
=5.83=4
Cov(Y,,Y,) =0.383Cov(X,, X;)—-0.924Cov(X,, X;) =0
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Example 8.1
0,,+0,+0,,=8=5.83+2.00+017=4+4,+ 4,

A _o73 _Ath g

R R N
_eyy/A 03830583 0.925
Py x, = = N1 =
Nl 1
_epJA -0.92440583 0,998
Pr.x, = - \/* -
\O2 5
A
Py, x, = Pr,x, = 0, Py, x, = % =1
33 2

Geometrical Interpretation
X:N,(nX)

¥ is with eigenvalue - eigenvector pairs (4, e, )

constant probability density ellipsoid

(x-p)y =3 (x-p)=c?

¢ = (e (x-p)f + (e (x-p)f oo, (x-)f
A 2 A"

Principal components of x-p: y, =e;(x-p)

i=12,--,p

N +...+iy§

ATk 4, 2

Geometric Interpretation

Standardized Variables

ZI:M, i=1,2,p
o,
\ou o - 0
a2 172 Op v 0
Z=V(X-p) V¥ = i
0 0 - o,
1 p, - py,

Cov(Z) =V V2EV¥2 =p = Pre 1 o P

Py Pap 1 24




Result 8.4
Z=z, z, - z,| withCov(Z)=p
(4., ): eigenvalue - eigenvector pairs of p
W=Az21,20
The ith principal component of Z:
Y,=eZ=eV'*(X-p) i=12-p

SVar(y) =Y var(z) = p

Py :em/fi, ik=12-p

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)

population variance y)
o =2k k=12 p
due to the kth principal p

component

Example 8.2
Z{l 4 } p{ 1 0.4}

4 100 04 1
Eigenvalue - eigenvector pairs for X :
2,=100.16, e, =[0.040 0.999]
2,=0.84, e,=[0.999 -0.040]
Eigenvalue - eigenvector pairs forp :

A =1+p=14, e =[0.707 0.707]
2,=1-p=06, e,=[0.707 -0.707]

Example 8.2

Principal components for X A 0.992
A+,

Y, =0.040X, +0.999.X,

Y, =0.999.X, -0.040X,

4 =07

Principal components for p: =
p

Y,=0.707Z,+0.707Z, = 0.707(X, — 1) +0.0707(X, — 11,)
Y, =0.707Z, —0.707Z, = 0.707(X, — 14,) - 0.0707(X, — 11,)

Prs =yl =0837, p, , =e,\[4 =0.837

Principal Components for Diagonal
Covariance Matrix

o, 0 o 0
0 0.

x=| . 2 e=[0 - 010 - 0]
0 0 o

»

):’ei =0,¢;, Yl = e;X = Xi

p=1 pe =le, Y :e;Z:Zi

X: N, (m,X), constant density ellipsoid is
a right ellipsoid for X

and a sphere for Z

Principal Components for a Special
Covariance Matrix

2 2 2

CE N o
S

30




Principal Components for a Special
Covariance Matrix

_ 1 . 1 -@i-1) 0
G- JE-Di J@E-Di

i=2p
Y, =e,Z=— ZZI, £:p+l_—p
f P P
the last p —1components collectively contribute
very little to the total variance and can be neglected

when pis nearl
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- Monitoring Quality with Principal
Components
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Questions

-What are the sample principal
components?

»How to compute the sample principal
components?

»How to decide the number of
principal components required?

»What is the geometric interpretation
of the sample principal components?

33

Questions

-How to compute the sample principal
components for standardized random
vectors?

- What does it mean for an unusually
small value for the last eigenvalue
from either the sample covariance or
correlation matrix?

34

Sample Principal Components
X, ,X,, -, X, :nindependent drawings from some
p —dimensional population with mean p and
covariance matrix X

sample mean X, sample covariance matrix S

first sample principal component a'lxj. :
maxa,Sa, subjecttoaja, =1
ith sample principal component a;.xf :

maxaSa, subjecttoaa, =1 and aSa, =0

Sample Principal Components

S = {s, }is with eigenvalue - eigenvector pairs

(i.e) ik=12-p

ith sample principal component of observation x :

P =X =&yX +8,,X, + 48, X,

hzlyz2],20

sample variance(p,) = ik

sample covariance(y,, »,) =0, i#k
P PooA o A_

Total sample variance =) s, = 2/1 \/7‘
i=1 i=1




Example 8.3

Socioeconomic variables for 61 tracts in Madison, Wisconsin.
X : total population (thousands)
X, : professional degree (percent)
X5 :employed age over 16 (percent)
X, : government employment (percent)
X5 : median home value ($10,000s)
X'=[447 396 7142 2691 1.64]

3.397

-1.102 9.673
S=| 4306 -1513 55.626

—2.078 10.953 -28.937 89.067

0.027 1203 -0.044 0.957 0.319 a7

Example 8.3

Cuefticients fur the Principal Componcnls
{Correlation Coefficients in Parentheses)

Variable & (r ) alri.) C &
Total population —0039(—22)  0071(24) 088 0977 —0.058
Profession 0.105(35) 0I30(26)  —0.961 0T 01
Employment (%) | 0.492( =.64) (.364{ 73) M6 —irLi01 0,005
Government . . _

employment (%) | osesies) N4R0(32) 0153 0030 07
Medium home A
ealuc | L0090 16) 0015{.17)  —0125 0082 DYy
A | 10702 6T 837 247 013
| &77 23 9.1 999 1000
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Scree Plot to Determine Number of
Principal Components

Example 8.4: Pained Turtles

natural logarithms of the measured carapace
length, width, and weight of 24 male pained turtles
sample mean vector :
x=[4.725 4.478 3.703]
sample covariance matrix

11.072 8.019 8.160
$=10"7° 8.019 6.417 6.005

8.160 6.005 6.773

a0

Example 8.4

COEFFICIENTS FOR PRINCIPAL COMPOMENTS
{Correlation Coefficients in Parentheses)

Variable &7 ) é, €,

In {length) 683 (.99) -.159 -=713
in (width) S10(.97) —.594 622
In (height) 523 (.97) 788 324
Variance (4;): 2330 X 107 60 x 107 36 x 107
Cumulative

percentage of total

variance 96.1 98.5 100

Example 8.4: Scree Plot

i, x 10°

200




Example 8.4: Principal Component

-One dominant principal component

—Explains 96% of the total
variance

- Interpretation
», =0.683In(length) +0.510 In(width) + 0.523In(height)

=In [(length)O.GHB (Width)omo (height) 0_523]
= In(volume of a box with adjusted dimension)

Geometric Interpretation

aa

Standardized Variables

X=X .
z,=D"(x,-x) 7=17z1-0
n
[ 1 S12 S ]
1 ' 819 1 SZP
S:=EZZ= \/;\/g . ] \/g Spp =R
51',; SZ'F 1

Principal Components

z,,2,,--, z, are standardized observations

with sample covariance matrix R

(ii,éi): eigenvalue- eigenvector pairs of R

W2 Ay2z22,20

The ith principal component of z:

yi=ez, i=12,-,p

sample variance (3,) = /i‘, sample covariance(p,, »,) =0,i # k
total sample variance = tr(R) = p

L =éik\/zi k=12 p

a6

Proportion of Total Variance due to
the kth Principal Component

Proportion of (standardized)
sample variance

due to the kth sample principal |
component

Example 8.5: Stocks Data

- Weekly rates of return for five stocks
- X;: JP Morgan
- X,: Citibank
- X;: Wells Fargo
- X,: Royal Dutch Shell
— X;: ExxonMobil

a8




Example 8.5
i':[0.00ll 0.0007 0.0016 0.0040 0.0040]
1
0.632 1
R=|0511 0.574 1
0.115 0.322 0.183 1
0.155 0.213 0.146 0.683 1

Jy=2437, & =[0469 0532 0.465 0.387 0.361]
J,=1407, & =[-0368 —0236 —-0.315 0585 0.606]
Jy=0501, &;=[-0604 —-0.136 0.772 0.093 —0.109)]
1, =0400, &,=[0.363 -0.629 0289 —0.381 0.493]
Js=0.255 &;=[0.384 -0.496 0071 0595 —-0.498] .,

Example 8.5

First two principal components:
Py = 6,2 =0.469z, +0.532z, + 0.465z3 +0.387z, +0.361z5
P, = 6z = —0.368z; —0.2362, — 0.3152, + 0.585z, +0.606z;

At 770,
p
1 : roughly equally weighted sum (index) of the five stocks

(general stock - market component, or, market component)
¥, : contrast banking stocks and the oil stocks
(industry component)
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Example 8.6

» Body weight (in grams) for n=150
female mice were obtained after
the birth of their first 4 litters

x'=[39.88 45.08 48.11 49.95]
1
07501 1
“|06329 06925 1
0.6363 0.7386 0.6625 1

Example 8.6

3.085 1,=0382, 1,=0342, 1, =0217
1+(p-1)7r =1+(4-1)x0.6854 = 3.056
/is /i <</11

&z =0.49z,+0.52z, +0.49z, + 0.50z,

ll

=0.76

N ‘.J\” ) N),}é ,}é)
Q
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Comment

» An unusually small value for the last
eigenvalue from either the sample
covariance or correlation matrix can
indicate an unnoticed linear
dependency of the data set

»One or more of the variables is
redundant and should be deleted

-Example: x, =x, +x, + x5

Outline

- Introduction
- Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components

»Large Sample Inferences

» Monitoring Quality with Principal
Components
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Questions

-Why to check the normality of the
first few principal components?

» How to pinpoint suspect observation?

Check Normality and
Suspect Observations

- Construct scatter diagram for pairs of
the first few principal components

» Make Q-Q plots from the sample
values generated by each principal
component

- Construct scatter diagram and Q-Q
plots for the last few principal
components

Example 8.7: Turtle Data Example 8.7

3, = 0.683(x, — 4.725) +0.510(x, — 4.478) o o
+0.523(x, —3.703) ” -

$, =—0.159(x, - 4.725) - 0.594(x, — 4.478) : e IRETID
+0.788(x, —3.703) ' = e

P, = —0.713(x, —4.725) +0.622(x, — 4.478) et S e
+O324(x3 _3703) =l q(: 1 2 K m .0){ 03 05 07

Outline Questions

» Introduction
»Popular Principal Components

» Summarizing Sample Variation by
Principal Components

» Graphing the Principal Components
- Large Sample Inferences

» Monitoring Quality with Principal
Components

» What are the large sample
distribution for eigenvalues and
eigenvectors?

» How to determine the confidence
interval for an eigenvalue?

« What is the approximate distribution
for estimated eigenvectors?

- How to test for equal correlation
structure?

60
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Large Sample Distribution for
Eigenvalues and Eigenvectors
S is with eigen values}:':[ﬁ,l ipJand
eigenvectorse;, e,, -, €,
LetA= diag{ﬂi, A, } /;'s are eigenvalues of X

= /n(h—1): approximately N,(0,2A%)

P A :
LetE, =4 Y — % —ee,
a7

= n(e, —e,):approximately N, (0, E,)

/i isindependent of the elements of associated €, .

Confidence Interval for A,
A2 N(4,,22% | n) for n large

i i

P 72SZ(%) =l-«
e
n

100(1- )% confidence interval for 4, :

A, A
e <A< -
l+z(a/2N2/n ' 1-z(al2)N2/n

62

Approximate Distribution of
Estimated Eigenvectors

Jn(e, —e,): approximate N, (0, E,)
E, can be approximated by

~

Example 8.8
Stock price data : N5(p, X)
X has distinct eigenvalues 4; > 4, >---> 45 >0
n =103 large
Jy =0.0014, z(0.025)=1.96

~ AP
— k& o
E, =4 (}: 3 )zekek 95% confidence interval
o T 00014 __, 00014
A - 1+1.96v2/103 ~ 1-1.96v2/103"
€ - N(eik'Ei,kk I n)
0.0011< 4 <0.0019
Testing for Equal Correlation Example 8.9
1 p - p 1
1 . ) 07501 1
Hy:p=py= p p H, :p#p, Example 8.6, female mice data R = 0.6329 0.6925 1
pop o 1 0.6363 0.7386 0.6625 1
, ek e 7, =0.6731, 7, = 0.7271, 7, = 0.6626, 7, = 0.6791, 7 = 0.6855
T V=i S o -
p-15 p(p-2) 4= p—(p-2)A-7) >3 (r —7)f =0.01277, 3" (7, - )" =0.00245, 7 =2.1329

Reject H,, in favor of H, if
n—1 _ P
1= O S S P 3 ) > gy ar2(@)

R et

k=1
~ (150-1)
(1-0.6855)*
> 12 1 uny (0.05) =11.07
The evidence against H,, is strong, but not overwhelming

[0.01277 - (2.1329)(0.00245) ]| =11.4

66
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Questions

-How to monitor a stable process
using the first two principal
components?

» How to monitor a stable process
using the 7? chart from the principal
components?

-How to control future values by
principal components?

68

Questions

- Why avoiding Computation with
Small Eigenvalues?

Monitoring Stable Process: Part 1

The values of the first two principal components
should be stable for a process stable over time
Construct the quality ellipse for the first two

principal components when » large :
A2 ~2
FrEr@

2

Example 8.10
Police Department Data

Variable & é, &; &, &
Appearances overtime (x,) D46 ~.048 629 —.643 432
Extraordinary event {x,) 039 985 —077 151 -007
Holdover hours {x) ~.658 107 582 2500 -39
COA houss (x4) 734 069 503 397 213
Meeting hours (x<) —.155 107 081 586 784
A 2770226 1429206 628129 221,138 99,824

*First two sample cmponents explain 82%
of the total variance "

Example 8.10:
Principal Components

Period n V2 ¥is Yis Yis
1 2044.9 588.2 4258 —-189.1 -209.8
2 ~2143.7 ~686.2 883.6 ~565.9 4415
3 -177.8 ~464.6 707.5 7363 38.2
4 ~2186.2 450.5 -~-184.0 4437 ~3253
5 —878.6 —545.7 115.7 296.4 437.5
6 5632 ~10454 281.2 620.5 142.7
7 403.1 66.8 340.6 ~1355 5212
8 ~1988.9 ~-801.8  —14373 —148.8 al.6
9 132.8 563.7 125.3 68.2 611.5
10 ~2787.3 ~2134 7.8 1694  —202.3
11 283.4 3936.9 -0.9 2762 ~1596
12 761.6 2560  —2153.6 ~418.8 28.2
13 ~498.3 2447 966.5 ~1142.3 182.6
14 23662 ~1193.7 ~165.5 2706 —34459
15 1917.8 -782.0 ~82.9 ~196.8 -89.9
16 2187.7 ~373.8 170.1 ~84.1 ~250.2




Example 8.10:
95% Control Elllpse

/)

Monitoring Stable Process: Part 2

X:N,(nX), E=le, e, - e,]
X—p= i X - u e.e; —ZY,e,
E'(X- ;;1Ye1 Ye,) = [0 0y, v]=o 0o v}
. YZ Y2 Yy,
Y<2>E o )Y(z) Z+/T+ +ﬁ,, sz
Tf_yh’g+y14+ +y”’, UCL =72 ,(a)
/73 2-4 »

Example 8.11
T2 Chart for Unexplained Data

HucL

Example 8.12
Control Ellipse for Future Values

¢ &, & € &
Appearances overtime {(x;) 049 629 304 479 530
Extraordinary event {x,) 007 —.078 939 ~.260 -.212
Holdover hours (x;) —.662 582 ~.089 ~.158 —437
COA hours (x,) 731 503 —.123 ~-.336 ~291
Meeting hours {x;) SISO 081 —.058 =752 632
5129647499 6729951 396,596.5 1944010 927603

*Example 8.10 data after dropping out-of-control case

Example 8.12
99% Prediction Ellipse

3000

OIK)

b
|
“f
«2
|
i
|

~1000

—3000
i E—

L i i T T U
-5000 2000 o 2000 4000
¥

Avoiding Computation with Small
Eigenvalues

dlij :(ij_i_j;jlél_j}jZéZ)‘(ij _i_};ﬂ&_)’;]‘zéz)
:(X,‘ _i_)A’ﬂél_)A’jzéz)‘E]::I(i/ _i_j}jlél_j;ﬂéz)

P
=" 7% rapproximate cy]
k=3

nia n—L1ja
2 -\
Sy dﬁ)
c =, 2=
2d;; Cye
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