

Tsung-Hsien Lin

Introduction

- A <u>wireless</u> <u>sensor</u> <u>network</u> (WSN) gathers information through densely distributed nodes
- Each smart sensor node contains multiple functions: sensing, signal processing (computing), networking, communication, etc.

- *Twister* (starring Bill Paxton and Helen Hunt as tornado chasers, 1996): in the movie, the scientists tried hard to place numerous small wireless devices into a F5 tornado to collect data. Well, that's the idea!
- *i-Robot* (Will Smith, 2004)

Applications

- Situation awareness
 - Biomedical monitoring
 - Environmental monitoring (上石流監控)
 - Building control
 - Home security
 - Automobile monitoring/control
 - Manufacturing automation
 - Condition-based maintenance
 - Battlefield application

Home/Building controls

Industrial controls

Sensor Network Characteristics

- Characteristics
 - Dense distribution
 - Each node must be <u>low power</u> (average power or energy), <u>low cost</u>, and <u>compact</u>
- Approaches for low-power
 - Low duty cycle operation
 - sensor nodes are in sleep mode most of the time
 - Short-distance multi-hop communication
 - Short-range and low bit rate communication provide link budget advantage, reduce radio power consumption
 - In-node signal processing ⇒ analyzed information is conveyed in the form of short message rather than large amount of raw data
 - Collaborative decision making with neighboring nodes (the <u>sniper</u> <u>detection system</u>)

Low-duty Cycle Operation

- Information is provided only when,
 - Scheduled
 - Requested
 - **Triggered** (after something happened)
- Mainly refer to the communication module, the sensing module may be continuous (depends on the applications)

- Free space condition rarely exists
- For a practical "dⁿ-model" (n: loss exponent), n is larger than 2

• Must also consider networking overhead and repeaters

Link Budget

- The receiving device must have sufficient signal-to-noise ratio (SNR) in order to properly retrieve the data.
- The goal is to analyze the link between point **A** and **B**, and see if a proper SNR can be achieved.

- Distributed computation

Energy Sources

- Power is supplied by compact batteries (such as Li cells) or scavenged from environment
 - Batteries
 - Rated current capacity: define the <u>peak current</u> allowed for the node (drawing higher current than the rated value leads to a reduction of battery life)
 - Relaxation effect: the idle period allows partial capacity recovery of batteries; favor <u>duty-cycle operation</u>
 - Scavenged from environment (essential in certain M2M applications)
 - MEMS micro-vibrator
 - Piezoelectric bi-morphs
 - Photovoltaic
 - RF induced energy
 - Typically, require efficient regulators for practical use

Sensors - MEMS

- Various sensing principles can be applied
 - Capacitive
 - Piezoresistive, piezoelectric
 - Thermal (TC), pyroelectric, thermoelectric, thermal expansion
 - Hall effect
 - Sound waves
- MEMS sensors: as physical size shrinks, sensor performance often degrades, but frequency response is usually improved
- Mature MEMS products
 - Airbag accelerometer
 - Blood pressure monitoring sensors
 - Inkjet printer head

Sensors - Electronics

- Use electronics (circuits) to sense
- Electronic sensors
 - Temperature sensor
 - Standard CMOS process provides certain bipolar devices
 - Image sensor
 - Require some process modification to improve photonresponsivity and reduce dark current
 - Ranging/location sensor (UWB)
 - Radar

Example: Temperature Sensor

- Measure chip temperature or approximate ambient temperature if the chip itself generates little heat
- Based on the temperature dependence of V_{BE} and ΔV_{BE}
- Compare a PTAT current with a BG current to measure temperature (CTAT?)
- Parasitic lateral bipolar devices compatible with CMOS processes

Interface Circuitry

- The desired signal is usually weak with large background noise
- Flicker noise and offset in CMOS circuits
- Sensor interface circuits in general require <u>low noise</u>, <u>high</u> resolution, <u>high dynamic range</u>, and <u>low power</u>
- Examples
 - Low-noise amplifiers
 - Logarithmic response circuits
 - Readout circuitry for photo-detector
 - Measurement circuitry for capacitive sensors
 - Noise and offset reduction techniques
 - Auto-zeroing technique
 - Chopper stabilization
 - Delta-sigma converters

Logarithmic Response Circuits

• Sometimes we do not want a linear response from an op amp circuit. For example, what if we want the output voltage to represent the natural logarithm of the input voltage?

Tsung-Hsien Lin

Tsung-Hsien Lin

•

Digital Signal Processing

- DSP digests raw data into information ⇒ send less bits over radio
- Desired information ranges from <u>event detection</u> to <u>event</u> recognition
- Several approaches for information extraction (classification)
 - Time domain
 - threshold detection
 - correlation
 - Frequency domain
 - filter banks
 - spectrum analyzer (FFT or swept analyzer)
 - Time-frequency domain
 - Wavelet
 - Hilbert-Huang transformation

Wavelet, HHT

- The <u>wavelet</u> is a wave-like oscillation with an amplitude that starts out at zero, increases, and then decreases back to zero. It can typically be visualized as a "brief oscillation" like one might see recorded by a seismograph or heart monitor. Generally, wavelets are purposefully crafted to have specific properties that make them useful for signal processing.
- The <u>Hilbert–Huang transform (HHT)</u> is a way to decompose a signal into so-called intrinsic mode functions (IMF), and obtain instantaneous frequency data. It is designed to work well for data that are non-stationary and nonlinear. In contrast to other common transforms like the Fourier transform, the HHT is more like an algorithm (an empirical approach) that can be applied to a data set, rather than a theoretical tool

HHT Applications

●哈佛醫學院用 HHT 來測量心律不整

●約翰霍普金斯公共衛生學院用它來測量登革熱的擴散

●美國聯邦調查局用 HHT 來辨識發言者的身分

●海軍用它來探測潛艇

●聯邦公路管理局研究中心測量公路、橋梁的安全

●地震工程、地球物理探測、衛星資料分析

●潛艇設計、結構損害偵測

●血壓變化和心律不整

●潮汐、波浪場等各項研究

(Ref: 謝志敏教授)

Tsung-Hsien Lin

Low-Power Digital Circuits

- Performance metrics: power, energy, energy-delay product
- Power consumed by digital circuitry can be classified into static, dynamic, and leakage parts
- Static: typically not significant $(I_{DC} \times V_{DD})$
- Dynamic: switching activities ($\propto f C V_{DD}^2$)
 - Lowering clock frequency
 - Reducing capacitance
 - Dynamic voltage scaling (V_{DD} and voltage swing)
- Leakage: gate leakage and substrate leakage
 - Device selection
 - Require low-leakage design methodologies

Wireless Connectivity

- Wireless interface options
 - Wi-Fi (WLAN, IEEE 802.11 a/b/g/n)
 - Bluetooth (IEEE 802.15.1)
 - UWB (IEEE 802.15.3)
 - Zigbee (IEEE 802.15.4)
 - WBAN (IEEE 802.15.6)
 - IEEE P1451.5
 - Proprietary solutions
- Some issues in selecting wireless standards for a low-power sensor network
 - Communication overhead
 - Latency requirement

Proprietary Wireless Solution

- Issues:
 - Frequency band: unlicensed ISM bands
 - Modulation scheme: constant envelop modulation
 - Data rate: higher data rate tends to be more power hungry, but too low may not be beneficial
 - Dynamic modulation scaling
 - Diversity (spatial/time/frequency) approaches
 - Multiple access schemes (TDMA, FDMA, CDMA, etc.)
 - Duplexing schemes (TDD, FDD)
 - Equalization
 - Coding

Low-Power Radio

- Short distance and low bit rate relax the link budget
- Low power radios
 - Transceiver architectures
 - Picoradio (UCB)
 - Super-regenerative
 - Impulse radio
 - Conventional architectures
 - Fast startup
 - Low-power circuit techniques
 - Mixed-mode calibrations
 - Low-drift low-power oscillator (low frequency)
 - Integrate (or inexpensive off-chip) high-Q components
- Average power consumption is likely dominated by the frequency synthesizer rather than the PA

Networking

Passive Components

- Other than conventional passive components (Rs, Ls, and Cs) available in standard processes, alternative technologies may provide performance advantage in low-power design. Several component candidates are:
 - SAW (surface acoustic wave)
 - FBAR (film bulk acoustic resonator)
 - MEMS
 - LTCC (low-temperature co-fired ceramic)
 - Discrete chip components
- Tradeoffs among design complexity, performance, integration, and cost are to be studied

MEMS/NEMS

- MEMS <u>Micro-Electro</u>Machanical <u>Systems</u>
- Technologies:
 - Surface micromachining
 - Bulk micromachining
 - LIGA
- Research areas:
 - RF-MEMS
 - Optical-MEMS
 - Bio-MEMS (Protein sensor; Prof. 黃榮山)
- NEMS <u>Nano-Electro</u><u>Machanical</u> <u>Systems</u>

System Integration

- System-on-a-chip/System-in-a-module/System-in-a-package
- One example: LTCC integration
 - Low loss substrate, high quality conductor
 - Not a good thermal conductor (not a main concern for low power)
 - Suitable for implementing passives such as, balun, matching network, loop filter, antenna and T/R switch

- Multiple research disciplines involved
- Require research efforts from system/network level all the way to circuit/component design
- Various applications
- Potential industrial interests
- An important link to bio-medical research

Sensor Network Related Research Activities

- Many research organizations have some sort of sensor network projects going on, each with different emphases. The project (or research group) acronyms are shown in parentheses.
 - UCB (Smart Dusts, Pico Radio, NEST)
 - MIT (μAMPS)
 - UCLA (WINS, LECS, NESL)
 - USC (SCOWR, SCADDS)
 - Georgia Institute of Technology (SensoNet)
 - DARPA (Smart Modules)
 - NIST (Wireless Ad Hoc Network Projects)
 - PARC/XEROX (Smart Matter Integrated Systems)
 - CSEM (Wisenet)
 - KAIST (MICROS)
 - Others (Rutgers, Washington....)

References

- [UCB] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan, "PicoRadios for Wireless Sensor Networks: The Next Challenge in Ultra-low Power Design," *ISSCC Digest of Technical Papers*, pp. 200-201, Feb. 2002.
- [UCB] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, "System Architecture Directions for Network Sensors," *in Proc. of ASPLOS*, pp. 93-104, Nov. 2000.
- [MIT] R. Min, M. Bhardwaj, S.-H. Cho, E. Shih, A. Sinha, A. Wang, and A. Chandrakasan, "Low-power Wireless Sensor Networks," *VLSI Design*, pp. 205-210, *2001*.
- [UCLA] V. Raghunathan, C. Schurgers, P. Sung, and M. Srivastava, "Energy-aware Wireless Microsensor Networks," *IEEE Signal Processing Mag.*, pp. 40-50, Mar. 2002.
- [UCLA] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, H. O. Marcy, and W. J. Kaiser, "Wireless Integrated Network Sensors: Low Power Systems on a Chip," in *Proc. ESSCIRC*, pp. 9-16, Sep. 1998.
- [USC] W. Ye, J. Heidemann, and D. Estrin, "An Energy-Efficient MAC Protocol for Wireless Sensor Netowrks," *In Proc. INFOCOM,* pp. 1567-1576, June, 2002.
- [Georgia] I. Akyildiz, W. Su; Y. Sankarasubramaniam, and E. Cayirci, "A Survey on Sensor Networks," *IEEE Commun. Mag.*, pp. 102-14, Aug. 2002.