Unit 2: EDA Paradigms & Complexity

• Course contents:
 - EDA paradigms:
 Algorithms, Frameworks, Methodology
• Appendix
 - Computational Complexity & NP-completeness (self reading)
• Readings
 - W&C&C: Chapter 4
 - S&Y: Appendix A
Complexity Classes

- **Class P**: class of problems that can be **solved** in polynomial time in the **size of input**.
 - **Size of input**: size of encoded “binary” strings.
 - Edmonds: Problems in P are considered **tractable**.
- **Class NP (Nondeterministic Polynomial)**: class of problems that can be **verified** in polynomial time in the size of input.
 - **P = NP?**
- **Class NP-complete (NPC)**: Any NPC problem can be solved in polynomial time \implies **All** problems in NP can be solved in polynomial time.
The Traveling Salesman Problem (TSP)

- **Instance**: a set of n cities, a distance between each pair of cities, and a bound B.
- **Question**: is there a route that starts and ends at a given city, visits every city exactly once, and has total distance $\leq B$?
- **TSP \in NP**: check a solution in polynomial time.
 - Check if a tour visits every city exactly once, returns to the start, and is with total distance $\leq B$.
 - All can be done in linear time, so TSP \in NP.
NP-Completeness

• A decision problem \(L \) is **NP-complete** (NPC) if
 1. \(L \in \text{NP} \), and
 2. \(L' \leq_p L \) for every \(L' \in \text{NP} \).

• **NP-hard**: If \(L \) satisfies property 2, but not necessarily property 1, we say that \(L \) is **NP-hard**.

• Suppose \(L \in \text{NPC} \).
 - If \(L \in P \), then there exists a polynomial-time algorithm for every \(L' \in \text{NP} \) (i.e., \(P = \text{NP} \)).
 - If \(L \not\in P \), then there exists no polynomial-time algorithm for any \(L' \in \text{NPC} \) (i.e., \(P \neq \text{NP} \)).

• **NP-completeness**: worst-case analysis for a decision problem.

![Diagram showing the relationship between tractable, intractable, and NP-complete problems]

Tractable

Polynomial-time solvable

??

NP-complete problems

Not polynomial-time solvable

Intractable
Coping with NP-hard problems

• **Approximation algorithms**
 - Guarantee to be a fixed percentage away from the optimum.
 - E.g., Minimum spanning trees (MST's) for the minimum Steiner tree problem

• **Pseudo-polynomial time algorithms**
 - Has the form of a polynomial function for the complexity, but is not to the problem size.
 - E.g., $O(nW)$ for the 0-1 knapsack problem (n: # items, W: weight)

• **Restriction**
 - Work on some subset of the original (general) problem.
 - E.g., the maximum independent set problem on circle graphs.

• **Exhaustive search/Branch and bound**
 - Is feasible only when the problem size is small (e.g., ILP).

• **Local search:**
 - Simulated annealing (hill climbing), genetic algorithms, etc.

• **Heuristics:** No guarantee of performance.
Spanning Tree vs. Steiner Tree

- **Manhattan distance**: If two points (nodes) are located at coordinates \((x_1, y_1)\) and \((x_2, y_2)\), the Manhattan distance between them is given by \(d_{12} = |x_1 - x_2| + |y_1 - y_2|\) (a.k.a. \(\lambda_1\) metric)

- **Rectilinear spanning tree**: a spanning tree that connects its nodes using Manhattan paths.

- **Steiner tree**: a tree that connects its nodes, and additional points (Steiner points) are permitted to be used for the connections.

- The minimum rectilinear spanning tree problem is in P, while the minimum rectilinear Steiner tree problem is NP-complete.
 - The spanning tree algorithm can be an approximation for the Steiner tree problem (at most 50% away from the optimum).
Knapsack Problem

- **Knapsack Problem**: Given n items, with ith item worth v_i dollars and weighing w_i pounds, a thief wants to take as valuable a load as possible, but can carry at most W pounds in his knapsack.

- **The 0-1 knapsack problem**: Each item is either taken or not taken (0-1 decision).

- **The fractional knapsack problem**: Allow to take fraction of items.

- **Exp**: $\vec{v} = (60, 100, 120)$, $\vec{w} = (10, 20, 30)$, $W = 50$

 - Item 1 has greatest value per pound
 - For the 0-1 version, any solution with item 1 is not optimal
 - Greedy algorithm is optimal for the fractional version

- The 0-1 knapsack problem is NP-complete, but can be solved in $O(nW)$ time by dynamic programming (DP) (polynomial-time DP??), while the fractional one can be solved by a greedy algorithm in $O(n\log n)$ time.

Y.-W. Chang
Maximum Independent Set (MIS)

- An **independent set** of $G = (V, E)$ is a subset $V' \subseteq V$ such that G has no edge between any pair of vertices in V'.
- The Maximum Independent Set Problem (MIS) is to find an independent set with the **maximum** cardinality.
- MIS in general is NP-complete, but is efficiently solvable for many cases such as on circle graphs.
MIS on Circle Graphs

- Problem: Given a set of chords, find a maximum planar subset of chords.
 - Label the vertices on the circle 0 to $2n-1$.
 - Compute $MIS(i, j)$: size of MIS between vertices i and j, $i < j$.
 - $MIS(0, 2n-1)$ is efficiently solvable by dynamic programming.

\[
\begin{align*}
\text{case 1:} & \quad MIS(i, j) = MIS(i, j-1) \\
\text{case 2:} & \quad MIS(i, j) = MIS(k-1) + 1 + MIS(k+1, j-1) \\
\text{case 3:} & \quad MIS(i, j) = MIS(i+1, j-1) + 1
\end{align*}
\]
Exhaustive Search vs. Branch and Bound for TSP

- TSP example

Backtracking/exhaustive search

Branch and bound
Popular Algorithmic Paradigms

- **Exhaustive search**: Search the entire solution space.
- **Branch and bound**: A search technique with pruning.
- **Greedy method**: Pick a locally optimal solution at each step.
- **Dynamic programming**: Partition a problem into a collection of sub-problems, the sub-problems are solved, and then the original problem is solved by combining the solutions.
 - Work best when the sub-problems are **NOT independent**, and objects are linearly ordered & cannot be rearranged.
- **Hierarchical approach**: Divide-and-conquer.
- **Mathematical programming**: A system of solving an objective function under constraints.
- **Simulated annealing**: An adaptive, iterative, non-deterministic algorithm that allows “uphill” moves to escape from local optima.
Dynamic Programming (DP) vs. Divide-and-Conquer

• Both solve problems by combining the solutions to subproblems.
• Divide-and-conquer algorithms
 – Partition a problem into independent subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
 – Inefficient if they solve the same subproblem more than once.
• Dynamic programming (DP)
 – Applicable when the subproblems are not independent.
 – DP solves each subproblem just once.
 – DP works best on objects that are linearly ordered and cannot be rearranged.
 • Matrices in a chain, characters in a string, points around the boundary of a polygon, points on a circle, left-to-right leaves in a search tree, etc.
Classifications of Popular EDA Algorithms

Nondeterministic Approaches
- Simulated annealing
- Genetic algorithm
- Ant colony

Algorithmic Approaches
- Dynamic programming
- Greedy algorithm
- Branch & bound

Mathematical Programming
- Linear programming
- Integer linear prog.
- Quadratic prog.
- Nonlinear prog.
Example: Bin Packing

- The Bin-Packing Problem \(\Pi \): Items \(U = \{u_1, u_2, \ldots, u_n\} \), where \(u_i \) is of an integer size \(s_i \); set \(B \) of bins, each with capacity \(b \).

- **Goal**: Pack all items, minimizing # of bins used. (NP-hard!)

\[
\begin{align*}
\text{Optimal:} & \quad \begin{array}{c}
\begin{array}{c}
2 \\
4
\end{array} \\
\begin{array}{c}
3 \\
2 \\
1
\end{array} \\
5 \\
\end{array}
\end{align*}
\]
Algorithms for Bin Packing

- Greedy approximation alg.: First-Fit Decreasing (FFD)
 \[\text{FFD}(\Pi) \leq \frac{11\text{OPT}(\Pi)}{9} + 4 \]
- Mathematical Programming: Use **integer linear programming (ILP)** to find a solution using \(|B|\) bins, then search for the smallest feasible \(|B|\).

\[
\begin{array}{|c|c|c|c|c|}
\hline
& u_1 & u_2 & u_3 & \ldots & u_n \\
\hline
\text{bin size} = b & & & & & \\
\hline
\text{Exp: } b = 6, \quad \overrightarrow{S} = (1, 4, 2, 1, 2, 3, 5) \\
\hline
\text{optimal:} & 2 & 3 & 5 & & \\
2 & 4 & 2 & 1 & i & i \\
\hline
\end{array}
\]
ILP Formulation for Bin Packing

0-1 variable: $x_{ij} = 1$ if item u_i is placed in bin b_j, 0 otherwise.

$$\max \sum_{(i,j) \in E} w_{ij} x_{ij} \quad \text{objective function}$$

subject to

$$\sum_{\forall i \in U} w_{ij} x_{ij} \leq b_j, \forall j \in B \quad /* \text{capacity constraint} */ (1)$$

$$\sum_{\forall j \in B} x_{ij} = 1, \forall i \in U \quad /* \text{assignment constraint} */ (2)$$

$$\sum_{ij} x_{ij} = n \quad /* \text{completeness constraint} */ (3)$$

$$x_{ij} \in \{0, 1\} \quad /* 0, 1 \text{ constraint} */ (4)$$

- **Step 1:** Set $|B|$ to the lower bound of the # of bins.
- **Step 2:** Use the ILP to find a feasible solution.
- **Step 3:** If the solution exists, the # of bins required is $|B|$. Then exit.
- **Step 4:** Otherwise, set $|B| \leftarrow |B| + 1$. Goto Step 2.
Billions of transistors can be fabricated in a single chip for nanometer technology. Need frameworks for very large-scale designs. Framework evolution for EDA tools:

Flat ➔ Hierarchical ➔ Multilevel

Source: Intel (ISSCC-03)
Flat Framework for 2D Bin Packing (Floorplanning)

- Process the circuit components in the whole chip
- Limitation: Good for small-scale designs, but hard to handle larger problems directly
Hierarchical Framework

- The hierarchical approach recursively divides a circuit region into a set of subregions and solve those subproblems *independently*.

- Good for scalability for large-scale design, but lack the global information for the interaction among subregions.
Λ-Shaped Multilevel Floorplanning

- Lee, Hsu, Chang, Yang, “Multilevel floorplanning/placement for large-scale modules using B*-trees,” DAC-03 (TCAD-07)
- Bottom-up Coarsening (clustering): Iteratively groups a set of circuit components and collects global information.
- Top-down Uncoarsening (declustering): Iteratively ungroups clustered components and refines the solution.
- Good for scalability and quality trade-off
Perform partitioning to the circuit and determine the global locations of modules for the next level.

Use a flat floorplanner to pack the partitioned modules and legalize/refine the solution.
Power-Aware Floorplanning

Design flow A

Design flow B

OpenRISC
Design Methodology Evolution

Traditional flow

Floorplan → P&R Flow → RC Extraction → Simulation → Power Analysis

no → OK → yes

iterative loop

DAC-04 flow

Floorplan → Voltage Drop Analysis

no → OK → yes

iterative loop

P&R Flow → RC Extraction → Simulation → Power Analysis

no → OK → yes

iterative loop

ISPD-06 (TCAD-07) flow

Floorplan & Voltage Drop Analysis

no → OK → yes

iterative loop

P&R Flow → RC Extraction → Simulation → Power Analysis

no → OK → yes

iterative loop
Pyramid for Solving EDA Problems

- Data structure
- Algorithm
- Framework
- Design Methodology
Physical Design Related Conferences/Journals

- **PD Conferences:**
 - ACM/IEEE Design Automation Conference (DAC)
 - IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)
 - ACM Int'l Symposium on Physical Design (ISPD)
 - ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC)
 - ACM/IEEE Design, Automation, and Test in Europe (DATE)
 - IEEE Int'l Conference on Computer Design (ICCD)
 - IEEE Int'l Symposium on Circuits and Systems (ISCAS)
 - Many more, e.g., GLSVLSI, ISLPED, ISQED, ISVLSI, SOCC, VLSI, VLSI-DAT, VLSI Design/CAD Symposium/Taiwan

- **PD Journals:**
 - IEEE Transactions on Computer-Aided Design (TCAD)
 - ACM Transactions on Design Automation of Electronic Systems (TODAES)
 - IEEE Transactions on VLSI Systems (TVLSI)
 - IEEE Transactions on Computers (TC)
 - INTEGRATION: The VLSI Journal
 - IET journals/IEE proceedings
 - IEICE transactions
Appendix:
Computational Complexity & NP-Completeness

NP-complete problems
O: Upper Bounding Function

- **Def:** $f(n) = O(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.
 - Examples: $2n^2 + 3n = O(n^2)$, $2n^2 = O(n^3)$, $3n \log n = O(n^2)$

- **Intuition:** $f(n) \leq g(n)$ when we ignore constant multiples and small values of n.

![Graph showing the relationship between $f(n)$ and $O(g(n))$]
Big-O Notation

- How to show O (Big-Oh) relationships?
 - $f(n) = O(g(n))$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some $c \geq 0$.

- “An algorithm has worst-case running time $O(f(n))$”: there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most $cf(n)$ time.
\(\Omega : \) Lower Bounding Function

- **Def:** \(f(n) = \Omega(g(n)) \) if \(\exists \ c > 0 \) and \(n_0 > 0 \) such that \(0 \leq cg(n) \leq f(n) \) for all \(n \geq n_0 \).
 - Examples: \(2n^2 + 3n = \Omega(n^2) \), \(2n^3 = \Omega(n^2) \), \(3n \log n \neq \Omega(n^2) \)

- **Intuition:** \(f(n) \geq g(n) \) when we ignore constant multiples and small values of \(n \).

- **How to show \(\Omega \) (Big-Omega) relationships?**
 - \(f(n) = \Omega(g(n)) \) if \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = c \) for some \(c \geq 0 \).
θ: Tightly Bounding Function

• **Def:** \(f(n) = \theta(g(n)) \) if \(\exists c_1, c_2 > 0 \) and \(n_0 > 0 \) such that \(0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \).
 - Examples: \(2n^2 + 3n = \theta(n^2) \), \(2n^3 \neq \theta(n^2) \), \(3n \log n \neq \theta(n) \)

• **Intuition:** \(f(n) \ll g(n) \) when we ignore constant multiples and small values of \(n \).

• **How to show \(\theta \) relationships?**
 - Show both “big Oh” (\(O \)) and “Big Omega” (\(\Omega \)) relationships.
 - \(f(n) = \theta(g(n)) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \) for some \(c > 0 \).
Computational Complexity

- Computational complexity: an abstract measure of the **time** and **space** necessary to execute an algorithm as functions of its “input size”.

- Input size: size of encoded “binary” strings.
 - sort n words of bounded length \Rightarrow input size: n
 - the input is the integer n \Rightarrow input size: $\lg n$
 - the input is the graph $G(V, E)$ \Rightarrow input size: $|V|$ and $|E|$

- Runtime comparison: assume 1 BIPS, 1 instruction/op.

<table>
<thead>
<tr>
<th>Time</th>
<th>Big-Oh</th>
<th>$n = 10$</th>
<th>$n = 100$</th>
<th>$n = 10^4$</th>
<th>$n = 10^6$</th>
<th>$n = 10^8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>$O(1)$</td>
<td>5×10^{-7} sec</td>
</tr>
<tr>
<td>$3n$</td>
<td>$O(n)$</td>
<td>3×10^{-8} sec</td>
<td>3×10^{-7} sec</td>
<td>3×10^{-5} sec</td>
<td>0.003 sec</td>
<td>0.3 sec</td>
</tr>
<tr>
<td>$n \lg n$</td>
<td>$O(n \lg n)$</td>
<td>3×10^{-8} sec</td>
<td>6×10^{-7} sec</td>
<td>1×10^{-4} sec</td>
<td>0.018 sec</td>
<td>2.5 sec</td>
</tr>
<tr>
<td>n^2</td>
<td>$O(n^2)$</td>
<td>1×10^{-7} sec</td>
<td>1×10^{-5} sec</td>
<td>0.1 sec</td>
<td>16.7 min</td>
<td>116 days</td>
</tr>
<tr>
<td>n^3</td>
<td>$O(n^3)$</td>
<td>1×10^{-6} sec</td>
<td>0.001 sec</td>
<td>16.7 min</td>
<td>31.7 yr</td>
<td>∞</td>
</tr>
<tr>
<td>2^n</td>
<td>$O(2^n)$</td>
<td>1×10^{-6} sec</td>
<td>4×10^{11} cent.</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$n!$</td>
<td>$O(n!)$</td>
<td>0.003 sec</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Asymptotic Functions

- **Polynomial-time complexity**: $O(p(n))$, where n is the input size and $p(n)$ is a polynomial function of n ($p(n) = n^{O(1)}$).

- Example polynomial functions:
 - 999: constant
 - $\lg n$: logarithmic
 - \sqrt{n}: sublinear
 - n: linear
 - $n \lg n$: loglinear
 - n^2: quadratic
 - n^3: cubic

- Example non-polynomial functions
 - 2^n, 3^n: exponential
 - $n!$: factorial
Complexity Classes

• **Class P**: class of problems that can be solved in polynomial time in the size of input.
 - Edmonds: Problems in P are considered tractable.

• **Class NP (Nondeterministic Polynomial)**: class of problems that can be verified in polynomial time in the size of input (can be solved by a nondeterministic / randomized algorithm in polynomial time).
 - P = NP?

• **Class NP-complete (NPC)**: Any NPC problem can be solved in polynomial time ⇒ all problems in NP can be solved in polynomial time (i.e., P = NP).
The Traveling Salesman Problem (TSP)

- **Instance**: a set of n cities, a distance between each pair of cities, and a bound B.
- **Question**: is there a route that starts and ends at a given city, visits every city exactly once, and has total distance $\leq B$?

A TSP instance A TSP solution
NP vs. P

- **TSP ∈ NP.**
 - Need to **check** a solution (tour) in polynomial time.
 - Guess a tour.
 - Check if the tour visits every city exactly once, returns to the start, and total distance $\leq B$.

- **TSP ∈ P?**
 - Need to solve (find a tour) in polynomial time.
 - Still unknown if TSP ∈ P.

A TSP instance

A TSP solution
Decision Problems and NP-Completeness

- **Decision problems**: those having yes/no answers.
 - TSP: Given a set of cities, a distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?

- **Optimization problems**: those finding a legal configuration such that its cost is minimum (or maximum).
 - TSP: Given a set of cities and a distance between each pair of cities, find the distance of a “minimum route” that starts and ends at a given city and visits every city exactly once.

- Could apply binary search on decision problems to obtain solutions to optimization problems.

- **NP-completeness** is associated with decision problems.

- cf., **Optimal** solutions/costs, optimal (**exact**) algorithms (Attn: optimal \neq exact in the theoretic computer science community).
Polynomial-time Reduction

- **Motivation:** Let L_1 and L_2 be two decision problems. Suppose algorithm A_2 can solve L_2. Can we use A_2 to solve L_1?
 - E.g., System of difference constraints (L_1) vs. SSSP (L_2)

- **Polynomial-time reduction f from L_1 to L_2: $L_1 \leq_P L_2$**
 - f reduces any input for L_1 into an input for L_2 s.t. the reduced input is a “yes” input for L_2 iff the original input is a “yes” input for L_1.
 - $L_1 \leq_P L_2$ if \exists polynomial-time computable function $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$ s.t. $x \in L_1$ iff $f(x) \in L_2$, $\forall x \in \{0, 1\}^*$.
 - L_2 is at least as hard as L_1.

- f is computable in polynomial time.
Significance of Reduction

• Significance of $L_1 \leq_p L_2$:
 - \exists polynomial-time algorithm for $L_2 \Rightarrow \exists$ polynomial-time algorithm for L_1 ($L_2 \in P \Rightarrow L_1 \in P$).
 - $\not\exists$ polynomial-time algorithm for $L_1 \Rightarrow \not\exists$ polynomial-time algorithm for L_2 ($L_1 \notin P \Rightarrow L_2 \notin P$).

• \leq_p is transitive, i.e., $L_1 \leq_p L_2$ and $L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3$.

L_1: Bipartite cardinality matching vs. L_2: maximum flow
Example Reduction

- Example reduction from the matching problem to the max-flow one.
- Given a bipartite graph $G = (V, E)$, $V = L \cup R$, construct a unit-capacity flow network $G' = (V', E')$:

 \begin{align*}
 V' &= V \cup \{s, t\} \\
 E' &= \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, (u, v) \in E\} \cup \{(v, t) : v \in R\}.
 \end{align*}

- The cardinality of a maximum matching in G equals the value of a maximum flow in G' (i.e., $|M| = |f|$).
NP-Completeness

- A **decision** problem \(L \) is **NP-complete (NPC)** if
 1. \(L \in \text{NP} \), and
 2. \(L' \leq_p L \) for every \(L' \in \text{NP} \).

- **NP-hard**: If \(L \) satisfies property 2, but not necessarily property 1, we say that \(L \) is **NP-hard**.

- Suppose \(L \in \text{NPC} \).
 - If \(L \in P \), then there exists a polynomial-time algorithm for every \(L' \in \text{NP} \) (i.e., \(P = \text{NP} \)).
 - If \(L \notin P \), then there exists no polynomial-time algorithm for any \(L' \in \text{NPC} \) (i.e., \(P \neq \text{NP} \)).

- **NP-completeness**: worst-case analyse for a decision problem.
Five steps for proving that L is NP-complete:

1. Prove $L \in \text{NP}$.
2. Select a known NP-complete problem L'.
3. Construct a reduction f transforming every instance of L' to an instance of L.
4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
5. Prove that f is a polynomial-time transformation.

Here we intend to show how difficult L is!!

Cf. matching \leq_p maximum flow to show how easy matching is!!

Y.-W. Chang
TSP Is NP-Complete

- TSP (The Traveling Salesman Problem) ∈ NP
- TSP is NP-hard: HC ≤ₚ TSP.
 1. Define a function f mapping any HC instance into a TSP instance, and show that f can be computed in polynomial time.
 2. Prove that G has an HC iff the reduced instance has a TSP tour with distance ≤ B ($x \in$ HC $\iff f(x) \in$ TSP).

The Hamiltonian Circuit Problem (HC): known to be NP-complete
- **Instance:** an undirected graph $G = (V, E)$.
- **Question:** is there a cycle in G that includes every vertex exactly once?
HC \leq_P TSP: Step 1

1. Define a reduction function f for HC \leq_P TSP.

 Given an arbitrary HC instance $G = (V, E)$ with n vertices

 • Create a set of n cities labeled with names in V.
 • Assign distance between two cities u and v

 $$d(u, v) = \begin{cases}
 1, & \text{if } (u, v) \in E, \\
 2, & \text{if } (u, v) \notin E.
 \end{cases}$$

 • Set bound $B = n$.

 f can be computed in $O(V^2)$ time.

 ![Diagram showing HC instance and TSP instance mapped by function f.]

 HC: $<1, 5, 2, 3, 4, 1>$

 TSP instance: tour $<1, 5, 2, 3, 4, 1>$ with distance bound $B = 5$
2. G has an HC iff the reduced instance has a TSP with distance $\leq B$.

- $x \in HC \Rightarrow f(x) \in TSP$.
 - Suppose the HC is $h = <v_1, v_2, \ldots, v_n, v_1>$. Then, h is also a tour in the transformed TSP instance.
 - The distance of the tour h is $n = B$ since there are n consecutive edges in E, and so has distance 1 in $f(x)$.
 - Thus, $f(x) \in TSP$ ($f(x)$ has a TSP tour with distance $\leq B$).

\[HC \leq_p TSP: \text{ Step 2 } \]
2. G has an HC iff the reduced instance has a TSP with distance $\leq B$.

- $f(x) \in \text{TSP} \implies x \in \text{HC}$.
 - Suppose there is a TSP tour with distance $\leq n = B$. Let it be $<v_1, v_2, \ldots, v_n, v_1>$.
 - Since distance of the tour $\leq n$ and there are n edges in the TSP tour, the tour contains only edges in E.
 - Thus, $<v_1, v_2, \ldots, v_n, v_1>$ is a Hamiltonian cycle ($x \in \text{HC}$).