
Wu-Kong: WSN Unleashed

A Self-Configurable M2M Management Project

Agenda

• Background: Wireless Sensor Networks for
M2M

– Examples of WSN: flow@home and sMAP

– Sensors, communication, programming sensors,
and middleware

• WuKong: Virtual MiddleWare for M2M

Motivation Example - flow@home

A smart home utility: Flow Monitoring at Home
• What to monitor

– Human, with or without known identity

– Kids, maybe with size or person identification

– Animal, pets with known (tag), or unknown identity (mouse, snake, …)

– Intruder, unknown identity (should trigger video capture)

– Valuable objects, with RFID tags

• Probably the most important utility in many smart home applications

– Security system at day time, vacation or evening out

– Safety coverage for fire, earthquake or disaster events

– Babysitting safety assistance for toddlers and pets

– Senior citizen home care

– Energy saving for inactive house zones

flow@home - How

• Houses have heterogeneous sensors, WSN and Internet
– Motion
– Pressure (on chairs, floor, etc.)
– Light
– Infrared
– Temperature
– Audio
– RFID, cellphone, video
– Actuating devices
– etc.

• Use context and movement reasoning engine to collect,
reason and record data

• Data can be saved on home server (and cloud), accessed
(locally or remotely) with adequate authorization

A Usage Scenario, flow@home

• Smart Home with a collection of heterogeneous sensors
1. Sensor devices are distributed and installed (richly-populated initially)

2. Master polls, discovers and identifies connected devices

3. Master makes configuration plan according to app/user policy
specification and context information

4. Master reports/interacts with app/user to make deployment decisions

5. Additional sensors are installed if necessary (go back to Step 2 if
necessary)

6. App is started with operational WSN

Advanced Usage Scenario, flow@home+

• Smart Home deployed with new sensors for new mission
1. New sensor devices are added and new apps are ready to go

2. Master polls and identifies connected old and new devices

3. Master makes configuration plan according to app/user policy
specification

4. Master reports/interacts with app/user to make deployment decisions

5. New sensors are loaded with configuration settings, while some old
sensors are re-programmed with new code if necessary

6. App is started with an expanded WSN

flow@home – Policy Selection

• After sensors are physically installed, they can be used for
different purposes

• Depending on the scenario, users can set policies like:
• Senior safety
• Child safety
• Pet safety
• Disaster safety
• Vacation security
• Day and night time security
• Party event (adult, children)
• Energy saving

• We want to build the policy-driven self-configuration support
for heterogeneous sensors, for concurrent applications, under
different policies, at different times (context), for different
rooms, by different owners.

The sMAP Project (Dawson-Haggerty et al, Berkeley 2010)

Composition of Wireless Sensor
Networks for M2M

• Sensors:

– The inputs of the M2M networks

– Sampling the environment using analog/digital
devices

• (Wireless) communication:

– The transmission from the sensors to the
gateway/data collectors are mostly conducted via
wireless networks.

Processing platforms
• ST ARM Cortex-M3

Comm. tech.
• ZigBee, 6LoWPAN,

IEEE 802.15.4

• Bluetooth

• Wi-Fi

• GSM/GPRS

• Ethernet

• Sensor Network
Protocol (SNP)

• Satellite

Sensors
• Temperature

• Humidity

• Luminance

• Color

• Reflectance

• Pressure/Force

• Camera

• Optical Detector

• GPS

• Sound

• Accelerometer

• Gas (O2, CO2, CO)

• Hall effect

• Motion, presence, range (IR,
ultrasonic)

• Capacitive/inductive touch

• Gyroscope

• Compass

• …

Actuators
• Pulse Width Modulation

(Light, Motor)

• Switch, Relay

• Servo

• Alarm

Versatile Sensor Node

What sensors are mounted on the nodes?

11

temperature
21%

N axis
accelerometer

13%

light
10%

RGB LED
8%

humidity
6%

GPS
5%

acoustic / sound
5%

microphone
4%

N axis
magnetometer

4%

camera
4%

ECG
2%

irDA
2%

pressure
2%

LCD
2%

button
2%

switch
2%

motion
1%

photodiode
1%

seismic
1%

speaker
1%

ultrasonic sound
1%

vibration
1%

What to sense?

absorbed dose current density frequency mass sound intensity

absorbed dose rate direction gesture mass density specific energy

acceleration direction of motion GPS info molar energy specific entropy

activity dose equivalent heart rate molar entropy specific heat capacity

alcohol duration heat capacity molar heat capacity specific volume

altitude dynamic viscosity heat flux density moment of force step frequency

amount of substance electric charge humidity motion stress

amount of substance

concentration
electric charge density illuminance percentage substance presence

angle electric conductance image permeability surface tension

angular acceleration electric currency inductance permittivity switch state

angular velocity electric current irradiance plane angle temperature

area battery charge electric field strength kerma power thermal conductivity

blood glucose level electric flux density length presence time

blood oxygen level
electric potential

difference
location pressure torque

blood pressure electric resistance energy luminance proximity velocity

body fat percentage energy density luminous flux quantity of heat volume

capacitance entropy luminous intensity radiance wave number

catalytic activity exposure magnetic field strength radiant flux wind speed 12

Wireless communication

• Standardized wireless communication protocols
– IEEE 802.15.4 - Low Rate WPAN (PHY & MAC)

– ZigBee, 6LoWPAN, WirelessHART, Dash7, Wavenis …

– IEEE 802.15.1 – Bluetooth (BT 3.0 Low Energy Mode)

– IEEE 802.11x – Wi-Fi

– Other dedicated communication technologies
(Ethernet, GPRS, …) in WSN concept – gateways

• Proprietary wireless communication protocols
– Z-Wave, ANT, MiWi, SimpliciTI, DigiMesh …

13

Communication speed

- high data-rates (i.e. > 1000 bps) (Stargate)
- IEEE 802.11 units
- Adapted general-purpose computers (Wi-Fi routers)

- usually constant power supply

- adapted general-purpose computers (smartphones) and
embedded sensor nodes

- rapidly consume battery power

- medium data-rates (i.e. ~1000 bps) (Smart-its)
- Bluetooth radios

- usually do not require constant power supply and can last on battery
power for a while

- low data-rates (i.e. ~100-250 bps) (Sentio)
- data-rates lower than 100 bps (PushPin)
- data-rates of only few bps (SpotON)
- dedicated RF interfaces

14

CC24x
26%

CC10x
18%

Bluetoothx
14%

TR1000
11%

Xbeex
7%

nRFx
5%

802.11x
4%

AT86RF230
3%

ROK10100x
3%

TR1001
3%

wired serial
connection

3%IrDa
3%

Which communication modules and
frequencies?

0%
10%
20%
30%
40%
50%

315
MHz

433
MHz

868
MHz

915
MHz

2,4
GHz

Communication modules

frequency bands distribution

15
Overview as of May 2010

Programming Sensor Nodes

‒ tool chain: IDE, compiler, debugger
‒ microcontroller is programmed and executes the

code
‒ radio chip is not programmed, but controlled by

microcontroller, usually via SPI which sets/reads
registers

‒ compiled code is loaded to the microcontroller using
bootloader or JTAG

‒ protocol stack may be precompiled and available
through API or available as library

‒ operating system (not needed for simple tasks)
‒ virtual machine (optional)

16

CSE 291 Sensor Networks –
Andrew Chien 4/22/2003

Maté Overview

• TinyOS component

• 7286 bytes code, 603 bytes RAM

• Three concurrent execution contexts

• Stack-based bytecode interpreter

• Code broken into 24 instruction capsules

• Self-forwarding code

• Rapid reprogramming

• Message receive and send contexts

Classification by processing and
communication capability

- 125 types of sensor nodes identified in
research community

- 118 types of processing units
- the most popular microcontroller (Atmel ATmega128L, 8 bits)

- the most popular DSP (Coolflux DSP NxH1200, 24 bits)

- FPGAs are exceptions (Xilinx XC3S200 Spartan-III)

- 112 types of communication interfaces
- the most popular radio frequency communication module (TI / Chipcon

CC2420, 2.4 GHz)

- the most popular optical communication module (IrDa transceivers)

19
Overview as of May 2010

Which processors and how advanced?

Processing units

8-bit
50%

16-bit
23%

24-bit 3%

32-bit
10%

32-bit ARM
14%

Architectures

20

ATmega1281
7%

Intel
StrongARM

SA-1100
9%

ATmega103L
9%

CC1010 (8051)
9%

MSP430F149
15%MSP430F1611

15%

ATmega128L
36%

Overview as of May 2010

CSE 291 Sensor Networks –
Andrew Chien 4/22/2003

Sensor Network Programming Requirements

• Small (fit on Motes)

• Expressive (lots of applications)

• Concise (programs short for memory and network
bandwidth)

• Resilient (don’t crash the system)

• Efficient (in sensing and communication)

• Tailorable – for application-specific operations

• Simple – in-situ, fast, “autonomous” programming

CSE 291 Sensor Networks –
4/22/2003

Maté Overview, Continued

• Three execution contexts

– Clock, Receive, Send

• Seven code capsules

– Clock, Receive, Send, Subroutines 0-3

• One word heap
– gets/sets instructions

• Two-stack architecture

– Operand stack, return address stack

MIDDLEWARE

• Is a software layer which provides an abstraction of whatever
lies under for use by whatever lies above.

• Under the middleware can lay hardware resources of various
types or software resources such as firmware, drivers and
sometimes also the operating system.

• “The main purpose of middleware for sensor networks is to
support the development, maintenance, deployment, and
execution of sensing-based applications”1

1Hee-Jin Jeong, Choon-Sung Nam, Dong-Ryeol Shin, "Design and Implementation of Middleware in Sensor Networks Using

Publish/Subscribe Model," IEEE International Workshop on Semantic Computing and Applications, 2008 . 24

Middleware Usage

25

TinyOS
37%

C
11%

Linux -
embedded,

µC …
11%

MantisOS
7%

NesC
7%

SOS
6%

Contiki
5%

Smart-its
4%

eCOS
3%

FreeRTOS
3%

RETOS
3%

Windows CE
3%

Summary for M2M Application
Deployment on WSN

• M2M applications have historically been built with a strong coupling
among applications and the underlying network infrastructure.

– The application-dependent approach is justified by the need to
achieve energy efficiency and performance optimization.

• But these applications not only are difficult to develop, but also often
result in rigid systems, with M2M’s specifically designed to particular
scenarios and unique target environments.

• Such an approach is not desirable, considering the costs of the
infrastructure deployment, the long operational lifetime of the network,
and its potential capability of serving many, concurrent applications.

• We are far from Rapid Application Development (RAD) for M2M.

– There is very little software reuse from one WSN to another WSN.

Project Goal: Self-X M2M

• The objective is “zero-cost deployment” (i.e., cost refers to human effort)

• Problem: manual effort is often the bottleneck in large-scale
deployment and long-term sustainability of M2M systems in the field.

• Proposal: Users of M2M systems do not need to learn how and where
to deploy sensor nodes.

• The project is to provide an intelligent and responsive M2M framework

• Self-X stands for self-configuration, -protection, -healing, and -optimization for
sensor nodes and gateways.

• Based on user-defined policy and context, the proposed middleware
services automatically perform sensor node and M2M configuration,
application deployment, fault handling, and system reconfiguration.

= configuration, protection, healing, optimization

Wu-Kong :
A Classical Chinese Epic Hero

• Sun Wukong (悟空), also known as the Monkey King, is a heroic character in
the classical Chinese epic novel Journey to the West (西遊記). In the story,
he is a monkey born from a stone who acquires super powers through many
masters. He later becomes a loyal personal guard for a monk going to the
Western heaven to receive the sacred Buddhism scripture.

• Wukong knows 72 transformations, which allow him to transform into
various animals and objects
– he has trouble, however, transforming into other people, because he is unable to hide his

tail when excited.

• His hair has magical powers. Each can transform into a clone of the Monkey
King himself, or various subjects, weapons, or animals.

• Wukong uses a versatile golden-banded staff (如意金箍棒), which could
change its size, multiply itself, and fight according to the whim of its master.

• Wukong rides on a cloud that can travel at an extremely high speed,
bringing him virtually anywhere at any time.

Wu-Kong : Literally, …

• 悟 (Wu): enlightened

– For our project: intelligent

• 空 (Kong): vanity

– For our project: virtual middleware

• The project is to build an Intelligent Virtual Middleware for
M2M, that can

1. recognize and adapt to context and user demand;

2. configure or transform devices into service components;

3. deploy the most powerful yet least expensive solutions;

4. do all of the above without physically access sensors.

M2M Application Areas

30

Agriculture

eHealth

Sport

Military

Environmental monitoring

Smart House

Smart office and factory

Transportation

Logistics

Advertising

Social Networks
Marketing

Security

Safety

Emergency

Smart infrastructures

Lighting

Electricity

Water

Gas

Wu-Kong: User Perspective

User

App (on Cloud)

Gateway

Master

Sensor Nodes

Human

Broadband

Wireless

Communication Media

User (naïve and demanding)

•Sends the request (via some user

interface) to apps

•Defines context and high-level policy

Apps (running on user device and/or cloud)

- Interact with user

- Have access to unlimited computing

power and intelligence

Master (coordinator for WSN)

•Has computing power to make

coordination decisions

•Connect WSN to outside (as one of

the Gateways)

Nodes (sensor devices)

•Physical world sensing and actuating

•Need only limited computing power to

sense/send dataGateway (Cohort for Master)

- provides extra computing/connection

- provides backup coordination

Roles, Questions, Challenges

• User (intuitive)

– How do users define context and high-level policy?

– Can WSN trust a user and vice versa?

• Apps (concurrent)

– How do they use, reuse and share sensors?

– How do users start, pause and kill (if incompatible) apps?

• Master (intelligent)

– How does it know about & control heterogeneous sensors?

– What‘s the tradeoff between complexity and effectiveness?

• Nodes and network (efficiency)

– Would it be powerful enough to do all that?

– How do we handle run-away sensors or network blackout?

Project Innovation: Tri-Framework

• Profile Framework (abstraction for heterogeneous nodes)

– Device classes (capabilities): discover, share and control

– Heterogeneous and virtual sensor sharing

• Policy Framework (intelligence for M2M management)

– Configuration decision and constraint optimization

– Configuration <-> fault tolerance, security, trust

• Distributed Framework (embedding WSN in cloud)

– Sensor to Master to cloud distribution and coordination

– WSN cloud for application access anywhere, anytime Policy

DistributedProfile

Profile Framework

• Abstraction for heterogeneous WSN nodes so that Master can discover,
access and control them

• Related work: uPnP (2006), DPWS (2006), WSDD (2008), TinyDB (2005),
sMAP (SenSys 2010)

– Range of works from detailed description of device services to simple sensor
access protocol

– WSDD defines a lightweight version of DPWS

– sMAP defines a RESTful interface for universal device access

• Complexity and message size are critical for WSN

• We plan to study how to implement sMAP without HTTP

sMAP
details

Policy Framework

• High level specification for M2M management

– User or app defines an intuitive objective statement

– Policy interpreter and configuration engine produce the detailed setup for
target systems, enabling higher-level thinking/coding

– By specifying policies declaratively and independent of actual devices, it is
possible to change the behavior on-the-fly for better flexibility.

• Related work: Security (SPF), OS Policy, Ponder/Ponder2 (2001/2006), DSN
(SenSys 2007), ADAE (SenSys 2010)

• Configuration and constraint satisfaction engine can take many attributes
(e.g. context, fault tolerance, security, trust) into consideration for a better,
more optimal performance

• Policy IDE, interpreter and context support are needed

Policy
details

Distributed Framework

• Use cloud as part of M2M

– Sensor <-> Master <-> cloud connection and migration with least
energy consumption

– Security, privacy and trust management across node domains

– Need to consider both efficiency, energy and security

– Related work: SpartanRPC (2010), SC3 for u-Life (Korea)

• Embedding WSN in cloud

– Sensor-cloud for applications to access sensors anywhere, anytime

– Service-oriented composition by selecting sensor services from sensor-
cloud

– Need energy and sharing consideration

– Related Work: sMAP (2010), LiveE! (Japan), NWSG (Singapore)

Self-X capabilities
WSN composition/reconfiguration
Fault diagnosis
Security policy

KONG Virtual Middleware
(Knowledge, Operation, and Network Gears)

N
et

w
o

rk

Sensor Network
Distributed coordination

O
p

e
ra

ti
o

n
K

n
o

w
le

d
ge

W
SN

U

n
le

as
h

e
d

Sensor device profile
Policy and fault detection
In-situ update & upgrade
Security/trust keys

Mate

ADAE

Llama

LancesMAP

Cloud Applications
IDE Tools
User Services
Context and policy reasoning

Sensor Networks

QOS Workflow

Reasoning

engines

SOA

Protocol stacks

CrossbowIntel
Taroko

Cotex

Octopus Arduino
Heterogeneous sensor nodes

context

Runtime predicate handling

Virtual Devices, Data SetG
e

ar
s

KONG
WS-DD

TinyDB

OASiS

Issues on Virtual Middleware

• Lots of work on Virtual Machine on WSN: Darjeeling(2009),
SwissQM(2007), PyMite, etc.

• Trade-off between overhead vs. simplicity & flexibility they provide

• VM is justified since WSN will evolve, be cheaper yet more powerful, but
in critical needs of flexibility and intelligence

• Advantage: Code size and programming flexibility

• Define high-level primitive/policy/abstraction

• Simpler programming process

• VM code smaller than native machine code

• Reduce distribution, energy costs for software updates

• Disadvantage: Execution overhead

• Increased time and memory requirements for execution

• Increased energy spent in interpreting the code

38

Self-X Support

• Configuration protocol needed for the following phases:
– Detect

– Identify

– Setup

– Deploy

• Self-X includes configuration, protection, healing, optimization
– Will work with other SIGCAM projects on security, trust, data mining

to support self-protection and self-healing

– Will work with other SIG’s on energy and communication optimization

Master Workload Consideration

• There is one Master for each application but many gateways

• There are many sensor nodes, with heterogeneous computing power,
sensor capabilities, and connectivity

• Multiple applications may want to share sensor node data:

– may require one sensor to have different configurations, each for a specific
application

Option 1: master node will translate/convert raw sensor data into app-specific
data

Option 2: some gateways or powerful sensor nodes may share the conversion
workload for a subset of sensors and act as their shadow sources

Handling Faulty Master

• Faulty Mater detection & recovery will be conducted by other
gateways using distributed fault detection protocols
– Depending the type of faults (omission, …, byzantine), fault-handling

protocols may be simple or sophisticated, cheap or expensive

– At UCI, we have built the Llama project with faulty monitoring agents
and diagnosis reasoning engine on ESB for SOA

• Configuration decisions will be kept on a backup location for
ease of recovery, either on a secondary gateway, or cloud
server, or both

Programming and In-situ Update

• Load/re-load applications as structures of high-level primitives
utilizing lower level VMW gears

• VMW supports efficient programming primitives
– Including a bootloader that is responsible for VM upgrade

– Different VMW classes support progressively powerful gears

• Related work: Maté (2002), SOS (2005)

Research issues

• How to use WSN to access/check all sensors

• Intuitive and consistent user policy specification

• Context and movement reasoning engine

• Real-time trigger and actuator support

• Normal and abnormal event identification

• Reprogramming and deployment transition

• Privacy, safety, security, and convenience tradeoffs

• Many other issues …

