CODING AND ANALYSIS SUBSYSTEMS OF DISTRIBUTED VIDEO SENSORS

Shao-Yi Chien (簡韶逸) Media IC and System Lab

2011/12/07

OUTLINE

- Background
- Coding subsystem of distributed video sensors
- Analysis subsystem of distributed video sensors
- Discussion

BACKGROUND

Newly introduced technologies

- Cloud computing
- M2M network
- Internet-of-Things
- Advanced computer vision/pattern recognition/machine learning technologies
- Large-scale data analysis

BACKGROUND

 Billions of objects or machines are connected and interact with each other without human intervention

Intel: 15 billion connected and intelligent devices by 2015

BACKGROUND

 The future of wireless technologies from Berkeley Wireless Research Center (BWRC)

The Birth of Societal IT Systems*:

Looking Beyond the Devices

Complex collections of sensors, controllers, compute and storage nodes, and actuators that work together to improve our daily lives

*Also known as SiS

NTU'S VISION ON M2M: CAT

- Machines that collaboratively
 - Capture the data from surroundings
 - Analyze the collected information
 - Take appropriate action
 - before human reaction

Machines that talk to each other and collaborate with each other

DISTRIBUTED VIDEO SENSORS

- The growth of distributed video sensor deployment
 - Surveillance camera
 - Mobile phones
 - Video sensors on cars
 - Distributed sensors
- M2M network with video sensor nodes -- Eyes of M2M Networks
- How to

store/access/analysis this large amount of content?

CODING AND ANALYSIS SUBSYSTEMS OF DISTRIBUTED VIDEO SENSORS

SIGGSP

S.-Y. Chien C.-H. Lee

PI: Prof. Shao-Yi Chien Co-PI: Dr. Chia-han Lee Sponsor Technical Champions: Dr. V Srinivasa Somayazulu Dr. Yen-Kuang Chen

VIDEO SENSOR NODE FOREVER

An improvement of 3X power efficiency is expected to enable perpetual video sensor nodes

POSITION IN SIGGSP

Intelligent Sensor Node (iSensor) Structure

EYES OF M2M NETWORKS

M2M network with video sensor nodes

 Low power video coding and analysis techniques are the target of this project

CODING SUBSYSTEM OF DISTRIBUTED VIDEO SENSORS

COMPRESSION IS NECESSARY!

- For 640x480 RGB 30fps video from 10 video sensors
 - 640x480x24x30x10=2.2Tbps!

IMAGE SEQUENCE MODEL

CONVENTIONAL HYBRID VIDEO CODING PROCESS

BASIC VIDEO CODING FLOW

DECODING BLOCK DIAGRAM

Decoder

Codec=Encoder+Decoder

STAGE 1 -

REDUCING TEMPORAL REDUNDANCY

- Segment a frame into macroblocks
- Compensate motion and remove temporal redundancy
- Output energy is related to the degree of temporal redundancy

STAGE 2 -REDUCING SPATIAL REDUNDANCY

- Processing the difference frame (spatially correlated) from stage 1
- Usually using DCT coding
- This stage is Intra-frame coder
- The method by these two stages is Hybrid coding method

CONVENTIONAL VIDEO CODING

Ref: Shao-Yi Chien, Yu-Wen Huang, Ching-Yeh Chen, Homer H. Chen, and Liang-Gee Chen, "Hardware architecture design of video compression for multimedia communication systems," *IEEE Communications Magazine*, vol. 43, no. 8, pp. 122–131, Aug. 2005.

CHARACTERISTICS OF CONVENTIONAL VIDEO CODING SYSTEMS

- Good coding performance
- Complex encoder and simple decoder
- Close-loop coding system
- Not robust over noisy channel

• Suitable for M2M networks?

NEW PARADIGM ---DISTRIBUTED VIDEO CODING (DVC)

- Distributed compression refers to the coding of two (or more) dependent random sequences.
- Special case of distributed video coding
 - Compression with the side information

FUNDAMENTAL OF DISTRIBUTED SOURCE CODING

- Slepian-Wolf Theorem
 - Separate convention encoder
 - Rx \geq H(X) , Ry \geq H(Y)
 - With jointly decoder
 - $Rx + Ry \ge H(X,Y)$
 - o $Rx \geqq H(X \,|\, Y)$, $Ry \geqq H(Y \,|\, X)$

SOURCE CODING METHOD

- Channel Coding
 - LDPC , Turbo Code
- - X: source, Y: side information
 - We use systematic channel code to generate parity bit to protect X
 - Treat Y as the received signal with noise
 - Perform error-correction decoding
- The compression is achieved because only the parity bits of the error correction codes are sent to the decoder

Wyner-Ziv & Slepian-Wolf Coding

- Slepian-Wolf Coding
 - Channel coding (turbo code , LDPC)
 - Encoder only transmits the parity bits to decoder

- Pixel-Domain Encoding
 - Key frame
 - Coded using conventional intra frame
 - Wyner-Ziv frame
 - $\bullet\,$ Each pixel is uniform quantized with 2^{M} intervals
 - Intra frame coded but Inter frame decoded
 - Splepian-Wolf coder
 - Rate-Compatible Punctured Turbo code (RCPT)
 - Request-and-decode process

Pixel-Domain Encoding – Block diagram

Ref: B. Girod, A.M. Aaron, S. Rane, D. Rebollo-Monedero, "Distributed Video Coding," *Proceedings of the IEEE*, vol.93, no.1, pp.71-83, Jan. 2005

29

Transform-Domain Encoding

- Conventional coding
 - Transform spatial data into spectral data
 - Ex: DCT , KLT , Wavelet ,etc
- Perform blockwise DCT to Wyner-Ziv frame
 - Decoder would get side information (spectral) from previous frames
 - A bank of turbo decoders reconstructed the qauntized coefficient bands
 - Each coefficient band is reconstructed with the side information

Transform-Domain Encoding

STATE-OF-THE-ART DVC: DISCOVER CODEC

32

Ref: Chieh-Chuan Chiu, Shao-Yi Chien, Chia-han Lee, V. Srinivasa Somayazulu, and Yen-Kuang Chen, "Distributed video coding: a promising solution for distributed wireless video sensors or not?" in *Proc. Visual Communications and Image Processing 2011*, Nov. 2011.

ANALYSIS OF EXISTING DVC SYSTEMS

- Analysis environment
 - DISCOVER codec
 - Improved frame interpolation with spatial motion smoothing
 - Online correlation noise modeling
 - LDPCA for syndrome coding
 - Conditions
 - Sequences: Foreman, Coastguard, and Hall Monitor
 - Resolution: CIF at 30Hz
 - Q tables from DISCOVER
 - GOP is 2 for DVC, and GOP is 30 for H.264/AVC SP

RATE-DISTORTION PERFORMANCE

Foreman

RATE-DISTORTION PERFORMANCE● Hall Monitor

POWER CONSUMPTION ANASLYSIS

- System power consumption is modeled as
 - P_{total}=P_t+P_c+P_s, where P_t: transmission power, P_c: coding power, and P_s: sensor power

• Two test platforms:

- ASIC-based solution in 65nm technology
- Processor-based solution with Intel ATOM Z530 processor

PRELIMINARY POWER ANALYSIS RESULTS

• ASIC-based sensor node

PRELIMINARY POWER ANALYSIS RESULTS

• Processor-based sensor node

MUCH BETTER ERROR ROBUSTNESS

Ref: R. Puri, A. Majumdar, P.Ishwar, and K. Ramchandran, "Distributed Video Coding in Wireless Sensor Networks," *IEEE Signal Processing Magazine*, July, 2006

ANALYSIS SUBSYSTEM OF DISTRIBUTED VIDEO SENSORS

VIDEO ANALYSIS ALGORITHMS

Background Model

Rank 1 Rank

Rank 61 Rank 62 43

VIDEO ANALYSIS ALGORITHMS

2006年旺宏金矽獎優等

REDUCE THE TRAFFIC LOAD WITH SEMANTIC LEVELS

Frame # 1116

Frame # 660

Ref: Shao-Yi Chien and Wei-Kai Chan (2011). Cooperative Visual Surveillance Network with Embedded Content Analysis Engine, Video Surveillance, Available from: http://www.intechopen.com/articles/show/tit le/cooperative-visual-surveillance-networkwith-embedded-content-analysis-engine

46

VIDEO ANALYSIS ALGORITHM FOR SINGLE CAMERA

Ref: Shao-Yi Chien and Wei-Kai Chan (2011). Cooperative Visual Surveillance Network with Embedded Content Analysis Engine, *Video Surveillance*, Available from: http://www.intechopen.com/articles/show/tit le/cooperative-visual-surveillance-networkwith-embedded-content-analysis-engine

WHAT WE HAVE DONE

Algorithm/hardware architecture design for single smart camera

[CICC2011] (1157.82 GOPS,197 mW @90nm process)

Fixed Cameras

Ref: Chih-Chun Chia, Wei-Kai Chan, and Shao-Yi Chien, "Cooperative surveillance system with fixed camera object localization and mobile robot target tracking," in *Proc. Pacific Rim Symposium on Advances in Image and Video Technology (PSIVT 2009)*, pp. 886 - 897, Tokyo, Japan, Jan. 2009.

(c)

(b)

(c)

(d)

(c)

(d)

SUMMARY

SUMMARY

- Our target: distributed video sensor nodes with low power consumption
- DVC seems a promising solution for the coding subsystems of distributed video sensors
 - It surprisingly shows that the power consumption of DVC-based systems is not as low as people usually thought
 - The R-D performance of DVC should be further improved
- Better system efficiency can be achieved with integrated video analysis engine
 - How to distribute the workload of video analysis?
- Trade-off analysis plays an important role for this project

DISCUSSIONS

• Possible applications with distributed video sensors?

Possible applications with perpetual distributed video sensors?

• Any other solutions to reduce the power consumption?