Unit 5: Greedy Algorithms

- **Course contents:**
 - Elements of the greedy strategy
 - Activity selection
 - Knapsack problem
 - Huffman codes
 - Task scheduling

- **Appendix:** Process antenna effect fixing

- **Reading:**

```
Item 1   10
  $ 60

Item 2   20
  $ 100

Item 3   30
  $ 120

knapsack 50

Item 1 has greatest value per pound

For the 0-1 version, any solution with Item 1 is not optimal!

Greedy algorithm is optimal for the fractional version.
```

For the knapsack problem, we have:

- Item 1: 10 units, $220
- Item 2: 20 units, $100
- Item 3: 30 units, $120

Total weight: 50 units, total value: $440

For the 0-1 version, Item 1 is not optimal since Item 2 has a higher value-to-weight ratio.

For the fractional version, the greedy algorithm is optimal.
A vertex cover of an undirected graph $G = (V, E)$ is a subset $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$, or both.

- The set of vertices covers all the edges.

The size of a vertex cover is the number of vertices in the cover.

The vertex-cover problem is to find a vertex cover of minimum size in a graph.

Greedy heuristic: cover as many edges as possible (vertex with the maximum degree) at each stage and then delete the covered edges.

The greedy heuristic cannot always find an optimal solution!

- The vertex-cover problem is NP-complete.
A Greedy Algorithm

- **A greedy algorithm** always makes the choice that looks best at the moment.

- **An Activity-Selection Problem:** Given a set $S = \{1, 2, \ldots, n\}$ of n proposed activities, with a start time s_i and a finish time f_i for each activity i, select a maximum-size set of mutually compatible activities.

 - If selected, activity i takes place during the half-open time interval $[s_i, f_i)$.

 - Activities i and j are **compatible** if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap (i.e., $s_i \geq f_j$ or $s_j \geq f_i$).

<table>
<thead>
<tr>
<th>i</th>
<th>s_i</th>
<th>f_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Compatible activities: $(1, 4), (2, 4)$
Activity Selection

1. Sort f_i

2. Select the first activity.

3. Pick the first activity i such that $s_i \geq f_i$, where activity j is the most recently selected activity.
The Activity-Selection Algorithm

Greedy-Activity-Selector\((s, f) \)
// Assume \(f_1 \leq f_2 \leq \ldots \leq f_n \).
1. \(n = s.length \)
2. \(A = \{1\} \) // \(a_1 \) in 3rd Ed.
3. \(j = 1 \)
4. for \(i = 2 \) to \(n \)
5. \(\text{if } s_i \geq f_j \)
6. \(A = A \cup \{i\} \)
7. \(j = i \)
8. return \(A \)

- **Theorem:** Algorithm Greedy-Activity-Selector produces solutions of maximum size for the activity-selection problem.
 - **(Greedy-choice property)** Suppose \(A \subseteq S \) is an optimal solution. Show that if the first activity in \(A \) activity \(k \neq 1 \), then \(B = A - \{k\} \cup \{1\} \) is an optimal solution.
 - **(Optimal substructure)** Show that if \(A \) is an optimal solution to \(S \), then \(A' = A - \{1\} \) is an optimal solution to \(S' = \{i \in S: s_i \geq f_1\} \).
 - Prove by induction on the number of choices made.

- **Time complexity excluding sorting:** \(O(n) \)
(Greedy-choice property) Suppose $A \subseteq S$ is an optimal solution. Show that if the first activity in A activity $k \neq 1$, then $B = A - \{k\} \cup \{1\}$ is an optimal solution.

![Diagram showing set A and set B with activity 1 removed from A and added to B]

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>k</td>
</tr>
<tr>
<td>p</td>
<td>\cdots</td>
</tr>
<tr>
<td>q</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>\cdots</td>
</tr>
<tr>
<td>q</td>
<td></td>
</tr>
</tbody>
</table>

(Optimal substructure) Show that if A is an optimal solution to S, then $A' = A - \{1\}$ is an optimal solution to $S' = \{i \in S: s_i \geq f_1\}$.

- Exp: $A' = \{4, 8, 11\}$, $S' = \{4, 6, 7, 8, 9, 11\}$ in the Activity Selection example
- Proof by contradiction: If A' is not an optimal solution to S', we can find a “better” solution A'' (than A'). Then, $A'' \cup \{1\}$ would be a better solution than $A' \cup \{1\} = A$ to S, contradicting to the original claim that A is an optimal solution to S. (Activity 1 is compatible with all the tasks in A''.
Elements of the Greedy Strategy

• When to apply greedy algorithms?
 - **Greedy-choice property:** A global optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - Dynamic programming needs to check the solutions to subproblems.
 - **Optimal substructure:** An optimal solution to the problem contains within its optimal solutions to subproblems.
 - E.g., if A is an optimal solution to S, then $A' = A - \{1\}$ is an optimal solution to $S' = \{i \in S: s_i \geq f_1\}$.

• Greedy *heuristics* do not always produce optimal solutions.

• Greedy algorithms vs. dynamic programming (DP)
 - Common: optimal substructure
 - Difference: greedy-choice property
 - DP can be used if greedy solutions are not optimal.
Knapsack Problem

- **Knapsack Problem**: Given \(n \) items, with \(i \)th item worth \(v_i \) dollars and weighing \(w_i \) pounds, a thief wants to take as valuable a load as possible, but can carry at most \(W \) pounds in his knapsack.

- **The 0-1 knapsack problem**: Each item is either taken or not taken (0-1 decision).

- **The fractional knapsack problem**: Allow to take fraction of items.

- **Exp**: \(\vec{v} = (60, 100, 120), \ \vec{w} = (10, 20, 30), \ W = 50 \)

 - Greedy solution by taking items in order of greatest value per pound is optimal for the fractional version, but not for the 0-1 version.

 - The 0-1 knapsack problem is NP-complete, but can be solved in \(O(nW) \) time by DP. *(A polynomial-time DP??)*
Coding

- Is used for data compression, instruction-set encoding, etc.
- **Binary character code:** character is represented by a unique binary string
 - **Fixed-length code (block code):** a: 000, b: 001, ..., f: 101 $\Rightarrow \text{ace} \leftrightarrow 000 \ 010 \ 100$.
 - **Variable-length code:** frequent characters \Rightarrow short codeword; infrequent characters \Rightarrow long codeword

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>cost / 100 characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fixed–length codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>300</td>
</tr>
<tr>
<td>Variable–length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
<td>224</td>
</tr>
</tbody>
</table>
Binary Tree vs. Prefix Code

- **Prefix code:** No code is a prefix of some other code.

![Binary tree vs. prefix code diagrams]

- **Binary tree → prefix code**
- **Prefix code \{1, 01, 000, 001\} → binary tree**
- **Decoding:** 01 10 000 000 001 11 11
Optimal Prefix Code Design

- **Coding Cost** of T: $B(T) = \sum_{c \in C} c.f\text{req} \cdot d_T(c)$
 - c: character in the alphabet C
 - $c.f\text{req}$: frequency of c
 - $d_T(c)$: depth of c's leaf (length of the codeword of c)

- **Code design**: Given $c_1.f\text{req}$, $c_2.f\text{req}$, ..., $c_n.f\text{req}$, construct a binary tree with n leaves such that $B(T)$ is minimized.
 - Idea: more frequently used characters use shorter depth.

Fixed-length cost: $3 \times 100 = 300$

optimal code ——> full binary tree!!

Variable-length cost = 224
Huffman's Procedure

- **Pair** two nodes with the least costs at each step.

(a) ![Diagram of Huffman tree](image)

(b) ![Diagram of Huffman tree](image)

(c) ![Diagram of Huffman tree](image)

(d) ![Diagram of Huffman tree](image)

(e) ![Diagram of Huffman tree](image)

(f) ![Diagram of Huffman tree](image)

optimal!!
Huffman's Algorithm

Huffman(C)
1. \(n = |C| \)
2. \(Q = C \)
3. for \(i = 1 \) to \(n - 1 \)
4. Allocate a new node \(z \)
5. \(z.left = x = \text{Extract-Min}(Q) \)
6. \(z.right = y = \text{Extract-Min}(Q) \)
7. \(z.freq = x.freq + y.freq \)
8. Insert\((Q, z)\)
9. return Extract-Min\((Q)\) //return the root of the tree

- **Time complexity:** \(O(n \lg n) \).
 - Extract-Min\((Q)\) needs \(O(\lg n) \) by a heap operation.
 - Requires initially \(O(n \lg n) \) time to build a binary heap.
Huffman’s Algorithm: Greedy Choice

- **Greedy choice:** Two characters \(x \) and \(y \) with the lowest frequencies must have *the same length* and differ only in the last bit.

\[
\begin{align*}
T & \quad B(T) \geq B(T') \\
\text{swap } b, x & \quad T'' \quad B(T') \geq B(T'') \\
\text{swap } c, y & \quad T'''
\end{align*}
\]

\(T \) is an optimal tree \(\rightarrow \) \(T' \) is an optimal tree \(\rightarrow \) \(T''' \) is an optimal tree
Huffman's Algorithm: Optimal Substructure

Optimal substructure: Let T be a full binary tree for an optimal prefix code over C. Let z be the parent of two leaf characters x and y. If $z.freq = x.freq + y.freq$, tree $T' = T - \{x, y\}$ represents an optimal prefix code for $C' = C - \{x, y\} \cup \{z\}$.

$$B(T) = B(T') + x.freq + y.freq$$

$d_T(x) = d_T(y) = d_T(z) + 1$

If T' is not optimal, find T'' s.t. $B(T'') < B(T')$.

z in $C' \Rightarrow z$ is a leaf of T''.

Add x, y as z's children (T''')

$$B(T'') = B(T'') + x.freq + y.freq$$

$$< B(T') + x.freq + y.freq$$

$$= B(T)$$

contradiction!!
Task Scheduling

- **The task scheduling problem**: Schedule unit-time tasks with deadlines and penalties s.t. the total penalty for missed deadlines is minimized.
 - $S = \{1, 2, \ldots, n\}$ of n unit-time tasks.
 - **Deadlines** d_1, d_2, \ldots, d_n for tasks, $1 \leq d_i \leq n$.
 - **Penalties** w_1, w_2, \ldots, w_n: w_i is incurred if task i misses deadline.

- Set A of tasks is **independent** if \exists a schedule with no late tasks.

- $N_t(A)$: number of tasks in A with deadlines t or earlier, $t = 1, 2, \ldots, n$.

- Three equivalent statements for any set of tasks A
 1. A is independent.
 2. $N_t(A) \leq t$, $t = 1, 2, \ldots, n$.
 3. If the tasks in A are scheduled in order of nondecreasing deadlines, then no task is late.
The optimal greedy scheduling algorithm:

1. Sort penalties in non-increasing order.
2. Find tasks of independent sets: no late task in the sets.
3. Schedule tasks in a maximum independent set in order of nondecreasing deadlines.
4. Schedule other tasks (missing deadlines) at the end arbitrarily.

<table>
<thead>
<tr>
<th>Task</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_i</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>w_i</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

optimal scheduling: (2, 4, 1, 3, 7, 5, 6)
penalty: $30+20 = 50$

$N_1(A) = 0 \leq 1$
$N_2(A) = 1 \leq 2$
$N_3(A) = 2 \leq 3$
$N_4(A) = 4 \leq 4$
$N_5(A) = 4 \leq 5$
$N_6(A) = 5 \leq 6$

$N_t(A) \leq t$
Appendix: Process Antenna Effect

- While the metal line is being manufactured, a long floating interconnect acts as a temporary capacitor to store charges induced from plasma etching.
- The accumulated charges on the wires might damage the gate.
Antenna Effect

- Depends on length of the wire that is “unshorted” (that is, not connected to a diffusion drain area)
 - The longer the wires, the more the charge.
 - Wires are always shorted in the highest metal layer.
- Depends on the gate size
 - Aggressive down sizing makes the problem worse!
- The calculation of this design rule is different per fab.

courtesy Prof. P. Groeneveld
Jumper Insertion

- Forces a routing pattern that “shoots up” to the highest layer as soon as possible.
- Reduces the charge amount for violated nets during manufacturing.

Side effects: Delay and congestion

A two-pin net | A two-pin net with jumper insertion

Diagram: [Image of routing patterns with and without jumper insertion]
Jumper Insertion for Antenna Fixing/Avoidance

- Su and Chang, DAC-05 (& ISPD-06, IEEE TCAD-07).
- Formulate the problem of jumper insertion on a routing tree for antenna avoidance as a tree cutting problem.
- Problem **JITA** *(Jumper Insertion on a Routing Tree for Antenna Avoidance):* Given a routing tree \(T = (V,E) \) and an upper bound \(L_{\text{max}} \), find the minimum set \(C \) of cutting nodes, \(c \neq u \) for any \(c \in C \) and \(u \in V \), so that \(L(u) \leq L_{\text{max}}, \forall u \in V \).

- \(T = (V,E) \): a routing tree.
- \(L_{\text{max}} \): antenna upper bound.
- \(L(u) \): sum of edge weights (antenna strengths) connected to node \(u \)
The exact BUJI (Bottom-Up Jumper Insertion) algorithm for jumper insertion uses a bottom-up approach to insert cutting nodes on the routing tree.

- **Step 1:** Make every leaf node satisfy the antenna rule.
- **Step 2:** Make every subleaf node satisfy the antenna rule, then cut the subleaf node into a new leaf node.

Definition: A subleaf is a node for which all its children are leaf nodes, and all the edges between it and its children have antenna weights $\leq L_{\text{max}}$.

![Diagram of a routing tree with nodes and edges]
Step 1: Leaf Node Processing

- Step 1: Prevent every leaf node from antenna violation.

\[
l(u, p(u)) > L_{max} \\
\text{u } \in \text{C}
\]

\[
l(u, p(u)) > L_{max} \\
\text{u } \notin \text{C}
\]

\(L_{max}\): upper bound on antenna

\(C\): cutting set

\(p(u)\): parent of \(u\)

\(l(e), l(u,v)\): weight of the edge \(e = (u,v)\)
Step 2: Subleaf Node Processing

• Step 2: Prevent every subleaf node from antenna violation

• \(\text{totallen} \): sum of weights of the edges between the node and its children.

\[
\text{totallen} = \sum_{i=1}^{k} l(u_i, u_p)
\]

- \(u_p \): a subleaf node
- \(u_i \): subleaf’s children, \(1 \leq i \leq k \)

• Classify the subleaf nodes according to \(\text{totallen} \).

 - Case 1: \(\text{totallen} \leq L_{\text{max}} \)

 - Case 2: \(\text{totallen} > L_{\text{max}} \)
Case 1: \(\text{totallen} \leq L_{\text{max}} \)

- Case 1: \(\text{totallen} \leq L_{\text{max}} \)
 - If \(u_p \)'s parent exists
 - If \(\text{totallen} + l(u_p, p(u_p)) \leq L_{\text{max}} \), cut \(u_p \)'s children from the tree
 - Else insert the cutting node that makes \(\text{totallen} + l(u_p, c) = L_{\text{max}} \)

\[
\begin{align*}
 l(u_p, u_1) + l(u_p, u_2) + & \leq L_{\text{max}} \\
 l(u_p, u_3) + l(u_p, p(u_p)) & \leq L_{\text{max}}
\end{align*}
\]
Case 2: \(\text{totallen} > L_{\text{max}} \)

- **Case 2: \(\text{totallen} > L_{\text{max}} \)**
 - Step 1: Let \(A[i] \leftarrow l(u_i, u_p) \), \(\forall 1 \leq i \leq k \).

 Sort \(A \) in non-decreasing order.

 - Step 2: Find the maximum \(s \) such that \(\sum_{j=1}^{s} A[j] \leq L_{\text{max}} \)

 - Step 3: Add cutting nodes \(c_{s+1}, \ldots, c_k \).

 - Step 4: Use Case 1 to cut \(u_p \) into a leaf node.
Complexity

• Algorithm BUJI optimally solves the JITA problem in $O(V \lg V)$ time using $O(V)$ space, where V is the number of vertices.

• With the SPLIT data structure proposed by Kundu and Misra, JITA can be done in $O(V)$ time and space.
 - Optimal algorithm in the theoretical sense.
Resulting Layout with Obstacles

- $L_{\text{max}} = 500 \text{ um}$, 1000 tree nodes (circles), 500 obstacles (rectangles), 426 jumpers (x)