

Flexible Spectrum Management for M2M Wireless Networks

Hsuan-Jung Su and Hung-Yun Hsieh Graduate Institute of Communication Engineering National Taiwan University

November 16, 2011

Large amount of machines

- Spectrum demand per unit area is high
- Network access could be a problem
- Heterogeneity
 - Machine size and complexity
 - Communication demands
 - Mobility
 - **>**....
- Local correlation
 - Correlated observation
 - Correlated radio environment

INTEL

Wireless is better

- No need for so many wires
- For mobile devices
- Easier configuration
- Problems
 - Not enough spectrum
 - Coexistence issue
 - Interference in the environment
 - Interference mitigation
 - Heterogeneous communication behaviors
 - Signal pattern design
 - Spectrum management

Human communication is not always active

- Recent technology: cognitive radio
- Correlated observation
 - Distributed coding
- Local data aggregation points
 - Analyze and buffer data reduce traffic
 - Reduce machine power
 - Frequency reuse
- Interference management
 - Distributed interference alignment

Ongoing Wireless M2M Efforts

- WAN: LTE, WIMAX
 - Optimized for human-to-human (H2H) applications
 - Not able to support large number of machines in limited spectrum
 - New efforts initiated
 - LTE-Advanced: Machine Type Communications (MTC)
 - WiMAX 2.0: IEEE 802.16p
- LAN and PAN: WiFi, Bluetooth, Zigbee
 - Can/already handle M2M applications
 - Work in a small area, not scalable to large area
 - New efforts: IEEE 802.11ah (long range)
- Still need to design
 - Flexible spectrum usage
 - Supporting large number of machines with backward compatibility
 - Considering machine behaviors and correlated observation
 - Efficient frequency reuse

Clustering

mitigation

Frequency reuse Decentralized opportunistic access Flexible waveforms and frequency reuse Distributed coding Interference

Machines form smaller clusters and transmit to "cluster heads".

- Short range, power saving, frequency reuse.
- Cluster heads perform multi-hop transmission to the data collection center.
 - Scalable, not dependent on or limited by the fixed wired spots.
- Machines sense to avoid interfering or being interfered by H2H communications.
 - Decentralized spectrum access, interference off-loading.
- Comparable to the concept of traffic off-loading in the nextgeneration cellular networks to deploy smaller pico or femto cells.
 - Clustering is more flexible, does not need network planning.

- Consideration of correlated observation
 - Lower transmission power and spectrum in the same cluster
- "Umbrella clusters"
 - Reduce frequency of handover
 - Easier waveform design

Low mobility clusters High mobility cluster

Consideration of ambient noise/interference

Spectrum map

- Consideration of good interference mitigation techniques
 - Increase multiplexing gain per unit

- Fixed configuration of time slots, subcarriers, or orthogonal codes as resource blocks (RB) are not flexible enough, and can not handle different interferences and device mobility well.
- Flexible radio resource division
 - E.g., wavelets as basis functions (wavelet packet division multiplexing)

Impulse interference affects many subcarriers, narrow band interference affects many time slots, But they only affect one RB in WPDM.

Conventional reuse

- ► Whole cell, whole spectrum reuse
- Partial cell, partial spectrum reuse

- For dense networks in a small area, especially operating at very high frequency and wideband, the reuse pattern depends on not only distance but also frequency.
- A more flexible approach
 - Interference sensing based per RB reuse.

Distributed source coding for correlated data.

Wyner-Ziv Coding: source coding with receiver side information

Distributed channel coding for spatial diversity

Inter-cluster interference mitigation to achieve high multiplexing gain per unit area

- Soft frequency reuse, adaptive frequency reuse
- Coordinated transmission/scheduling
- Interference alignment and cancellation
- Machine-human interference
 - Interference sensing and opportunistic access

- Exemplary scenario: Smart electric meters
- Baseline system 1: random access channels (RACH) [1]
 - PRACH Configuration Index 6 in LTE
 - 200 RACH opportunities/s/preamble
 - H2H usage is 90% (peak hours, office buildings) and has higher priority
 - On average 6.4 preambles accessible by machines (1280 RACH opportunities/s)
 - 1% collision probability can support 12.8 RACH intensity
 - Can support max 3840 meters with 5 min reporting periodicity
 - When the meters are synchronized within 10s, can only support 128
 - Both numbers are much lower than 35670, the number of meters in a 2km macro cell in urban London

[1] "Study on RAN Improvements for Machine-type Communications," 3GPP TR 37.868, Sep. 2010.

Baseline system 2: pico or femto cell deployment

- Assume wired connection is available wherever a pico or femto BS is deployed.
- No interference sensing and opportunistic access. 90% spectrum pre-allocated to macro cell, and 10% pre-allocated to pico or femto cells.
- Simulation settings
 - AWGN: -100 dBm
 - Path loss (dB) = 130.19 + 37.6 * log(R)
 - SNR requirement for machines: 5 dB
 - SNR requirement for machines for H2H: 10 dB
 - Frequency reuse one (perfect interference mitigation) for pico, femto cells and for clusters
 - Machines have correlated data. Distributed coding reduces 3dB transmission power.

H2H is uplink power controlled.

Machines will interfere the BS if the BS is covered by the interference radius of a cluster (including a safe margin for another 20dB attenuation) H2H will interfere the machines in a cluster/ (0, 0)(x, y) if the cluster is within its r_i d interference radius $(\overline{x_i}, y_i)$ (dashed circle)

INTEL NTU CCC SIGARC

Tx power (dBm)	-3	0	32	35	46.5
Cluster radius (km)	0.0965 (Dist. coding)	0.1159	0.8225 (Dist. coding)	0.9884	2 (Baseline 1)
Number of machines (Baseline 2)	429.54X	297.78X	5.92X	4.09X	X (=3840 or 128)
Number of machines	625.7X	433.6X	8.7X	6X	-

- Clustering and interference mitigation increase the number of machines exponentially.
- Sensing and opportunistic access improve another 40%-46%.
- Distributed coding improves another 44%.

INTEL NTU C

Tx power (dBm)	-3	0	32	35	46.5
Cluster radius (km)	0.0965 (Dist. coding)	0.1159	0.8225 (Dist. coding)	0.9884	2 (Baseline 1)
Number of machines (Baseline 2)	429.54X	297.78X	5.92X	4.09X	X (=3840 or 128)
Number of machines	600.5X	416.2X	8.3X	5.8X	-

Similar performance improvements as the uplink scenario.

- Are cellular systems good platforms for supporting M2M communications?
- Pros and cons of dedicated resource (channels) vs random access.
 - Depends on machine traffic model.
 - How does data aggression or buffering help?
- How to form machine clusters?
 - Location based, mobility based, application based?
- Is interference alignment really applicable?