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Knowledge
 PI: Shou-de Lin Discovery &

— B.S.in NTUEE P Data Mining
— M.S. in EECS, UM

— M.S. in Computational Linguistics -
USC 4

— Ph.D.in CS, USC Information :

— Postdoc in LANL Retrieval e
* Members: Intelligent

— 6 Ph.D. students Information

— 14 MS students Processing

— 5 undergraduate students

e Position in NTU-INTEL Lab

— Pl for Heterogeneous Sensor
Network Analysis Project

Social Natural
Network Language

Mining Processing
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Information without processing
is garbage!!

e M2M framework creates the paradigm shift
for data analysis research and applications:

— Single stream Data =2 Information =2 Knowledge
- intelligent tasks (e.g. recognition, decision
making)
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- What we can do with M2M
data?

e Pattern discovery

e Segmentation

e Classification

e Anomaly detection
* Event prediction
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MTS Representation

e MTS Feature Extraction * Two MTS Examples:

Number of Variables (m)

1 44 -2
. 2 20 -8 S
2 4 100 4 :

00w

A Matrix Representation (X)
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Dimension Reduction on Variables

e Sensors data can be dependent, and we do
not have to store/process all of them

e There are lots of dimension reduction
technigues we can apply here.
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UTS Representation Methods

e UTS Representation Methods

 Non-Data Adaptive Representation Methods
e Data Adaptive Representation Methods
e Model-based Representation Methods
e Data-dictated Representation Methods

Dept. of CSIE & GINM, NTU




Time Series Representations

NN

Model Based Data Adaptive Non Data Adaptive Data Dictated
Hldden Stat|st|ca| Grid Clipped
Markov Models Data
Models sorted  Pjecewise S'”g“'ar Symbolic Trees Important Wavelets ~ Random Spectral Plecewise
Coefficients Pol | Points Mappings Aggregate
o ynomla ApprOX|mat|on Approximation
/ \ SVD PCA
Plecewise Adaptive Natural Strings Orthonormal Bi-Orthonormal  Discrete Discrete  Chebyshev

Linear .
Cosine  polynomials

A ) . Piecewise Language Fourier
pproximation Constant Transform  Transform
/ Approximation

Symbolic Non

Interpolation Regression Aggregate Lower Haar Daubechies Coiflets  Symlets
Approximation Bounding dbn n>1
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Piecewise Linear Approximation -
Regression

e Window-based Method

— (H. Shatkay, “Approximate queries and
representations for large data sequences”, 1996)

— Fit points in the window by a D-degree polynomial




Time Series Representations
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& bolic Aggregate Approximation (SAX)

 First convert the time * ,
series to PAA (i.e. \

Segmented Mean) | \/ C

representation

{>
/L
\

e Then convert it to
symbolic string | . B c

e |t take linear time /
5 Vm T
\

/7

20 40 60 . 80 100 120
|
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Time Series Representations

NN

Model Based Data Adaptive Non Data Adaptive Data Dictated
Hldden Stat|st|ca| Grid Clipped
Markov Models Data
Models sorted  Pjecewise S'”g“'ar Symbolic| Trees [Important Wavelets ~ Random Spectral Plecewise
Coefficients Pol | Points Mappings Aggregate
o ynomla ApprOX|mat|on Approximation
/ \ SVD PCA
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Linear .
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Interpolation ~ Regression Aggregate Lower Haar
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Relational Tree Representation

(Scott W. Shaw et al, “Structural Processing of Waveforms as Trees”, IEEE
Transactions on Acoustics, Speech and Signal Processing, 1990)

rz {root)
1
—> 2
3
P4
Pz 3

e Benefits

— Invariant to monotonic scaling along the time or domain axis

e Distance Measurement

— The distance between two trees is the minimum path length
on the directed graph from one tree to another tree

Ox’\ o A




Feature Extraction from Signal Processing

(1/2)
(T. N. Lal et al, “Support Vector Channel Selection in BCI”, IEEE
Transactions on Biomedical Engineering, 2004)
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Dodgers Loop Data: Data
Description

 Detect game event basic on traffic data
e Collected in 2005(4/10~8/24)

e Data:

— Traffic data
* Number of Observations: 50400. 25 weeks, 288 time slices per

day (5 minute count aggregates).
— Event data
e Date: MM/DD/YY
e Begin event time: HH:MM:SS (military)
e End event time: HH:MM:SS (military)
e Game attendance
* Away team
e W/L score
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Dodgers Loop Data:
30 days since 4/12

Time domain

200000 © 10000 20000 30000 40000 50000
150000 |— , - :
100000 |- ume _| Freq domain
50000 . —
Y S | R SN
0.0002 0.0004 0 Uuue- 0.0008 0.001
—| IFFT(F(f))
,\ f! —1  with
IAEMAARAARARRAAARARE, ) vt 10
50 0 10000 20000 30000 40[{:00 50000

X[t]-IFFT(F(f))

0 10000 20000 30000 40000 50000
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* Vehicle classification:

— collected during a real world WDSN experiment
carried out at Twenty-nine Palms, CA in November
2001

— Using acoustic/seismic time series to classify the

types of moving vehicles

— http://www.ece.wisc.edu/~sensit/publications/Cla
ssificationFusion.pdf
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Body Sensor Network

* Sensors (accelerometers, gyroscopes) Y {

record activities such as shelving a book, | |
walking, sitting up, etc. / g
* Multiple datasets, each with unique w | W

sensor configurations
e Tasks include such things as classifying
activity type and determining average
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Body Sensor Network Contest

e Task 3: action classification
e Task 1: strike duration estimation

e Task 2: action segmentation and classification

Dept. of CSIE & GINM, NTU

e &
2011/10/13 24 A



[N
Ul
o
o

2

3

94
158

156

o
-500 -0
-1000

e Sit to stand detection

— For this task, the algorithm needs to be able to distinguish
trials of “sit to stand” from trials of different types

* Training & testing

— The data is accelerometer and gyroscope reading over
time (roughly 20 sensor data)

— Segmentation is known

e Evaluation:
— For each of the testing trials, the algorithm must classify an
action as “sit to stand” or “not sit to stand”

— Objective function to maximize: number of correct
classifications

Dept. of CSIE & GINM, NTU




60 for each class)

— We need to reduce the dimensions to avoid overfitting

Analysis

e Size of training dataset is small, but feature size is large (avg of

e There only a few subjects in training data, but there are many
subjects in test set

e The length of raw features is not fixed

e Different action have unigue waveforms, some
complementary

Laaa
Sit ToStand  zes
Goa
488
208
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Our Approach

e Raw features : the sensor values collected in time
intervals

e Linear scale the raw feature

— Actions of the same type may be performed at different
speeds

— Data must be scaled to the same absolute length in order
to perform feature-based learning

n tho dAata fram 2
TING UAULOU 11 VI AU

o DPoarfArm I:nci- I:n uri iar +trancfarm N
1 Ul I CITAIIIVITII Vil U

I CI1Iviiitn 1 ol

single sensor
— Filter high-frequency noise

 Training model & predict by Support Vector Machine
— Used linear kernel

Dept. of CSIE & GINM, NTU




Results

e Testing error using each of the three datasets
provided achieves an accuracy of 97~98%

— FFT, wavelet or raw data were used as features.
— FFT features proved to be most useful for this task

Dept. of CSIE & GINM, NTU




Task 1: Multi-Class Action
Segmentation/Classification

e 4 sensor nodes attached to each test subject, each with 5 sensors (measure

acceleration, rotation).
 Goal: Given a testing sequence, detect 9 kinds of actions along with

begin and end times of the detected action within a tolerance of 0.5

seconds
Testing Sequence:

\J_/\ , AL
V4 9w 9V 9N

prediction: 1 2

Label="1 Sit to Stand’

4% .

* Provided Training Data: Label="2 Stand to Sit’
5 SN A

SV a V

In all, there were 9 actions :
performed by 3 test subjects. Labe'=/9 one-step forward ~

Dept. of CSIE & GINM, NTU




Analysis

* Since the test subjects used in the creation of the testing and
training were different, high generality of the model was
required.

e For each label, we had (4 sensor)*(5 readings/sensor)*Length
features, while there were only (3 person)*(10
example/person) training examples. Overfitting may be an
issue.

e There may be unknown actions performed in the testing
sequence. Thus, negative examples in testing can be much
more diverse than in training.

— But after we studied the testing sequence, we found there

were actually no unknown actions performed
Dept. of CSIE & GINM, NTU =




'Our Approach

e Model Selection:

— After trying different classifiers, we found SVM with a linear
kernel and large margin can yield stable and generalizable
performance compared with other approaches we tried.

* Feature Extraction:
— Raw Features: Scale windows to length of 64 data points

— FFT Features: Transform sequence into Fourier Coefficients, use
low frequency portion (top 16), e.g. low-pass filter.

— Wavelet Features: Transform sequence into wavelet
coefficients.

e Window Selection:

— Strategy 1: Move sliding window with different sizes, classify
each window, and select those with most confidence.

— Strategy 2: Find those segments with significant vibration and
use the classifier to determine which actions they are. Here we
i need to assume vibration is not caused by unknown actions. -

31



Results

e Competition-driven:

— If the sensors are in a stable state most of the time, or
for a dataset like the one in this competition, strategy
2 is better for its simplicity and efficiency.

 Research value:
— Strategy 1 is closer to real world applications.

— How to design a algorithm that deals with
segmentation and classification at the same time is a
valuable research topic.

Dept. of CSIE & GINM, NTU




BSN: Average Stride Time Calculation

* Findthe average stride time = Timey,,,,/Numg, ...
e Details:

— Three different datasets, each having a different sensor
configuration and with different test subjects at distinct locations

— One of the datasets included trials at different walking speeds and
inclinations

— Calculate the full cycle of sensor reading on one leg
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Data: not all sensor readings are distinguishable, only certain
sensor readings are needed
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1. Perform a moving average to smooth the raw
time series data

2. Estimate the probable range of the periodical
interval R ; according to the most frequent
distance between peak points

3. Count stride number N, and accumulate total
stride time T,,,,, by searching peak points in
the sliding window with the range of size R,

4. Average Stride Time=T,.,.,/ N

Dept. of CSIE & GINM, NTU Discovery C
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Conclusion & Possible Improvements

 The estimated range of periodical interval may
be hard to detect and become lost in the noise.

e A possible solution is to convert the raw time
series into a different representation form to
filter out the highest-frequency peaks before
beginning the estimation process.

e |tis crucial to automatically detect and focus on
the most significant set of time series data in
the sensor network with respect to a degired

Dept. of Csie " GINM, NTU



Dept. of CSIE & 1l

The First Body Sensor Network Contest
In Conjunction with BSN 2011

Second Place

is awarded to

National Taiwan University Team

National Taiwan University

On Behalf of the Organizing Committee
Roozbeh Jafari, John Lach
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