#### 943/U0220 & #901/60010

# **VLSI Design Automation**

張耀文
Yao-Wen Chang
ywchang@cc.ee.ntu.edu.tw
http://cc.ee.ntu.edu.tw/~ywchang
Graduate Institute of Electronics Engineering
Department of Electrical Engineering
National Taiwan University
Taipei 106, Taiwan
Spring 2004



Unit 1

Y.-W. Chang

1

### **Administrative Matters**

- Time/Location: Thursdays 9:10am--12:10pm; EE#2-144.
- Instructor: Yao-Wen Chang.
- E-mail: ywchang@cc.ee.ntu.edu.tw
- **URL:** http://cc.ee.ntu.edu.tw/~ywchang.
- Office: EE#2-548. (Tel) 2363-5251x 548; (Fax) 2364-1972.
- Office Hours: Thursdays 2-3pm
- Teaching Assistants
  - 陳泰蓁 Tai-Chen Chen (d0943008@ee.ntu.edu.tw)
  - 陳東傑 Tung-Chieh Chen (donnie@eda.ee.ntu.edu.tw)
- **Prerequisites:** data structures (or discrete math) & logic design.
- Required Text: S. H. Gerez, Algorithms for VLSI Design Automation, John Wiley & Sons, 1999
- References: supplementary reading materials will be provided.

Unit 1 Y -W Chang 2

### **Course Objectives**

- Study techniques for electronic design automation (EDA), a.k.a. computer-aided design (CAD).
- Study IC technology evolution and their impacts on the development of EDA tools
- Study problem-solving (-finding) techniques!!!



Unit 1 Y.-W. Chang 3

### **Course Contents**

- Introduction to VLSI design flow/styles/automation, technology roadmap, and CMOS Technology (6 hrs)
- (Algorithmic graph theory and computational complexity)\* (2 hrs)
- (General-purpose methods for combinatorial optimization)\* (1 hr)
- Physical design: partitioning, floorplanning, placement, routing, compaction, deep submicron effects (18 hrs)
- Logic synthesis (6 hrs)
- Formal verification (6 hrs)
- Testing (6 hrs)
- Simulation (3 hrs)
- High-level synthesis (3 hrs)

Unit 1

### **Grading Policy**

#### • Grading Policy:

- Homework assignments: 25%
- One in-class open-book, open-note test: 35% (June 17)
- Programming assignment #1: 20% (due 5pm, April 23)
  - Default programming assignment #1: Any problem of the 2004 MOE IC/CAD contest
  - Contest web site: http://www.cs.nthu.edu.tw/~cad
  - Team work (1--4 persons) is permitted (preferably 2 persons)
- Programming assignment #2: 20% (due 5pm, June 11)
  - No team work is allowed.
- Bonus for class participation
- **Homework:** Penalty for late submission: 15% per day.
- WWW:

http://cc.ee.ntu.edu.tw/~ywchang/Courses/EDA04/eda04.html

• Academic Honesty: Avoiding cheating at all cost.

Unit 1 Y.-W. Chang 5

### **Unit 1: Introduction**

- Course contents:
  - Introduction to VLSI design flow/methodologies/styles
  - Introduction to VLSI design automation tools
  - Semiconductor technology roadmap
  - CMOS technology
- Readings
  - Chapters 1-2
  - Appendix A



Unit 1 Y.W. Chang

### **Milestones for IC Industry**

- **1947:** Bardeen, Brattain & Shockly invented the transistor, foundation of the IC industry.
- 1952: SONY introduced the first transistor-based radio.
- 1958: Kilby invented integrated circuits (ICs).
- 1965: Moore's law.
- 1968: Noyce and Moore founded Intel.
- 1970: Intel introduced 1 K DRAM.











First IC by Kilby

First IC by Noyce

Unit 1

Y.-W. Chang

7

### **Milestones for IC Industry**

- **1971:** Intel announced 4-bit 4004 microprocessors (2250 transistors).
- 1976/81: Apple II/IBM PC.
- 1984: Xilinx invented FPGA's.
- 1985: Intel began focusing on microprocessor products.
- 1987: TSMC was founded (fabless IC design).
- **1991**: ARM introduced its first embeddable RISC IP core (chipless IC design).









4004

IBM PC

ARM
Advanced RISC Machines

Unit 1

## Milestones for IC Industry (Cont'd)

- 1996: Samsung introduced IG DRAM.
- 1998: IBM announces1GHz experimental microprocessor.
- 1999/earlier: System-on-Chip (SOC) applications.
- 2002/earlier: System-in-Package (SIP) technology.
- An Intel P4 processor contains 42 million transistors (1 billion by 2005)
- Today, we produce > 30 million transistors per person (1 billion/person by 2008).
- **Semiconductor/IC:** #1 key field for advancing into 2000 (*Business Week*, Jan. 1995).









4GB DRAM (2001)

Pentium 4

Scanner-on-chip

Blue tooth technology

Unit 1

Y.-W. Chang

a

10

## **IC Design & Manufacturing Process**



Unit 1 Y.-W. Chang















Unit 1 Y.-W. Chang

### **Traditional VLSI Design Cycles**

- 1. System specification
- 2. Functional design
- 3. Logic synthesis
- 4. Circuit design
- 5. Physical design and verification
- 6. Fabrication
- 7. Packaging
- Other tasks involved: testing, simulation, etc.
- Design metrics: area, speed, power dissipation, noise, design time, testability, etc.
- Design revolution: interconnect (not gate) delay dominates circuit performance in deep submicron era.
  - Interconnects are determined in physical design.
  - Shall consider interconnections in early design stages.





### **Design Actions**

- Synthesis: increasing information about the design by providing more detail (e.g., logic synthesis, physical synthesis).
- Analysis: collecting information on the quality of the design (e.g., timing analysis).
- **Verification:** checking whether a synthesis step has left the specification intact (e.g., layout verification).
- Optimization: increasing the quality of the design by rearrangements in a given description (e.g., logic optimizer, timing optimizer).
- Design Management: storage of design data, cooperation between tools, design flow, etc. (e.g., database).

Unit 1 Y.-W. Chang

### **Design Issues and Tools**

- System-level design
  - Partitioning into hardware and software, co-design, co-simulation, etc.
  - Cost estimation, design-space exploration
- Algorithmic-level design
  - Behavioral descriptions (e.g. in Verilog, VHDL)
  - High-level simulation
- From algorithms to hardware modules
  - High-level (or architectural) synthesis
- Logic design:
  - Schematic entry
  - Register-transfer level and logic synthesis
  - Gate-level simulation (functionality, power, etc)
  - Timing analysis
  - Formal verification

Unit 1 Y-W Chang 16

### **Logic Design/Synthesis**



- Logic synthesis programs transform Boolean expressions into logic gate networks in a particular library.
- Optimization goals: minimize area, delay, power, etc
- Technology-independent optimization: logic optimization
  - Optimizes Boolean expression equivalent.
- Technology-dependent optimization: technology mapping/library binding
  - Maps Boolean expressions into a particular cell library.

Unit 1 Y.-W. Chang

### **Logic Optimization Examples**

- Two-level: minimize the # of product terms.
  - $F = \bar{x_1}\bar{x_2}\bar{x_3} + \bar{x_1}\bar{x_2}x_3 + x_1\bar{x_2}\bar{x_3} + x_1\bar{x_2}x_3 + x_1x_2\bar{x_3} \Rightarrow F = \bar{x_2} + x_1\bar{x_3}.$
- Multi-level: minimize the #'s of literals, variables.
  - E.g., equations are optimized using a smaller number of literals.



 Methods/CAD tools: Quine-McCluskey method (exponential-time exact algorithm), Espresso (heuristics for two-level logic), MIS (heuristics for multi-level logic), Synopsys, etc.

Unit 1 YaW Chang 18

### **Design Issues and Tools (Cont'd)**

- Transistor-level design
  - Switch-level simulation
  - Circuit simulation
- Physical (layout) design:
  - Partitioning
  - Floorplanning and Placement
  - Routing
  - Layout editing and compaction
  - Design-rule checking
  - Layout extraction
- Design management
  - Data bases, frameworks, etc.
- Silicon compilation: from algorithm to mask patterns
  - The idea is approached more and more, but still far away from a single push-buttom operation

Unit 1 Y.-W. Chang

### Circuit Simulation of a CMOS Inverter (0.6 $\mu$ m)

```
M1 3 2 0 0 nch W=1.2u L=0.6u AS=2.16p PS=4.8u AD=2.16p PD=4.8u M2 3 2 1 1 pch W=1.8u L=0.6u AS=3.24p PS=5.4u AD=3.24p PD=5.4u CL 3 0 0.2pF
```

VDD 1 0 3.3

VIN 2 0 DC 0 PULSE (0 3.3 Ons 100ps 100ps 2.4ns 5ns)

- .LIB '../mod\_06' typical
- .OPTION NOMOD POST INGOLD=2 NUMDGT=6 BRIEF
- .DC VIN OV 3.3V 0.001V
- .PRINT DC V(3)
- .TRAN 0.001N 5N
- .PRINT TRAN V(2) V(3)

.END



Unit 1

Y.-W. Chang

## **Physical Design**



- Physical design converts a circuit description into a geometric description.
- The description is used to manufacture a chip.
- · Physical design cycle:
  - Logic partitioning
  - 2. Floorplanning and placement
  - 3. Routing
  - 4. Compaction
- Others: circuit extraction, timing verification and design rule checking

Unit 1 Y.-W. Chang

# **Physical Design Flow**





B\*-tree based floorplanning system



A routing system

Unit 1





## **IC Design Considerations**



- Several conflicting considerations:
  - Design Complexity: large number of devices/transistors
  - Performance: optimization requirements for high performance
  - Time-to-market: about a 15% gain for early birds
  - Cost: die area, packaging, testing, etc.
  - Others: power, signal integrity (noise, etc), testability, reliability, manufacturability, etc.

Unit 1 Y.-W. Chang 25

### "Moore's" Law: Driving Technology Advances

- Logic capacity doubles per IC at a regular interval.
- Moore: Logic capacity doubles per IC every two years (1975).
- D. House: Computer performance doubles every 18 months (1975)



Unit 1

Y.-W. Chang

### **Technology Roadmap for Semiconductors**

| Year                    | 1997    | 1999    | 2002    | 2005    | 2008    | 2011    | 2014      |
|-------------------------|---------|---------|---------|---------|---------|---------|-----------|
| Technology              |         |         |         |         |         |         |           |
| node (nm)               | 250     | 180     | 130     | 100     | 70      | 50      | 35        |
| On-chip local           |         |         |         |         |         |         |           |
| clock (GHz)             | 0.75    | 1.25    | 2.1     | 3.5     | 6.0     | 10      | 16.9      |
| Microprocessor          |         |         |         |         |         |         |           |
| chip size $(mm^2)$      | 300     | 340     | 430     | 520     | 620     | 750     | 901       |
| Microprocessor          |         |         |         |         |         |         |           |
| transistors/chip        | 11M     | 21M     | 76M     | 200M    | 520M    | 1.40B   | 3.62B     |
| Microprocessor          |         | 4-0-    |         |         | 445     |         |           |
| cost/transistor         | 3000    | 1735    | 580     | 255     | 110     | 49      | 22        |
| (×10 <sup>-8</sup> USD) |         |         |         |         |         |         |           |
| DRAM bits               |         |         |         |         |         |         |           |
| per chip                | 256M    | 1G      | 4G      | 16G     | 64G     | 256G    | 1T        |
| Wiring level            | 6       | 6-7     | 7       | 7-8     | 8-9     | 9       | 10        |
| Supply voltage          |         |         |         |         |         |         |           |
| (V)                     | 1.8-2.5 | 1.5-1.8 | 1.2-1.5 | 0.9-1.2 | 0.6-0.9 | 0.5-0.6 | 0.37-0.42 |
| Power (W)               | 70      | 90      | 130     | 160     | 170     | 175     | 183       |

- Source: International Technology Roadmap for Semiconductors (ITRS), Nov. 2002. http://www.itrs.net/ntrs/publntrs.nsf.
- Deep submicron technology: node (**feature size**) < 0.25  $\mu$ m.
- Nanometer Technology: node < 0.1 μm.

Unit 1 Y.-W. Chang

### **Nanometer Design Challenges**

- In 2005, feature size ≈ 0.1 μm, μ P frequency ≈ 3.5 GHz, die size ≈ 520 mm², μ P transistor count per chip ≈ 200M, wiring level ≈ 8 layers, supply voltage ≈ 1 V, power consumption ≈ 160 W.
  - Feature size 

    → sub-wavelength lithography (impacts of process variation)? noise? wire coupling? reliability?
  - Frequency ♠, dimension ♠ → interconnect delay? electromagnetic field effects? timing closure?
  - Chip complexity ↑ → large-scale system design methodology?
  - Supply voltage 

    → signal integrity (noise, IR drop, etc)?
  - Wiring level ↑ → manufacturability? 3D layout?
  - Power consumption ↑ → power & thermal issues?







## **Design Productivity Crisis**



- Human factors may limit design more than technology.
- Keys to solve the productivity crisis: CAD (tool & methodology), hierarchical design, abstraction, IP reuse, platform-based design, etc.

Unit 1 Y.-W. Chang

### **Hierarchical Design**

- *Hierarchy:* something is composed of simpler things.
- Design cannot be done in one step ⇒ partition the design hierarchically.



Unit 1

### **Abstraction**

• Abstraction: when looking at a certain level, you don't need to know all details of the lower levels.



- Design domains:
  - Behavioral: black box view
  - Structural: interconnection of subblocks
  - Physical: layout properties
- Each design domain has its own hierarchy.

Unit 1 Y.-W. Chang



# Gajski's Y-Chart



Unit 1 Y.-W. Chang 33

# Top-Down Structural Design



Unit 1 Yaw Chang 34





## **Design Styles**

Specific design styles shall require specific CAD tools



Unit 1 Y.-W. Chang 37

### An Ancient Way of Digital Design (1/3)

- An ancient rope-and-pulley "computer" on the island of Apraphul (≈ A.D. 850).
  - Joke by A. K. Dewdney, "Computer recreations," *Scientific American*, April 1988.



Unit 1

# An Ancient Way of Digital Design (2/3)

• What is this??



Unit 1 Y.-W. Chang 39

# An Ancient Way of Digital Design (3/3)

• What is this??



Unit 1

Y.-W. Chang





# **Standard Cell Design Style**

• Selects pre-designed cells (of same height) to implement logic





Unit 1 Y.-W. Chang 43

# **Standard Cell Example**



Courtesy Newton/Pister, UC-Berkeley

Unit 1 Y.-W. Chang 4

## **Gate Array Design Style**

- Prefabricates a transistor array
- Needs wiring customization to implement logic



Unit 1 Y.-W. Chang 45

## **FPGA Design Style**

- Logic and interconnects are both prefabricated.
- Illustrated by a symmetric array-based FPGA

Unit 1



## **Array-Based FPGA Example**



Lucent Technologies 15K ORCA FPGA, 1995

- 0.5 um 3LM CMOS
- 2.45 M Transistors
- 1600 Flip-flops
- 25K bit user RAM
- 320 I/Os



Fujitsu's non-volatile Dynamically Programmable Gate Array (DPGA), 2002

Unit 1 Y.-W. Chang 47

### **FPGA Design Process**

- Illustrated by a symmetric array-based FPGA
- No fabrication is needed



logic + layout synthesis

Unit 1 Y.W. Chang

# **Comparisons of Design Styles**

|                  | Full<br>custom | Standard<br>cell | Gate<br>array | FPGA         | SPLD         |
|------------------|----------------|------------------|---------------|--------------|--------------|
| Cell size        | variable       | fixed height*    | fixed         | fixed        | fixed        |
| Cell type        | variable       | variable         | fixed         | programmable | programmable |
| Cell placement   | variable       | in row           | fixed         | fixed        | fixed        |
| Interconnections | variable       | variable         | variable      | programmable | programmable |

<sup>\*</sup> Uneven height cells are also used.

Unit 1 Y.-W. Chang 49

# **Comparisons of Design Styles**

|                               | Full<br>custom | Standard<br>cell | Gate<br>array | FPGA | SPLD |
|-------------------------------|----------------|------------------|---------------|------|------|
| Fabrication time              |                |                  | +             | +++  | ++   |
| Packing density               | +++            | ++               | +             |      |      |
| Unit cost in large quantity   | +++            | ++               | +             |      | _    |
| Unit cost in small quantity   |                |                  | +             | +++  | ++   |
| Easy design and simulation    |                |                  | -             | ++   | +    |
| Easy design change            |                |                  | _             | ++   | ++   |
| Accuracy of timing simulation | _              | _                | _             | +    | ++   |
| Chip speed                    | +++            | ++               | +             | _    |      |

+ desirable; - not desirable





### **MOS Transistors**



The pMOS switch passes signal "1" well.



The nMOS switch passes signal "0" well.

Unit 1 Y.-W. Chang 53

### **Complementary MOS (CMOS)**

- The most popular VLSI technology (v.s. BiCMOS, nMOS).
- CMOS uses both *n*-channel and *p*-channel transistors.
- Advantages: lower power dissipation, higher regularity, more reliable performance, higher noise margin, larger fanout, etc.
- Each type of transistor must sit in a material of the complementary type (the reverse-biased diodes prevent unwanted current flow).



54

Unit 1 Y.-W. Chang







|        | Name                            | Distinctive shape | Algebraic equation       | Cost (# of<br>transistors) | Scaled gate<br>delay (ps) |   |
|--------|---------------------------------|-------------------|--------------------------|----------------------------|---------------------------|---|
|        | AND                             | х                 | F=XY                     | 6                          | 24                        | _ |
|        | OR                              | х<br>ч —          | F=X+Y                    | 6                          | 24                        | _ |
|        | NOT<br>(inverter/<br>repeater)  | х                 | F=X                      | 2                          | 10                        | _ |
|        | Buffer<br>(driver/<br>repeater) | x                 | F=X                      | 4                          | 20                        |   |
|        | NAND                            | х<br>ү            | F= <del>XY</del>         | 4                          | 14                        |   |
|        | NOR                             | х<br>ү            | F= <del>X+Y</del>        | 4                          | 14                        | _ |
|        | Exclusive—OR<br>(XOR)           | X<br>Y            | F=XŸ+XY<br>=X <b>⊕</b> Y | 14                         | 42                        | _ |
| Jnit 1 |                                 |                   | YW. Chang                |                            |                           | 5 |

### **Construction of Compound Gates**

- Example:  $F = \overline{A \cdot B + C \cdot D}$ .
- Step 1 (n-network): Invert F to derive n-network  $(\overline{F} = A \cdot B + C \cdot D)$
- Step 2 (n-network): Make connections of transistors:
  - AND ⇔ Series connection
  - OR ⇔ Parallel connection



Unit 1 Y.-W. Chang 59

## **Construction of Compound Gates (cont'd)**

- Step 3 (p-network): Expand F to derive p-network
  - $= (F = \overline{AB + CD} = \overline{AB} \cdot \overline{CD} = (\overline{A} + \overline{B}) \cdot (\overline{C} + \overline{D}))$
  - each input is inverted
- Step 4 (p-network): Make connections of transistors (same as Step 2).
- Step 5: Connect the *n*-network to GND (typically, 0V) and the *p*-network to VDD (5V, 3.3V, or 2.5V, etc).



Unit 1

### **A Complex CMOS Gate**

- The functions realized by the n and p networks must be complementary, and one of the networks must conduct for every input combination.
- Duality is not necessary.



Unit 1 Y.-W. Chang 61

### **CMOS Properties**

- There is always a path from one supply (VDD or GND) to the output.
- There is never a path from one supply to the other. (This
  is the basis for the low power dissipation in CMOS-virtually no static power dissipation.)
- There is a momentary drain of current (and thus power consumption) when the gate switches from one state to another.
  - Thus, CMOS circuits have dynamic power dissipation.
  - The amount of power depends on the switching frequency.

Unit 1

### **Stick Diagram**

- Intermediate representation between the transistor level and the mask (layout) level.
- Gives topological information (identifies different layers and their relationship)
- · Assumes that wires have no width.
- Possible to translate stick diagram automatically to layout with correct design rules.



Unit 1 Y.-W. Chang 63

### Stick Diagram (cont'd)

• When the same material (on the same layer) touch or cross, they are connected and belong to the same electrical node.



- When polysilicon crosses N or P diffusion, an N or P transistor is formed.
  - Polysilicon is drawn on top of diffusion.

Unit 1

- Diffusion must be drawn connecting the source and the drain.
- Gate is automatically self-aligned during fabrication.



 When a metal line needs to be connected to one of the other three conductors, a contact cut (via) is required.







### **Design Rules**

- Layout rules are used for preparing the masks for fabrication.
- · Fabrication processes have inherent limitations in accuracy.
- Design rules specify geometry of masks to optimize yield and reliability (trade-offs: area, yield, reliability).
- Three major rules:
  - Wire width: Minimum dimension associated with a given feature.
  - Wire separation: Allowable separation.
  - Contact: overlap rules.
- Two major approaches:
  - "Micron" rules: stated at micron resolution.
  - λ rules: simplified micron rules with limited scaling attributes.
- λ may be viewed as the size of minimum feature.
- Design rules represents a tolerance which insures very high probability of correct fabrication (not a hard boundary between correct and incorrect fabrication).
- Design rules are determined by experience.

Unit 1 Y.-W. Chang

# SCMOS Design Rules



Unit 1

Y.-W. Chang

68

# **MOSIS Layout Design Rules**

- MOSIS design rules (SCMOS rules) are available at http://www.mosis.org.
- 3 basic design rules: Wire width, wire separation, contact rule.
- MOSIS design rule examples

| R1  | Min active area width                  | 3 λ |
|-----|----------------------------------------|-----|
| R3  | Min poly width                         | 2 λ |
| R4  | Min poly spacing                       | 2 λ |
| R5  | Min gate extension of poly over active | 2 λ |
| R8  | Min metal width                        | 3 λ |
| R9  | Min metal spacing                      | 3 λ |
| R10 | Poly contact size                      | 2 λ |
| R11 | Min poly contact spacing               | 2 λ |

Unit 1 Y.-W. Chang 69