
Microwave Review Quiz #2 Solution 2016.10.18

1. A microstrip line is shown in the right side. A conductor of width W is printed on a grounded dielectric of substrate of thickness d and relative permittivity ε_r . Based on the design parameters given in Ex. 3.7 of the text book f=10GHz, $\varepsilon_r = 9.9$, $\tan \delta = 0.001$, d = 0.5mm, W = 0.483mm, and l = 8.72mm, a microsrtip line has a characteristic impedance of $Z_o = 50\Omega$ with $\varepsilon_{eff} = 6.665$, $\alpha_d = 0.022 \,\text{dB/cm}$, $\alpha_c = 0.054 \,\text{dB/cm}$ and electrical length of $\theta_e = 270^\circ$. After the fabrication, the following three cases are given without changing the substrate.

(1) Further reduce the top metal width W by properly etching. What are the resulted Z_o , ε_{eff} , α_d , α_c , θ (increase or decrease) and reasons?

Z _o	$\mathcal{E}_{e\!f\!f}$	$\alpha_{d} = \frac{k_{o}\varepsilon_{r}(\varepsilon_{eff} - 1)\tan\delta}{2\sqrt{\varepsilon_{eff}}(\varepsilon_{r} - 1)}$	$\alpha_c = \frac{R_s}{Z_o W}$	$ heta=eta_{e\!f\!f}l=\sqrt{arepsilon_{e\!f\!f}l}$
increase	decrease	~decrease	$ \text{~increase} \\ \therefore Z_o VV \text{ decrease} \\ (Z_o \propto \frac{1}{\sqrt{C}} \propto \frac{1}{\sqrt{W}}, \\ \rightarrow Z_o W \propto \sqrt{W}, \\ \Rightarrow W \downarrow \rightarrow Z_o W \downarrow) $	decrease
∵C decrease	∵q decrease	∵ε _{eff} decrease		∵ε _{eff} decrease

(2) Further add the top copper thickness by properly electrical plating. What are the resulted Z_o , ε_{eff} , α_d , α_c , θ (increase or decrease) and reasons?

Z_o	${\cal E}_{e\!f\!f}$	$lpha_{d}$	$lpha_c$	heta
decrease	decrease	~decrease	~increase	decrease
∵C increase	∵q decrease	$\because arepsilon_{_{e\!f\!f}}$ decrease	$\therefore Z_o$ decrease	$\because arepsilon_{_{e\!f\!f}}$ decrease

(3) Further cover the microstrip line with the same substrate. What are the resulted Z_o , ε_{eff} , α_d , α_c , θ (increase or decrease) and reasons?

decrease increase ~increase increa	
$\begin{array}{ c c c c c } \hline \vdots & c & c & c & c & c & c & c & c & c &$	se increase