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ABOUT THIS CHAPTER
After placement, the routing process determines the precise paths for nets on

the chip layout to interconnect the pins on the circuit blocks or pads at the chip
boundary. These precise paths of nets must satisfy the design rules provided by

chip foundries to ensure that the designs can be correctly manufactured. The

most important objective of routing is to complete all the required connections

(i.e., to achieve 100% routability); otherwise, the chip would not function well

and may even fail. Other objectives, such as (1) reducing the routing wirelength

and (2) ensuring each net to satisfy its required timing budget, have become

essential for modern chip design. For modern large-scale circuit design, a chip

may contain billions of transistors and millions of nets. To handle the high com-
plexity, a routing algorithm often adopts the two-stage approach of global rout-

ing followed by detailed routing. Global routing first partitions the routing

region into tiles and decides tile-to-tile paths for all nets, whereas detailed

routing determines the exact tracks and vias for nets.

This chapter starts with a discussion of the routing problem. After introdu-

cing the problem definition, the techniques of general-purpose routing are

described. This is followed by the introduction of popular global-routing algo-

rithms that cover sequential and concurrent approaches. The second half of this
chapter discusses detailed routing, for which channel and full-chip routing tech-

niques are discussed, followed by modern routing techniques considering signal

integrity and chip manufacture and yield. This chapter concludes with routing

trends and future directions of routing. After reading through this chapter, the

reader should have a clear picture about popular global and detailed routing

algorithms. This background will be valuable in implementing/developing rout-

ing algorithms to meet the design needs.
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12.1 INTRODUCTION
Routing is an important step in the design of integratedcircuits (ICs). It generates
wiring to interconnect pins of the same signal, while obeying the manufacturing

design rules. As IC process advances to nanometer technology, foundries may fab-

ricate billions of transistors in a single chip, and the number of transistors per die

will still growdrastically in the near future. This increasing complexity imposes sub-
stantial challenges for physical design, especially for routing.

Research in VLSI routing has received much attention in the literature. Rout-

ing is typically a very complex combinatorial problem. To make it manageable,

the routing problem is usually solved by use of a two-stage approach of global
routing followed by detailed routing. Global routing first partitions the rout-

ing region into tiles and decides tile-to-tile paths for all nets while attempting to

optimize some given objective function (e.g., total wirelength and circuit

timing). Then, guided by the paths obtained in global routing, detailed routing
assigns actual tracks and vias for nets.

Figure 12.1 illustrates the process of global routing and detailed routing. After

placement, we have a placed layout shown in Figure 12.1a, which contains the

information about the exact locations of blocks, pins of blocks, and I/O pads at

chip boundaries. We are also provided with a netlist that describes a list of con-

nections by indicating which pins or pads should be electrically connected to

form a set of nets. Figure 12.1b illustrates some global-routing paths. It first

divides the routing region into tiles and then generates a “loose” route for each
connection by finding the tile-to-tile paths to connect pins and/or pads.

Figure 12.1c shows a result of detailed routing, which determines the exact route

for each net by searching within the tile-to-tile path. Here, the exact route means

a path specified by the actual geometric layout such as metal wires and vias.

In the following we formally give the problem definition of the routing

problem and describe the routing model and constraints.

(a) (b) (c)(a) (b) (c)

FIGURE 12.1

Routing problem: (a) A given placement result with fixed locations of blocks and pins.

(b) Global routing. (c) Detailed routing.
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12.2 PROBLEM DEFINITION
The problem definition for the general routing problem is as follows:

Inputs:

1. A placed layout with fixed locations of chip blocks, pins, and pads

2. A netlist

3. A timing budget for each critical net

4. A set of design rules for manufacturing process, such as resistance, capac-

itance, and the wire/via width and spacing of each layer

Output:

Wire connection for each net presented by actual geometric layout objects

that meet the design rules and optimize the given objective, if specified.

12.2.1 Routing model

Routing in a modern chip is typically a very complex process, and it is thus usu-

ally hard to obtain solutions directly. Most routing algorithms are based on a

graph-search technique guided by the congestion and timing information asso-

ciated with routing regions and topologies [Saxena 2007]. A router assigns

higher costs to route nets through congested areas to balance the net distribu-
tion among routing regions.

Applying the graph-search technique for routing requires modeling the routing

resource as a graph where the graph topology can represent the chip structure.

Figure 12.2 illustrates the graphmodeling. For themodeling, a chip (routing region)

is first partitioned into an array of rectangular tiles (or called global-routing tiles),
each of which may accommodate tens of routing tracks in each dimension, as ill-

ustrated in Figure 12.2a. A node in the routing graph represents a tile in the chip,

whereas an edge denotes the boundary between two adjacent tiles (see
Figures 12.2b–c). Each edge is assigned a capacity according to the physical routing

area or the number of tracks in a tile. This graph is called a global-routing graph.

Resource Modeling Global-Routing GraphPartitioned Layout
(a) (b) (c)

FIGURE 12.2

The global-routing graph: (a) The chip (routing region) is partitioned into an array of rectangular

tiles. (b) A node in the routing graph represents a tile in the chip, whereas an edge denotes the

boundary between two adjacent tiles. (c) The final global-routing graph.
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A global router finds tile-to-tile paths for all nets on the global-routing graph to

guide the detailed router. The goal of global routing is to route as many nets as
possible while meeting the capacity constraint of each edge and any other con-

straint, if specified. For example, for timing-driven routing, additional costs can

be added to the routing topologies with longer critical path delays. For detailed

routing, the router decides the actual physical interconnections of nets by

allocating wires on each metal layer and vias for switching between metal layers.

Generally, there are two different layer models, the reserved and unreserved
layermodels. In the reserved layer model, each layer is allowed only one specific

routing direction (i.e., preferred direction). For example, the technology file
may specify that thewires in the first metal layer are allowed to run only in the hor-

izontal direction, the second metal layer contains only vertical wires, etc. A layer

model is unreserved if it allows the placement of wires with any directions (i.e.,

non-preferred direction). Most of the existing routers and design methodolo-

gies apply the reserved layermodel, because it has lowercomplexity than the unre-

served layer model and is much easier for implementation.

There are two kinds of detailed-routing models: the grid-based and gridless
models. For grid-based routing, a routing grid is superimposed on the routing
region, and then the detailed router finds routing paths in the grid, as shown

in Figure 12.3a. The space between adjacent grid lines is called wire pitch,
which is defined in the technology file and is larger than or equal to the sum

of the minimum width and spacing of wires. Note that the router has to control

the searching space such that the path in the horizontal/vertical layers can only

(a) (b)

via

metal 1

metal 2

pin

FIGURE 12.3

Two kinds of detailed-routing models: (a) Grid-based detailed routing. (b) Gridless

detailed routing.
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run horizontally/vertically for the reserved layer model, and switching from

layer to layer is allowed only at the intersection of vertical and horizontal grid
lines. In this way, the wires with the minimum width following the path in

the grid would automatically satisfy the design rules. Therefore, grid-based

detailed routing is much more efficient and easier for implementation.

The gridless detailed routing model (also called shaped-based) refers to any

model that does not follow the grid-based model. A gridless detailed router does

not follow the routing grid and thus can use different wire widths and spacing,

as shown in the example in Figure 12.3b. Various gridless models have been

proposed, such as the connection graph [Zheng 1996], the implicit connec-
tion graph [Cong 1999], the implicit triple-line graph [Chen 2007a], and

corner stitching [Qusterhout 1984]. The main advantage of gridless routing

lies in its greater flexibility; it can handle variable widths and spacing for wires

and is, thus, more suitable for interconnect tuning optimization, such as wire

sizing and perturbation. However, gridless detailed routing is generally much

slower than the grid-based one because of its higher complexity.

Figure 12.4 illustrates an example of grid-based detailed routing for a two-pin

net. After the global routing, we have a tile-to-tile global-routing path as shown
in Figure 12.4a, and the detailed-routing graph is constructed only within the

tiles of the global-routing path, as shown in Figure 12.4b. Then the final

detailed-routing solution is found in the graph, as shown in Figure 12.4c.

Constructing and searching the detailed-routing graph within the tiles of the

global-routing path, the detailed router can substantially prune the searching

space and thus reduce the routing time.

12.2.2 Routing constraints

The routing constraints can be classified into two major categories: (1) design-

rule constraints and (2) performance constraints. The design-rule constraint is

(a) (b) (c)

metal 1
metal 2

pin

via

FIGURE 12.4

Detailed routing: (a) A tile-to-tile global-routing path connecting two pins on metal 1. (b) The

detailed-routing graph is constructed within the tiles of the global-routing path. (c) A

detailed-routing solution on the detailed-routing graph.
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often related with the manufacturing details during fabrication. To improve the

manufacturing yield, connections of nets have to follow the rules provided by
foundries. For example, in the 65-nm technology, the physical limitations of

an optical lithography system would impose a constraint on a wire such that

its width cannot be smaller than 65 nm.

Figure 12.5 illustrates a typical set of design rules. It defines the minimum

widths of wires and vias, the minimum wire-to-wire spacing, and the minimum

via-to-via spacing of a layer. The distance between two wires or routing tracks of

the grid-based model is often called wire pitch. Other design rules of the

manufacturing process, such as resistance and capacitance of each layer, are
also included.

The objective of the performance constraint is to make the connections

meet the performance specifications provided by chip designers. For example,

the timing constraint is often the most important performance constraint for

high-speed designs. The speed of a chip is limited by its critical nets, which

have smaller timing budgets (or timing slacks) than others. To meet the perfor-

mance constraint, it is desirable to carefully route these critical nets by proper

routing topologies.

12.3 GENERAL-PURPOSE ROUTING
In Section 12.2.1, we modeled the routing resources by the global- and detailed-

routing graphs. For global and detailed routing, we can perform a graph-search

technique on these routing models. In the following, we introduce three popu-

lar graph-searching techniques, the maze, line-search, and A*-search routing

wire width wire spacing

wire pitch

via width

via spacing

FIGURE 12.5

An example of design rules. Typical rules define wire width, wire spacing, wire pitch, via width,

and via spacing on each layer.
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algorithms. Note that these algorithms are general-purpose routing algo-
rithms, because they can be applied to both global and detailed routing
problems on the general routing structure.

12.3.1 Maze routing

Perhaps the most widely used algorithm for finding a path between two points

is the maze-routing algorithm (also called Lee’s algorithm) [Lee 1961],

which is based on the breadth-first-search (BFS) technique.

Maze routing adopts a two-phase approach of filling followed by retracing.
The filling phaseworks in the “wave propagation”manner. Starting from the source

node S, the adjacent grid cells are progressively labeled one by one according to the

distance of the “wavefront” from S until the target node T is reached. Figures 12.6a

and b illustrates the “wave propagation” when the labels of “wavefronts” reach

2 and 3, respectively. Once the target node T is reached, a shortest path is then

retraced from T to S with decreasing labels during the retracing phase. Note that

any such a pathwith decreasing labels gives a shortest path. However, we often pre-

fer the onewith the least detours for other practical concerns such as the number of
bends (vias). Figure 12.7 illustrates the two phases of Lee’s algorithm.

A nice property of Lee’s algorithm is that it guarantees to find a path

between two points if such a path does exist, and the path is the shortest

one, even with obstacles. In practice, however, Lee’s algorithm is slow and

memory consuming. It has the time and space complexity of O(mn), where

(a) (b)
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FIGURE 12.6

An example of the filling process: (a) The filling (wave propagation) when labels of the

“wavefront” reach 2. (b) The next filling step of (a) when labels of the “wavefront” reach 3.
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m and n are the respective numbers of horizontal and vertical grid cells. Conse-

quently, it is difficult to apply for large-scale dense designs directly.

Because of the pervasive use of Lee’s maze-routing algorithm and its high

time and space complexity, many methods have been proposed to reduce its

running time and memory requirements. These popular optimization methods

can be classified into three major categories: (1) coding scheme, (2) search
algorithm, and (3) search space.

12.3.1.1 Coding scheme

Akers observed that adjacent labels for k are either k � 1 or k þ 1 [Akers 1967].

To retrace the path, it suffices to have a labeling scheme such that each label has

its preceding label different from its succeeding label. With the observations,

Akers developed a 2-bit coding scheme to reduce memory requirement. The

coding scheme uses 1 bit for filling by labeling the grid cells with the sequence

0, 0, 1, 1, 0, 0, 1, 1, . . . In this way, for each label, its preceding label is different

from its succeeding one, and thus retracing can work correctly. This coding

scheme requires another bit to indicate whether a node is blocked or not. There-
fore, this coding scheme needs only two bits for each grid cell to perform the

maze routing. Another economical coding scheme is from [Hadlock 1977]; it uses

the detour numbers for the labeling to reduce the search space and runtime.

12.3.1.2 Search algorithm

Soukup combined BFS and the depth-first-search (DFS) approaches to prop-

agate wavefronts [Soukup 1978]. Depth-first (line) search is first directed from
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FIGURE 12.7

Lee’s maze-routing algorithm: (a) The wave propagation phase. (b) The retracing phase.
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the source S toward the target T until an obstacle or T is reached. BFS (as in

Lee’s algorithm) is then used to “bubble” around an obstacle if an obstacle is
encountered. This algorithm has the same time and space complexity as that

of Lee’s algorithm, but is typically 10 to 50 times faster than Lee’s algorithm.

It can still find a path between S and T if such a path does exist, but it cannot

guarantee a shortest path because of the DFS processing. Pure DFS (line-search)

algorithms can further speed up the routing, at the cost of solution quality. See

Section 12.3.2 for two line-search algorithms.

12.3.1.3 Search space

To reduce the running time for maze routing, techniques such as starting
point selection, double fanout, and framing are in pervasive use [Sait

1999]. All the three techniques can substantially reduce the number of cells
required to be labeled. The starting point selection is to choose the point clos-

est to the chip boundary as the starting point for filling. In this way, we can dis-

card more out-of-bound cells for labeling. Double fanout propagates waves from

both the source and the target cells to reduce the area required for labeling.

Framing searches only inside a rectangular region, say 10% larger than the

bounding box formed by the source and the target. It needs to enlarge the rect-

angle and redo maze routing if the search fails. It is obvious that Lee’s algorithm

can no longer guarantee finding the shortest path with the framing heuristic.

12.3.2 Line-search routing

As mentioned earlier in Section 12.3.1, the major drawbacks of the maze-routing

algorithm are the high memory use and long running time. The line-search
algorithm alleviates these drawbacks by use of line segments to represent

the routing space and paths at the cost of solution quality.

Mikami and Tabuchi proposed the first line-search algorithm (also called line

probe routing) [Mikami 1968]. In contrast to the maze-routing algorithm, which

mainly proceeds in a breadth-first manner, the line-search algorithm performs a
depth-first search. The line-search algorithm initially sets the source S and the tar-

get T as base points and then generates four (two horizontal and two vertical)

level-0 line segments passing through these base points. These line segments

are extended until they hit the design boundary or obstacles. Then, each grid

point of these line segments at level i are iteratively set as new base points, and

a perpendicular line segment of level i þ 1 is generated crossing each new base

point. This process repeats until a segment generated from S intersects a segment

generated from T, and a connection can then be found by tracing from this inter-
section point to both S and T. Figure 12.8 illustrates the Mikami-Tabuchi’s line-

search algorithm. The crossing points denote the base points, and the numbers

denote the sequence of the search process. Like Lee’s maze-routing algorithm,

Mikami-Tabuchi’s line-search algorithm also guarantees finding a path if one exists,

but it may not always be the shortest. The line-search technique significantly

reduces both memory requirements and execution times.
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[Hightower 1969] proposed another line-search algorithm, which is similar

to Mikami-Tabuchi’s algorithm. The difference is that Hightower’s algorithm

only considers those line segments that are extendable beyond obstacles,
and each line segment has at most two base points. Figure 12.9 illustrates

Hightower’s line-search algorithm. Because fewer line segments are considered,

Hightower’s algorithm has significantly more memory saving than Mikami-

Tabuchi’s algorithm. However, Hightower’s algorithm might fail to find a path

even if one exists. To remedy the deficiencies, it needs backtracing procedures

to choose the right base points, and, therefore, the running time may not

improve very much over Lee’s maze-routing algorithm in practice.
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Mikami-Tabuchi’s line-search algorithm.
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Hightower’s line-search algorithm.
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12.3.3 A*-Search routing

As discussed in Section 12.3.1, the maze routing that adopts the BFS searching is
generally slow, although it guarantees finding a shortest path. In the searching

field, the maze search is also called blind search, because it searches the rout-

ing region in a blind way without any prioritized choices. Intuitively, if a router

does not need to consider points that are not likely to be on the routing path,

the running time would be improved.

In [Hart 1968], a general graph search algorithm called A*-search was pro-

posed, which uses the function f(x) ¼ g(x) þ h(x) to evaluate the cost of a path

x, where g(x) is the cost from the source node to the current node of x, and
h(x) is the estimated (or predicted) cost from the current node of x to the target

node. Every time the algorithm selects a node with the lowest path cost to prop-

agate (i.e., the lower f(x)), the higher the priority for propagation. As a result,

the A*-search is also called the best-first search, because at each decision

making it first searches the routes that are most likely to lead toward the target.

Note that generally speaking, the BFS is a special case of A*-search algorithm,

where h(x) ¼ 0 for all x.

The A*-search has a good property that if h(x) is admissible, meaning that it
never overestimates the actual minimal cost from the current node to the target

node, then A*-search is optimal. Therefore, for the Manhattan routing (i.e., only

allow horizontal and vertical connections), h(x) might be set as the Manhattan

distance from the current node to the target, because it is the smallest possible

distance between any two points in the Manhattan space.

The A*-search algorithm has many applications, such as in the field of artificial
intelligence (AI). The A*-search routing introduced by [Clow 1984] for VLSI

routing and [McMurchie 1995] for FPGA routing are pervasive in modern routers
[Chao 2007; Pan 2007; Roy 2007; Chang 2008; Hsu 2008].

12.4 GLOBAL ROUTING
Traditional routing algorithms adopt the flat framework that finds paths for nets

in the whole routing region directly. These algorithms can be classified into

sequential and concurrent approaches, which are based on the general-purpose

routing for 2-pin nets mentioned in Section 12.3 or a Steiner-tree algorithm for
the multi-pin nets to be introduced in Section 12.4.3.

12.4.1 Sequential global routing

Perhaps the most straightforward strategy for routing is to select a specific net

order and then to route nets sequentially in that order. However, this sequential

approach often leads to a poor routing result, because an earlier routed net

might block the routing for its subsequent nets. Therefore, the quality of the

routing solution greatly depends on the net ordering.
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Figure 12.10a illustrates a simple one-layer routing instance with two two-

pin nets A and B. If we arbitrarily choose the net ordering as routing A first fol-
lowed by B, net B might be blocked by net A and thus requires more longer

wirelength to complete the routing (see Figure 12.10b). In contrast, if we route

B first and then A, we can get a better routing result with shorter total wire-

length (see Figure 12.10c). Therefore, it is desired to find a good net-ordering

scheme for general routing instances. Unfortunately, such a universally good

scheme is hard to find. In an earlier study, Abel concluded that there is no single

net-ordering scheme that performs better than any other ordering scheme in all

routing problems [Abel 1972], and finding the optimal net ordering has proven
to be NP-hard, meaning that most likely no polynomial-time algorithm exists to

solve this problem.

To remedy the deficiencies, today’s sequential routing often applies a heuris-

tic net ordering and conducts a rip-up and reroute process to further refine

the solution. Here we give some popular net-ordering schemes: (1) Order the

nets in the ascending order of the number of pins within their bounding boxes.

If there are more pins inside the bounding box of a net, this net would tend to

block the nets inside this bounding box. (2) Order the nets in the ascending
(descending) order of their lengths if routability (timing) is the most critical met-

ric. Research shows that routing shorter nets first often leads to better routabil-

ity, because they usually have less routing flexibility than the longer ones. In this

way, the shorter and straight nets would be routed without excessive detours,

and the routing resource would be used more efficiently. In contrast, longer

nets should be routed earlier for high-performance designs because they typi-

cally determine the overall timing. (3) Order the nets on the basis of their timing

criticality. In addition to the net-ordering schemes, we can first analyze the net
distribution over the routing region, identify the congested regions, and then

route nets in the most congested regions first.

A

(a) (b)
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A

FIGURE 12.10

Routing based on different net orderings: (a) A one-layer routing instance with two two-pin

nets A and B. (b) An inferior solution obtained by the net ordering of A followed by B.

(c) A better solution resulted by the net ordering of B followed by A.
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The rip-up and reroute process consists of two steps: (1) identify the bottle-

neck regions and rip up some already routed nets and (2) route the blocked con-
nections and reroute the ripped-up connections. The process often performs

iteratively until all nets are routed or a time limit is exceeded. Generally, it can

lead to more desirable routing solutions. As the example of Figure 12.10b, if

the router has observed that net B is blocked or its length is substantially

increased because of net A, it can rip up net A, and reroute B and then A to

improve the solution. McMurchie and Ebeling developed a negotiation-based
rip-up and reroute algorithm called PathFinder for field-programmable gate
array (FPGA) [McMurchie 1995], which reveals its superiority in recent leading
academic global routers, such as BoxRouter [Cho 2007], FastRoute [Pan 2007],

FGR [Roy 2007], NTHU-Route [Chang 2008], and NTUgr [Hsu 2008].

Chen et al. and Kastner et al. developed pattern-routing schemes

[Ho 1990; Chen 1999; Kastner 2002] that use patterns such as L-shaped
(1-bend) or Z-shaped (2-bend) routes to make connections (see Figure 12.11).

The pattern routing gives the shortest path length between two points and

enjoys very high speed and less memory use, because the search space followed

by patterns is much smaller than the maze-routing algorithm. As a result, pattern
routing is pervasively used for global-routing applications.

12.4.2 Concurrent global routing

The major drawback of the sequential approach is that it suffers from the net-

ordering problem. Under any net ordering, it is more difficult to route the nets

that are considered later, because they are subject to more blockages. In addi-

tion, if the sequential routing fails to find a feasible solution, it is not clear
whether this is because of no existing feasible solution or because of a poor

selection of net order. Moreover, when the sequential routing does find a feasi-

ble solution, we do not know whether or not this solution is optimal or how far

it is from the optimal solution. These questions may be answered if we solve the

routing problem with the concurrent approach.

(a) (b)

FIGURE 12.11

Pattern routing: (a) L-shaped (1-bend) routes. (b) Z-shaped (2-bend) routes.
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One popular concurrent approach is to formulate global routing as a 0-1
integer linear programming (0-1 ILP) problem. The layout is first modeled
as a routing graph G(V, E), where each node represents a tile and each edge

denotes the boundary between two adjacent tiles. Each edge e 2 E is assigned

a capacity, denoted by ce, which represents the number of tracks crossing that

boundary. Given a net, all of its possible routing patterns can be enumerated.

Let the variable xi, j 2 {0,1} indicate whether the routing pattern ri, j is selected

from the set Ri of routing patterns of net ni. Consequently, for a routing graph

G(V, E) with the netlist N, the congestion-driven global routing can be formu-

lated as a 0-1 ILP problem as follows:

Minimize l
Subject to

P
ri; j 2 Ri

xi; j ¼ 1; 8ni 2 N

xi; j E f0; 1g; 8ni 2 N; 8ri; j 2 RiP
i; j:e 2 ri; j

xi; j � lce; 8e 2 E

ð12:1Þ

The first and the second constraints require that only one routing pattern can

be chosen for each net, and the third constraint with the objective together

ensure to minimize the maximum congestion. If a solution of l � 1 exists, a
global-routing solution with the maximum congestion being minimized can be

achieved.

Because the 0-1 ILP is NP-complete, the high time complexity greatly limits the

feasible problem size. An alternate approach to this problem is to first solve the

continuous linear programming (LP) relaxation, obtained by replacing the sec-

ond constraintwith the real variablexi, j E [0,1], because LPproblems canbe solved

in polynomial time. Then, the resulting fractional solution can be transformed to

integer solutions through rounding such as randomized rounding [Raghavan
1987]. However, this approximation could inevitably lose the optimality.

In practice, the 0-1 ILP concurrent routing technique is often embedded into

a larger overall global routing framework with a hierarchical, divide-and-conquer

manner, such as solving a subproblem, in which the complexity of computing

the optimal solution is manageable. Another approach to divide a routing region

into subregions such that the routing problem can be handled subregion by sub-

region to reduce the problem size is BoxRouter [Cho 2006], which is based on

box expansion to push the congestion outward progressively.

12.4.3 Steiner trees

The algorithms we have described so far are mainly for two-pin nets. If all nets are

two-pin ones, we can apply a general-purpose routing algorithm to handle the prob-

lem, such as maze, line-search, and A*-search routing described in Section 12.3.

For three or more multi-pin nets, one naive approach is to decompose each

net into a set of two-pin connections, and then route the connections one-by-
one. One popular decomposition method is to find a minimum spanning tree
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(MST) for pins of each net, which is a minimum-length tree of edges connecting

all the pins. The MST can efficiently be computed in polynomial time by the
Kruskal [Kruskal 1956] or Prim-Dijkstra [Prim 1957] algorithms. However,

the routing result of this approach would depend on the decomposition and

often leads to only suboptimal solutions. Figure 12.12 depicts an example 4-

pin net decomposed by a rectilinear MST, where each segment runs horizontally

or vertically.

A better and more natural method to route multi-pin nets is to adopt the

Steiner-tree–based approach. Specifically, a minimum rectilinear Steiner
tree (MRST) is used for routing a multi-pin net with the minimum wirelength.
Given m points in the plane, an MRST connects all points by rectilinear lines,

possibly via some extra points (called Steiner points), to achieve a minimum-

wirelength tree of rectilinear edges. Let P and S denote the sets of original

points and Steiner points, respectively. Then, we have the following relationship

between MRST and MST.

MRSTðPÞ ¼ MSTðP [ SÞ ð12:2Þ
Figure 12.13b shows an example of the MRST with two Steiner points s1 and s2
for the four pins p1, p2, p3, and p4 in Figure 12.13a.

There could be an infinite number of Steiner points that need to be consid-

ered for the MRST construction. Fortunately, Hanan proved that for a set P of
pins, there exists an MRST of P with all Steiner points chosen from the grid

points of the Hanan grid, which is obtained by constructing vertical and hori-

zontal lines through every pin in P. This is known as Hanan’s theorem [Hanan

1966]. Figure 12.13c shows the Hanan grid for the four pins in Figure 12.13a.

Both the Steiner points s1 and s2 of MRST in Figure 12.13b are on the grid points

of the Hanan grid.

(a) (b)

p1

p2

p3

p4

p2

p3

p4

p1

pin

FIGURE 12.12

A 4-pin net decomposed by a minimum rectilinear spanning tree: (a) A net consisting of four

pins: p1, p2, p3, and p4. (b) An MST of (a), which decomposes the net into three two-pin

connections.
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The Hanan theorem greatly reduces the search space for the MRST con-

struction from an infinite number of choices to only m
2-m candidates for

the Steiner points, where m=|P|. However, the MRST construction is still an

NP-hard problem [Garey 1977]. Therefore, many heuristics have been

developed.

The relationship between MST and MRST can be stated by Hwang’s
theorem [Hwang 1976] as follows:

WirelengthðMST ðPÞÞ
WirelengthðMRSTðPÞÞ �

3

2
ð12:3Þ

Equation (12.3) gives a strong motivation for constructing an MRST by an

MST-based approximation algorithm. Ho et al. constructed an MRST from an

MST by maximizing monotonic (nondetour) edge (e.g., L-shaped, Z-shaped)

overlaps by dynamic programming [Ho 1990]. Kahng and Robins developed

the iterated 1-Steiner heuristic [Kahng 1990] (see Algorithm 12.1). Starting
with an MST, they iteratively select one Steiner point that can reduce the wire-

length most and then add the Steiner point to the tree. The iterations continue

until the wirelength cannot be further improved. Figures 12.14b–d illustrates the

first, second, and third iterations after inserting Steiner points s1, s2, and s3 into

the initial MST in Figure 12.14a, respectively. Note that the iterated 1-Steiner

heuristic may generate a “degenerate” Steiner point with the number of

branches (degrees) ≦ 2, such as s1 in Figure 12.14d. Therefore, we have to

remove a degenerate Steiner point whenever it is created (see Figure 12.14e).
Figure 12.14e shows the final MRST of Figure 12.14a.

On the basis of the spanning graph that contains an MRST in a sparse

graph, [Zhou 2004] developed an efficient MRST algorithm with the worst-case

time complexity of only O(m lg m) and solution quality close to that of the

p4

(a) (b)

p2

p3

p4

p2
p3

p4

p1 s2

s1

p1

(c)

p2

p3

s2

s1

p1

pin Steiner point

FIGURE 12.13

A minimum rectilinear Steiner tree (MRST) and its Hanan grid: (a) A net consisting of a set P of

four pins: p1, p2, p3, and p4. (b) An MRST of (a) with the two Steiner points s1 and s2. (c) The

Hanan grid of P. Note that all Steiner points s1 and s2 of MRST in (b) are chosen from the grid

points on the Hanan grid.
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iterated 1-Steiner heuristic. [Chu 2004] developed the FLUTE package by use of

precomputed lookup tables to efficiently and accurately estimate thewirelength for

multi-pinnets. Lin et al. constructed a single-layer and amulti-layer obstacle-avoiding

MRST to consider routing obstacles incurred frompower networks, prerouted nets,

IP blocks, and/or feature patterns for manufacturability/reliability improvements

[Lin 2007, 2008]. Shi et al. constructed an obstacle-avoiding MRST based on a cur-

rent-driven circuit model [Shi 2006].

Algorithm 12.1 Iterated 1-Steiner Algorithm

Input: P – a set of m pins.
Output: a Steiner tree on P.
1. S f;

/*H(P [ S): set of Hanan points */
/* DMST(A, B) ¼Wirelength(MST(A))� Wirelength(MST(A [ B)) */

2. while (Cand  {x 2 H(P [ S) | DMST(P [ S, {x}) > 0} 6¼ f) do
3. Find x 2 C and which maximizes DMST(P [ S, {x});
4. S S [ {x};
5. Remove points in S which have degree � 2 in MST(P [ S);
6. end while
7. Output MST(P [ S);

(a) (b) (c)

pin

Steiner point

s1

s2
s1

s3 s1

s2
s3

s2

(d) (e)

FIGURE 12.14

A step-by-step example of the iterated 1-Steiner heuristic for a 4-pin net: (a) The initial MST.

(b) The MRST after the first iteration by inserting the Steiner point s1. (c) The MRST after the

second iteration by inserting the Steiner point s2. (d) The MRST after the third iteration by

inserting the Steiner point s3. (e) The final MRST after removing the degenerate Steiner

point s1.
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12.5 DETAILED ROUTING
Given global-routing paths, detailed routing determines the exact tracks and vias

for nets. Here, we discuss the two most popular types of detailed routing: chan-
nel routing and full-chip routing.

In earlier process technologies when the maximum number of available

metal layers was only two or three, channel routing was pervasively used,
because most wires were routed in the free space (i.e., routing channel)
between a pair of logic blocks (cell rows); see Figure 12.15. In modern technol-

ogies, a chip typically contains six to ten metal layers, and the number of avail-

able metal layers is expected to increase steadily in the near future. With more

metal layers, routing over the logic block (cell rows) is common (i.e., over-the-
cell routing). As a result, routing regions become more like channel-less

regions. This trend drives the need of a full-chip routing method.

12.5.1 Channel routing

Channel routing is a special case of the routing problem in which wires are

connected within the routing channels. To apply channel routing, a routing

region is usually decomposed into routing channels. Note that there are often

various ways to decompose a routing region. For example, Figure 12.16 shows

two ways of decomposition for the T-shaped routing region. The routing region
shown in Figure 12.16a is decomposed into one horizontal channel (channel 1)

and one vertical channel (channel 2), whereas that in Figure 12.16b is decom-

posed into two horizontal channels (channels 1 and 2) and one vertical channel

(channel 3).

Channel routing

FIGURE 12.15

Channel routing between IC blocks.
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The order of routing regions significantly affects the channel-routing pro-

cess. In Figure 12.16a, no conflicts occur in case of routing in the order of chan-

nel 2 and then channel 1. Instead, if channel 1 is routed first and all related

wirings are fixed in the channel, channel 2 cannot be expanded if this channel
cannot accommodate all the nets. In contrast, if channel 2 is routed first, we can

still expand channel 1 for routing if needed. Note that it is not always possible

to find a feasible channel ordering to avoid conflicts, for which we could resort

to L-shaped channel routing to resolve the conflicts.

For modern chip routing, each routing layer typically has a preferred routing

direction, either a horizontal or a vertical routing layer (a.k.a. reserved
routing model). For example, the three-layer HVH routing model means

that the preferred directions of the first, second, and third layers are horizontal,
vertical, and horizontal, respectively. For the channel routing problem discussed

in this section, we assume a two-layer HV routing model, unless stated otherwise.

We define some terminology of channel routing (see Figure 12.17 for an illus-

tration). The inputs to a channel routing problem are two channel boundaries,

the upper boundary and the lower boundary, with pin (terminal) numbers

on columns of the channel boundaries. The pin number represents its unique

net ID; pins of the same number belong to the same net and thus must be

interconnected. The horizontal wire segments on the tracks are trunks, and
the vertical wire segments connecting trunks to pins are branches. If the rout-

ing path of a net contains more than one trunk, this routing path is called a dog-
leg. The area of a routing channel is represented by the number of routing

tracks, called channel height, inside the channel. Each column of a routing

channel is associated with a local density to represent the total number of nets

crossing the column. Channel density, the density of a routing channel, is then

defined as the maximum local density inside the channel. It is obvious that

channel density is a lower bound for the number of tracks required to complete
the routing. The main objective of channel routing is to minimize the channel

(b)(a)

channel 1

channel 2

channel 1 channel 2

channel 3

FIGURE 12.16

Two ways of routing region decomposition: (a) The routing region is decomposed into two

channels. (b) The routing region is decomposed into three channels.
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height, which is directly related to the die size and thus the manufacturing cost.

The general two-layer channel routing problem is NP-complete [Szymanski

1985], whereas some special cases of the problem can be solved optimally in

polynomial time [Hashimoto 1971].

Figure 12.17a illustrates an example of two-layer channel routing that con-
nects three nets with the pin numbers 1, 2, and 3, respectively. The channel

height is two, and the connection of net 1 is a dogleg. For brevity, we would

instead use the simplified illustration of Figure 12.17b throughout this chapter.

As illustrated in Figure 12.17b, the routing channel contains eight columns with

its local densities of 1, 2, 2, 2, 2, 2, 2, 1 for these columns (from left to right) and

the channel density of 2.

To minimize the channel height, doglegs are commonly used to connect wire

segments. For the same routing instance, the channel routingwith doglegs shown
in Figure 12.18b requires a channel height of only two tracks, whereas that with-

out dogleg shown in Figure 12.18a needs four tracks to complete the routing.

(a)

(b)

1

2

1 2 2 2 2 2 2 1

1 2 3 4 5 6 7 8

2

3 3

1

column:

density:

metal 1
metal 2

pin

via

metal 1
metal 2

pin

track

3 3

Channel height

Trunk Branch

Dogleg

1

12 2

FIGURE 12.17

Channel routing illustration: (a) A channel routing configuration with two routing tracks.

(b) A simplified illustration for (a).
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In the following we introduce the dogleg channel routing algorithm
[Deutsch 1976], which is an extension from the constrained left-edge chan-
nel routing algorithm [Hashimoto 1971]. The dogleg channel routing algo-

rithm first decomposes multi-pin nets into two-pin connections and then

assigns the trunk of each connection into a feasible track.

The dogleg channel routing algorithm contains three steps: (1) decompose

each multi-pin net into 2-pin connections, (2) construct two constraint graphs

to model the routing constraints, the horizontal constraint graph (HCG)

and the vertical constraint graph (VCG), according to the locations of these

connections, and (3) route each net without violating any constraints modeled
in both HCG and VCG. As an example of the net decomposition, the 3-pin net 1

(represented by the interval [2, 7] because it spans from Column 2 to Column 7)

is broken into two 2-pin connections, 1a (interval [2, 5]) and 1b (interval [5, 7]),

as shown in Figure 12.19b.

The second step is to construct the HCG and VCG for the given routing

instance. The HCG (V, E ) is an undirected graph, where each node vi 2 V repre-

sents a connection ni, and an edge (vi, vj) 2 E exists if and only if a horizontal

constraint exists between connections ni and nj (i.e., the spans [intervals]) of
ni and nj are overlapped) and thus ni and nj cannot share the same track or a

circuit short would occur. In the example of Figure 12.19b, the spans of connec-

tions 2 and 4 ([1, 4] and [2, 4], respectively) are overlapped in the interval

[2, 4], so there is a horizontal constraint in HCG between the nodes 2 and 4.

Figure 12.19c depicts the HCG for the channel routing instance of

Figure 12.19b. Note that there is no horizontal constraint between 1a and 1b,

because they belong to the same net (net 1).

(b)(a)

1 2

4431 2 3 4431 2 3

32

1 2 32

metal 1 metal 2pin

FIGURE 12.18

The effect of dogleg channel routing: (a) A channel routing solution without dogleg

requires four tracks for routing completion. (b) A channel routing solution with dogleg

only requires two tracks.
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The VCG (V, E ) is a directed graph in which each node vi 2 V represents a

connection ni, and a directed edge (vi, vj) 2 E exists if a vertical constraint exists

between ni and nj (i.e., the truck of ni must be above that of nj ). The VCG can

directly be constructed according to the pin locations in the upper and lower

boundaries. For the example of Figure 12.19b, the pins in Column 4 of the upper

and lower boundaries are 4 and 2, respectively; therefore, there is a directed edge
(4, 2) in VCG. Figure 12.19d gives the VCG for the instance of Figure 12.19b.

The third step is to route each net under the constraints specified in both

HCG and VCG. Suppose it routes nets to the routing tracks from top to bottom.

In this step, the constrained left-edge algorithm [Hashimoto 1971] is applied.

First, the algorithm treats each connection as an interval, and intervals are

sorted according to their left-end x-coordinates. Then, the connections without

any vertical constraint (e.g., the nodes with zero in-degrees in the VCG) are

routed one-by-one according to the order. For a connection, tracks in the channel
are scanned from top to bottom, and the first track that can accommodate this

connection is assigned to the connection. After all trunks (horizontal connec-

tions) are assigned to tracks, channel routing is completed by connecting the left

ends and right ends of the trunks to the corresponding pins on the channel

boundaries via branches. Note that the routing for a channel with no vertical

2 3

51a

1b 4

1a 34 {1a,1b} 5

2
3

4
5

1a
1b

2 3

4

51a

1b

(b)

1

1 34 51

12 4 2 3 5

71 2 4 53 6 8 71 2 4 53 6 8

1b2 4 2 3 5
(a)

(d)(c)

column: column:

FIGURE 12.19

Constraint graph construction for dogleg channel routing: (a) A channel routing instance.

(b) Multi-pin net decomposition. (c) The undirected horizontal constraint graph (HCG).

(d) The directed vertical constraint graph (VCG).
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constraints (see the instance shown in Figure 12.17 for an example) can be solved

optimally in polynomial time by the left-edge algorithm [Hashimoto 1971].

Figure 12.20 illustrates dogleg channel routing for the instance of Figure 12.19a,

which has the channel density of three. Connections are first sorted as<2, 1a, 4, 1b,

3, 5> according to their left-end coordinates (see Figure 12.20a). As shown in
Figure 12.20b, there are two unconstrained connections 1a and 3 in the VCG, and

according to the order, 1a and 3 are routed one-by-one. Both 1a and 3 are assigned

to the first track. Then the VCG is updated by deleting nodes 1a and 3 and related

edges (see Figure 12.20c). The resulting unconstrained connections in the VCG

are 4 and 5. Similarly, 4 and 5 are routed one-by-one, and both trunks of 4 and 5

are routed on the second track. The VCG is then updated by deleting the nodes 4

and 5 and related edges (see Figure 12.20d). The resulting unconstrained connec-

tions in theVCG are 1b and2. Finally, 2 and1b are routedone-by-one, andboth trunks

1a

1b

2

4

3

5

[2,4]4

[5,7]1b

[6,8]3

[7,8]5

[2,5]1a

[1,4]2

RangeNet

2

1b

2

1st track: 1a [2,5], 3 [6,8]

2nd track: 4 [2,4], 5 [7,8]

3rd track: 2 [1,4], 1b[5,7]

1 35

1st track

2nd track

3rd track

1a 3

4 5

2 1b

(d)

(a) (b) (c)

2

4

5

1b

1st track: 1a [2,5], 3 [6,8]

1

2nd track: 4 [2,4], 5 [7,8]

1st track: 1a [2,5], 3 [6,8]

(e)

column: 71 2 4

4

5

1

3 6 8

12 4 2 3 5

FIGURE 12.20

Dogleg channel routing for the instance of Figure 12.19a (unconstrained connections in the

VCG are circled): (a) Connections are sorted by the left-end coordinates. (b) Connections 1a
and 3 are assigned one-by-one to the first track. (c) Connections 4 and 5 are assigned

one-by-one to the second track. (d) Connections 2 and 1b are assigned one-by-one to the

third track. (e) The final routing solution with three tracks.
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of 2 and 1b are assigned to the third track. The final routing solution is then obtained

(see Figure 12.20e) after connecting the left ends and right ends of each trunk to the
pins on the corresponding channel boundaries via branches.

Note also that the dogleg channel routing algorithm introduced in [Deutsch

1976] applied two parameters to control the routing:

n Range: Determines the number of consecutive 2-pin connections of the

same net that can be placed on the same track. This parameter would

affect the number of doglegs and thus the number of vias.

n Routing sequence: Specifies the starting position and the direction of rout-

ing along the channel. The dogleg channel router assigns connections to

the routing tracks from top to bottom, from bottom to top, or alternately

with the two directions. Different routing sequences might result in differ-

ent routing solutions. Note that the connections without any vertical con-
straint correspond to the nodes with zero out-degrees in the VCG if the

routing sequence is from bottom to top.

12.5.2 Full-chip routing

Full-chip routing is typically a very complex combinatorial problem. To make it

manageable, many routing algorithms adopt a two-stage technique of global

routing followed by detailed routing. However, the continuously increasing

design complexity imposes severe challenges for modern routers. The tradi-

tional flat framework does not scale well as the design size increases. A mod-

ern chip may contain billions of transistors and millions of nets. To cope with

the scalability problem, routing frameworks are evolving, and the hierarchical
and multilevel frameworks have become more and more popular for large-

scale designs.

The hierarchical routing framework uses the divide-and-conquer approach

by transforming a large and complicated routing problem into a series of smaller

and simpler subproblems and then proceeds in a top-down, bottom-up, or

hybrid manner, which can be applied to both global and detailed routing.

A top-down hierarchical global-routing framework has been proposed in

[Burstein 1983]. The algorithm recursively divides the routing regions into suc-
cessively smaller subregions, named super cells, and nets at each hierarchical

level are routed sequentially or concurrently and are refined in the subsequent

levels. Figure 12.21 illustrates an example of global routing for a 3-pin net by the

top-down hierarchical approach, in which the routing region is recursively

bisected into smaller super cells, and at each level, the net is routed in terms

of these super cells at that level. This process is performed in a top-down man-

ner until the sizes of super cells reduce to that of global-routing tiles.

A bottom-up hierarchical routing method is developed in [Marek-Sadowska
1984]. Initially, the routing region is partitioned into an array of super cells.

At each hierarchical level, the routing is restrained within each super cell
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individually. When the routing at the current level is finished, every four super

cells are merged to form a new larger super cell at the next higher level. This

process continues until the top level containing the whole chip is reached.
Figure 12.22 shows the process of bottom-up hierarchical routing for a 7-pin

net, in which each solid rectangle represents a super cell, and the 2*2 dotted

subregions of the previous level are merged together.

A major limitation in the top-down and the bottom-up hierarchical approaches

is that the routing decision made at one hierarchical level may be suboptimal for

level 0

level 3 level 2

level 1

pin

FIGURE 12.21

A level-by-level top-down hierarchical routing approach for a 3-pin net.

level 0

level 1level 2

merging point

pin

FIGURE 12.22

A level-by-level bottom-up hierarchical routing approach for a 7-pin net.
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subsequent levels. To alleviate this problem, Lin, Hsu, and Tsai proposed a hybrid

hierarchical approach that combines the bounded maze-routing algorithm with
both the top-down and bottom-up hierarchical methods into a unified routing

framework [Lin 1990]. Their algorithm consists of three phases: (1) neighboring

propagation, (2) preference partitioning, and (3) bounded routing.

Phase 1 performs bounded maze routing by propagating W circles of waves

out of each pin, where W is a user-defined parameter. If the connection is not

found, Phase 2 recursively maps the pins and blockages onto the adjacent upper

level (see Figure 12.23a) and calls the bounded maze-routing algorithm until a

path is found. Then, the connected path is mapped back to the lower level to
preferred regions (see Figure 12.23b). Phase 3 finds a routing path in the pre-

ferred regions (see Figure 12.23c). Compared with pure top-down or bottom-

up hierarchical routing, the hybrid hierarchical approach has more global

information to generate better routing solutions.

Although the hierarchical routing approach can scale to larger designs, it has

the significant drawbacks that the interactions among different routing subre-

gions are lacking and the routing decision at a level is irreversible (i.e., cannot

be refined at later stages), thus limiting the solution quality. To remedy the defi-
ciencies, researchers have proposed the multilevel framework to handle

large-scale routing problems. The multilevel frameworks were first developed

in [Cong 2001, 2002] for global routing and in [Lin 2002] and [Chang 2004]

for both global and detailed routing. In the following, we introduce the routabil-

ity-driven L-shaped multilevel routing framework [Chang 2004].

preferred regions

obstacle

pin
routing path

(a)

Map to the upper 
level and find a
routing path

(b)

Map back to
the lower level to

form preferred regions

(c)

Find a routing path
in the preferred
regions

FIGURE 12.23

An example of global routing by use of the hybrid hierarchical approach: (a) Mapping pins and

blockages up one level and then finding a routing path at the upper level. (b) Mapping the

connection at the upper level to the lower level to form the preferred regions. (c) Finding a

routing path in the preferred regions.
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The multilevel routing framework models the routing resource as amultilevel-
routing graph. At the beginning, the routing region is partitioned into an array of
rectangular subregions, each of which may accommodate tens of routing tracks in

each dimension (see Figure 12.24). These subregions are called global cells (GCs).
A node in the routing graph represents a GC in the chip, whereas an edge

denotes the boundary between two adjacent GCs. Each edge is assigned a capacity

according to the physical area or the size of a GC. This routing graph is called the

multilevel-routing graph of level 0, denoted by G0, in which the subscript repre-

sents the level.

The L-shaped multilevel routing framework consists of bottom-up coarsen-
ing followed by top-down uncoarsening. The coarsening stage is a bottom-up

approach that iteratively groups a set of GCs in the multilevel-routing graph.

This process starts from the finest level (level 0) to the coarsest level; at each

level k, four adjacent GCk of Gk are merged into a larger GCkþ1 of Gkþ1, and
at the same time it performs resource estimation for use at the k þ 1 level.

Coarsening continues until the number of GCs at a level is below a threshold.

In contrast, the uncoarsening stage iteratively ungroups a set of previously clus-

tered GCs in a top-down manner. It proceeds from the coarsest level to the
finest level; at each level k, a GCk is decomposed into four smaller GCkþ1.
Uncoarsening continues until the finest level is reached. Figure 12.25 illustrates

the L-shaped multilevel framework.

Given a netlist, the multilevel routing first applies a minimum spanning tree

(MST) algorithm to decompose each net into 2-pin connections. At each level k

of the coarsening stage, global routing is first performed for the local 2-pin con-

nections (those connections that entirely sit inside a GCk), and then the detailed

router is used to determine the exact wiring. Let the multilevel-routing graph of
level 0 be G0 ¼ (V0, E0), and the global-routing result for a local connection be

Re ¼ {e 2 E0|e is the edge chosen for routing}. For the congestion control, the

cost function a : E0 ! ℜ is applied to guide the routing:

aðReÞ ¼
X
e2Re

ce ð12:4Þ

Resource modeling Multilevel routing graphPartitioned layout

FIGURE 12.24

The multilevel-routing graph.
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where ce is the congestion of edge e and is defined by

ce ¼ 1=2ðpe�deÞ ð12:5Þ
where pe and de are the capacity and density associated with e, respectively.

Note that we always search the shortest global-routing path between two pins

in the coarsening stage therefore (i.e., monotonic routes or no detours); there-
fore, the wirelength is the minimum, and thus the wirelength is not included

in the cost function at the global routing stage. This cost function can guide

the global router to select a path with smaller congestion.

After the global routing is completed, the detailed routing applies a simulta-
neous pathlength and via minimization (SPVM) algorithm to perform

modified maze routing that simultaneously considers the pathlength and via

minimization. For better circuit performance, it is desirable to minimize the

number of vias used in a routing path, because vias typically have significantly
larger RC delay than metal wires. The SPVM algorithm can find a shortest path

with the minimum number of bends/vias, if such a path exists. It associates each

basic detailed routing region u (could be a grid cell in grid-based routing or a

basic routing region defined by the wire pitch in gridless routing) with two

labels d(u) and b(u), where d(u) is the distance of the shortest path from the

source s to u, and b(u) is the minimum number of bends/vias along the shortest

path from s to u.

Initially, d(s), b(s) ¼ 0, and d(u), b(u) ¼1, 8 u 6¼ s. In the filling phase
of maze routing, the computation of label d is the same as the original maze-

routing algorithm. Let u be a basic routing region on the wavefront of wave

propagation and v a neighboring basic-routing region of u. The predecessor

G0

G1

G2G2

G1

G0

Perform global and detailed
routing for local nets and then
estimate routing congestion for
the next level.

Use maze routing to reroute
failed nets and iteratively
refine the solution.

To-be-routed net Already-routed net

coarsening

coarsening uncoarsening

uncoarsening

FIGURE 12.25

The L-shaped multilevel routing framework.
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routing region of u is the region from which the wavefront was propagated for

obtaining the minimum b(u). The propagation direction of u is the direction
from the predecessor routing region of u to u. The computation of b(v) is

shown in Algorithm 12.2.

Algorithm 12.2 Computation of b(v) in the SPVM Algorithm

1. if (d(v) � d(u) þ 1) do
2. if ((b(v) > b(u)) and

(v is along the propagation direction of u)) do
3. b(v) b(u);
4. Record u as the predecessor routing region of v;
5. end if
6. if ((b(v) > b(u) þ 1) and

(v is not along the propagation direction of u)) do
7. b(v) b(u) þ 1;
8. Record u as the predecessor routing region of v;
9. end if

10. end if

The basic idea is to compare the distance label d first and then compare the

bend/via number label b. The value b(v) of a neighboring routing region v with
d(v) < d(u) remains unchanged, because the path from s through u to v is not

the shortest path between s and v. The retracing phase is the same as that of the

original maze-routing algorithm. Note that there may be several shortest paths

with different numbers of bends/vias. The wave-propagation phase always

keeps track of the shortest path with the minimum bend/via number to allow

the retracing phase to find such a path.

When the global and detailed routing is performed at level k, four adjacent

GCk are merged into a larger GCkþ1 and at the same time resource estimation
is performed for use at the next level k þ 1. Because the global routing, detailed

routing, and resource estimation are integrated together at each level, the rout-

ing resource estimation is more accurate, thus facilitating the solution refine-

ment (e.g., the rip-up and reroute processes) at the uncoarsening stage.

Algorithm 12.3 gives the algorithm of the L-shaped multilevel routing frame-

work [Chang 2004].

12.6 MODERN ROUTING CONSIDERATIONS
As the process geometries scale down to the nanometer territory, the IC indus-

try faces severe challenges in signal integrity, manufacturability, and

reliability. In this section, we address the routing problems considering

these issues. Specifically, we discuss crosstalk for signal integrity-aware routing,
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Algorithm 12.3 L-Shaped Multilevel Routing Algorithm

Input: G – partitioned layout;
N – netlist of multi-terminal nets.

Output: routing solutions for N on G
1. partition the layout and build MST’s for N;

//coarsening stage
2. for (each level at the coarsening stage) do
3. Choose a local net n;
4. if (n belongs to this level) do
5. Global_Pattern_Routing(n);
6. Detailed_Routing(n);
7. end if
8. end for

// uncoarsening stage
9. for (each level at the uncoarsening stage) do

10. Choose a local net n;
11. Global_Maze_Routing(n);
12. Detailed_Routing(n);
13. end for
14. Output_Result( );

optical proximity correction (OPC) and chemical-mechanical polishing
(CMP) for manufacturability-aware routing, and antenna effect avoidance and

double-via insertion for reliability-aware routing.

12.6.1 Routing for signal integrity

As the fabrication technology advances, on-chip minimum feature sizes con-
tinue to decrease, clock rates keep increasing, and devices and interconnection

wires are placed in closer proximity to reduce interconnection delay and rout-

ing area. Consequently, increasing the aspect ratios of wires and decreasing

interconnect spacing make the coupling capacitance larger than self-capaci-

tance. In fact, the ratio of coupling capacitance is reported to be even as high

as 70% to 80% of the total wiring capacitance, even in the 0.25-mm technology.

As a result, crosstalk becomes a key issue for signal integrity.

12.6.1.1 Crosstalk modeling

Noise is an unwanted variation that makes the behavior of a manufactured

circuit deviate from the expected response. The deleterious influences of
noise can be classified into two categories. One is malfunctioning, which

makes the logic values of gates differ from what we desire; the other is timing
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change, which is caused by switching behavior. The main noise comes from

the crosstalk effect, which is mostly caused by the coupling capacitance

between interconnection wires. As an example shown in Figure 12.26, because

of the coupling capacitance Cc between wires 1 and 2, wire 2 would induce

an undesirable pulse when wire 1 is activated by a positive signal. If the unex-

pected pulse is larger than a threshold, the functionality of the circuit may fail.
More precisely, the crosstalk between two wires switching in different direc-

tions would increase signal delays and decrease signal integrity; on the contrary,

the crosstalk would decrease signal delays and increase signal integrity if the

two wires switch in the same direction.

In general, the crosstalk between two wires is proportional to their coupling

capacitance, which is determined by the relative positions of these wires.

The coupling capacitance between orthogonal wires is negligible compared

with that between adjacent parallel wires in current technology. Consequently,
the crosstalk can be approximated by considering only adjacent parallel

wires.

Figure 12.27 illustrates an instance with two wires i and j belonging to differ-

ent nets. The coupling capacitance cij between i and j can be approximated as

follows [Sakurai 1983]:

cij ¼ a
lij

ðdijÞk
ð12:6Þ

where a is a technology-dependent constant, k is a constant between 1 and 2

(and close to 2), lij is the overlapping length of wires i and j, and dij is the

distance between wires i and j. On the basis of Equation (12.6), we can see that

Wire 1
Wire 1 active

passive

Wire 2

Wire 2Cc

FIGURE 12.26

The crosstalk effect.

i

j

lij

dij

FIGURE 12.27

The capacitive crosstalk computation between two wires i and j.
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the coupling capacitance between two parallel wires is proportional to their cou-

pling length and is inversely proportional to the distance between them. More

accurate crosstalk modeling can be found in [Vittal 1999; Jiang 2000; Cong 2001].

12.6.1.2 Crosstalk-aware routing

Routing with minimum crosstalk has been extensively studied in the literature

[Gao 1996; Zhou 1998; Ho 2005, 2007]. Gao and Liu applied a mixed ILP (inte-

ger linear programming) formulation to permute the routing tracks in a given

channel routing solution to minimize crosstalk [Gao 1996]. Zhou and Wong
minimized crosstalk during global routing on the basis of a Steiner tree formula-

tion and Lagrangian relaxation [Zhou 1998]. Chaudhary, Onozawa, and Kuh

proposed a wire-spacing adjusting algorithm after detailed routing to reduce

crosstalk [Chaudhary 1993]. However, it might not be easy to handle crosstalk

during global routing or detailed routing. It might be too early to handle cross-

talk during global routing, because the relative positions and ordering of nets

are not determined at this stage; consequently, the best that one can possibly

do is to use rough statistical estimators that discourage nets from entering
unwanted proximity regions. Conversely, it might be too late for detailed rout-

ing to handle crosstalk, because detailed routers may encounter unsolvable

rip-up/re-route problems when trying to embed a late-routing net into a dense

region with conflicting aggressor or victim nets.

To address these problems, Ho et al. incorporated a layer/track assign-
ment heuristic for crosstalk optimization in the intermediate stage of the L-
shaped multilevel routing framework [Ho 2005], as shown in Figure 12.28.

FIGURE 12.28

The L-shaped multilevel routing framework with an intermediate stage for

crosstalk minimization.
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The layer/track assigner works on a full row or column of the global cell

array at a time, where a row (column) is called a panel. In the layer/track
assignment, the segments spanning more than one complete global cell in a

row or a column are processed, and short segments are routed during detailed

routing.

First, a horizontal constraint graph HCG(V, E ) is built for all segments in the

panel. Each vertex v 2 V corresponds to a segment in the panel. Two vertices vi
and vj are connected by an edge e 2 E if and only if these segments belong to

two different nets and their spans overlap. The edge cost of e ¼ (vi, vj) 2 E

represents the coupling length if vi and vj are assigned to adjacent tracks. The
crosstalk-driven layer assignment can be formulated as the max-cut, k-coloring

(MC) problem. However, the general MC problem is NP-complete [Garey

1979]. Thus, a simple yet efficient heuristic is applied by constructing a maxi-

mum spanning tree of HCG followed by the k-coloring method to spread all seg-

ment into k layers. After k-coloring, the nodes are assigned to layers one-by-one

in a decreasing order of their costs (coupling lengths).

After the crosstalk-driven layer assignment, the crosstalk-driven track assignment

is applied. Let T be the set of tracks inside a panel. Each track t 2 T can be repre-
sented by the set of its constituent contiguous intervals. Denote these intervals

by xi. A segment r 2 S (set of segments) is said to be assignable to t 2 T, t � [xi,
if xi is either a free interval or is an interval occupied by a segment of the same net.

After layer assignment, most of the edges with larger costs in an HCG

are eliminated, and the HCG is decomposed into k subgraphs subHCG1,

subHCG2, . . . , subHCGk if there are k layers. Figure 12.29 shows an example

of the track assignment problem for a subHCG, where S ¼ {a, b, c, d, e, f },

T ¼ {1, 2, 3, 4}, and obstacles on tracks are shaded in grey (e.g., the two obsta-
cles on tracks 3 and 4). A bipartite assignment graph is used to indicate the

assignability of segments to tracks. For example, as shown in Figure 12.29b,

edges between node a and nodes 1, 2, and 3 are introduced, because segment

a can be assigned to track 1, 2, or 3, but not track 4. For easier implementation,

the subHCG and the bipartite assignment graph are merged into a combination

graph, as shown in Figure 12.29c.

Because each vertex v 2 V corresponds to a segment and each edge e 2 E

corresponds to the coupling cost in HCG(V, E ), the crosstalk-driven track assign-
ment can be formulated as the Hamiltonian path problem which is NP-complete

[Garey 1979]. Here is a heuristic for this problem. The heuristic starts by finding

the maximal sets of conflicting segments. This is equivalent to finding the larg-

est clique Vc in the subgraph subHCGi. The algorithm first assigns one maximal

subset of conflicting segments at a time by starting from the largest clique. Then

the longest segment in the clique is chosen as the source s and assigned to the

uppermost available track. Then, the minimum-cost edge (s, i ) (and thus the

minimal coupling) is chosen, and the segment associated with i is assigned to
the first available track. If all tracks are occupied, the net associated with i is

marked as a failed net that will be reconsidered at the uncoarsening stage.
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The procedure is repeated by finding the minimum-cost edge (i, j ) for further

processing, where j is an unvisited node.
Figure 12.30 illustrates the track assignment process for the instance of

Figure 12.29. The maximum clique in the subHCG is {b, d, e, f }, and the longest

segment in the clique is b. Thus, the segment b is assigned to the uppermost

available track, which is track 1. See Figure 12.30b for the updated combination

graph after assigning b to track 1. Then, the heuristic makes b the source for

constructing the Hamiltonian path for the clique. The minimum-cost edge

e ¼ (b, f ) incident on b is chosen, and f is assigned to the first available track.

See Figure 12.30c for the updated combination graph after assigning f to track 2.
The process is repeated until all nodes in the clique are visited. The final track

assignment solution is shown in Figure 12.30a.

12.6.2 Routing for manufacturability

For manufacturability, OPC and CMP are two most important concerns for mod-

ern chip designs. The former adds or subtracts feature patterns to a mask to

enhance the layout resolution and thus the printability of the mask patterns
on the wafer, whereas the latter improves layout uniformity and chip planariza-

tion to achieve higher manufacturing yield.
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FIGURE 12.29

Constraint graph modeling for track assignment: (a) SubHCG for a given instance. (b) The

corresponding bipartite assignment graph. (c) The combination graph.
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12.6.2.1 OPC-aware routing

We will first introduce the manufacturing process. The process uses an optical
lithography system and goes through many cycles of processing, each of

which consists of two major steps: exposure followed by etching.
Figure 12.31 illustrates a basic optical lithography system. In the exposure

step, it transfers the patterns on a mask to the light-sensitive positive or neg-
ative photoresist coated on the top of the wafer, which is performed by an

intense ultraviolet light emitted from the light source through the apertures of

the mask. Exposed by the light, the positive photoresist becomes soluble to

the photoresist developer, whereas the negative photoresist becomes insoluble.
This chemical change allows some of the photoresist to be removed by a special

solution. In the etching step, a chemical agent removes the uppermost layer of

the wafer in the areas that are not protected by photoresist to form the designed

patterns on the wafer.

With the continuous shrinking of the minimum feature size, IC foundries

have to use an optical lithography system with a larger wavelength of light to

print a feature pattern with a much smaller size on a wafer, which is called

the sub-wavelength lithography gap (see Figure 12.32). For the modern pro-
cess technology, for example, we might need to print a 45-nm feature pattern by

use of the light of 193-nm wavelength. The sub-wavelength lithography gap

might lead to unwanted large shape distortions for the printed patterns on

1
a b

c f

e

d

2

3

4

(a)

(c)

1

2

3

4

a

c

d

e

(b)

a

1

2

3

4

c

d

e

f

FIGURE 12.30

Process of track assignment: (a) Final track assignment for the instance of Figure 12.29.

(b) The resulting combination graph after assigning b to track 1. (c) The resulting

combination graph after assigning f to track 2.
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the wafer. Physically, when a light with the wavelength l passes through an

aperture of the size d, the wavefronts of the light behave differently according
to the relation between l and d. When l is much smaller than the aperture size

d on the mask, the wavefronts of the light remain straight, as illustrated in

Figure 12.33a. However, when l is close to or larger than d, the light behaves

Light source

Projection lens

Projection lens

Photoresist
Wafer

Mask

FIGURE 12.31

A typical optical lithography system.
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FIGURE 12.32

The sub-wavelength lithography gap: the printed feature size is smaller than the wavelength of

the light shining through the mask.
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like waves (instead of particles) and diffraction occurs (see Figure 12.33b),

making the pattern on the wafer not exactly the same as that on the mask.

As a result, intensive use of costly resolution enhancement techniques
(RETs) to improve the layout accuracy becomes inevitable.

Many RETs are adopted at the post-layout stage to enhance the printability

and thus the yield. The increasing design complexity, however, leaves very lim-

ited space for post-layout optimization. Therefore, it is desirable to consider the

manufacturability earlier in the design flow, such as RET-aware routing.

Among the RETs, optical proximity correction (OPC) is the most popular

in industry. OPC is the process of modifying the layout patterns on the mask

(drawn by the designers) to compensate for the non-ideal properties of the
lithography process and thus to enhance the layout printability. Figure 12.34

illustrates an example of OPC enhancement. Without OPC, the printed patterns

on the wafer would be distorted from the designed pattern on the mask because

of the sub-wavelength lithography. In contrast, if the patterns on the mask are

enhanced by OPC, the printed patterns on the wafer could well match the

original designed patterns.

However, OPC might incur a large number of extra pattern features, imply-

ing larger memory requirements to record these features and thus higher
mask-making costs, such as mask synthesis, writing, and inspection verification.

If a router can consider the optical effects, the number of pattern features on

the final mask can greatly be reduced.

Chen and Chang proposed a rule-based OPC-aware multilevel router to

reduce the requirements for OPC-pattern feature [Chen 2007a]. They classify

the pattern distortions into three major types: corner rounding, line-end
shortening, and line-width shrinking, as illustrated in Figures 12.35a–c.

Mask

Photoresist
Wafer

Mask

(a) (b)

d

λ < d λ > d

d

Photoresist
Wafer

FIGURE 12.33

When a light with the wavelength l passes through an aperture of the size d, the wavefronts

of the light behave differently according to the relation between l and d: (a) When l is much

smaller than d, the wavefronts remain straight. (b) When l is much larger than d, diffracted

wavefronts might occur.
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For each type of distortion, the pattern features required for compensation are

identified on the basis of some geometry rules, for example, the serifs added at

corners to make the angles sharper, the hammerheads added at line ends to

compensate for line-end shortenings, and the line biasing added along line

sides to compensate for line-width shrinking (see Figure 12.36).

The number of pattern features required for OPC is then modeled as a cost for

routing the connection. For example, as shown in Figure 12.36a, four serifs are

required at the four corners to increase the fidelity of images for a line. Also,
when the length of a line increases, the ends of the line become shortened, as

illustrated in Figure 12.36b; therefore, two hammerheads are required at the line

ends for a long line. Besides, a wider line is easier to be affected by neighboring

lines than a narrower one, making the sides of a line shrink more seriously.

Patterns
on the mask 

Printed patterns
on the wafer

OPC-enhanced patterns
on the mask

(a)

(b)

Printed patterns
on the wafer

FIGURE 12.34

The effects of OPC: (a) Without OPC, the printed patterns on the wafer incur large distortions

from the patterns on the mask. (b) With OPC enhancement, the printed patterns could well

match the original patterns.

(a) (b) (c)

FIGURE 12.35

Three major types of pattern distortions (the dashed lines represent the ideal pattern shapes):

(a) Corner rounding. (b) Line-end shortening. (c) Line-width shrinking.
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Therefore, as shown in Figure 12.36c, some line biasing in the line sides is

required for a wide line. Therefore, the total number of additional features for a

line can be modeled as a function of the length and width of the line. With this

function, we can incorporate the OPC cost into the original routability and wire-

length costs for a router to obtain a rule-based OPC-aware routing method.

Chen, Liao, and Chang considered the OPC effects during routing to alleviate

the cost of post-layout OPC operations [Chen 2008b]. They developed an analyt-

ical formula for the intensity computation from model-based OPC (which
involves complicated simulations of various process effects) and a post-layout

OPC modeling on the basis of an inverse lithography technique, and then

incorporated the OPC costs into an OPC-friendly router. Huang et al. and Wu

et al. also addressed OPC-friendly maze routing [Huang 2004b; Wu 2005b].

12.6.2.2 CMP-aware routing

In the modern metallization process, copper (Cu) has replaced the traditional alu-

minum (Al) because of its better properties, such as higher current-carrying capa-

bility, lower resistance, and lower cost. However, the process of copper is

significantly different from that for traditional aluminum. The modern copper

metallization process applies the dual-Damascene process [Luo 2005], which
consists of electroplating (ECP) followed by the chemical-mechanical

(a) (b) (c)

FIGURE 12.36

Three major OPC compensation pattern features: (a) Serif. (b) Hammerhead. (c) Line biasing.

(a) (b) (c)

FIGURE 12.37

Damascene process: (a) Open trenches. (b) Electroplating (ECP) deposits Cu on the trenches.

(c) Chemical-mechanical polishing (CMP) removes Cu that overfills the trenches.
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polishing (CMP). The ECP deposits the copper on the trenches, whereas the

CMP removes the copper that overfills the trenches, as shown in Figures 12.37a–c.
Figure 12.38 shows a schematic diagram of the CMP process. Abrasive and

corrosive chemical slurry that can dissolve the wafer layer is deposited on

the surface of a polishing pad. Then, the polishing pad and wafer are pressed

together by a dynamic, rotating polishing head. Combined with both the chemi-

cal reaction and the mechanical force, the CMP process can remove materials

on the surface of the wafer and tends to make the wafer planar.

However, because of the difference in the hardness between copper and

dielectric materials, the CMP planarizing process might generate topography
irregularities, which might incur significant yield loss of copper interconnects.

The studies of the CMP process have indicated that the post-CMP dielectric

thickness is highly correlated to the layout pattern density, because during the

polishing step, the dielectric removal rates are varied with the pattern density.

A non-uniform feature density distribution on each layer might cause CMP to

over polish or under polish, as illustrated in Figure 12.39.

These post-CMP thickness variations need to be carefully controlled, because

the variation in one metal layer could be progressively transferred to subsequent
layers during manufacturing, and finally the accumulative variation could be

Slurry

Polishing pad

Polishing head

Wafer

FIGURE 12.38

Schematic diagram of the CMP polisher.

polishing pad slurry

oxide
metal

(b)(a)

oxide

FIGURE 12.39

Layout-dependent thickness variations: (a) Pre-CMP layout. (b) Post-CMP thickness variation.
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significant on the upper metal layer, which is often called the multilayer
accumulative effect [Tian 2000].

To improve the CMP quality, modern foundries often impose recommended

layout density rules (or even density gradient rules) on each layer and fill

dummy features into layouts to reduce the variations on each layer. However,

these filled dummy features might incur unwanted effects at 65nm and succes-

sive technology nodes [White 2005]. For example, they may induce high cou-

pling capacitances to nearby interconnects and thus incur crosstalk problems.

Moreover, dummy fills also significantly increase the data volume of mask,

lengthening the time of the mask-making processes and thus the mask cost.
Especially, these filled features would significantly increase the input data in

the following time-consuming RETs, such as the OPC process.

Wire density greatly affects dummy feature filling. The layout pattern

(consisting of wires and dummy features) density strongly depends on the wire

density distribution, as reported in [Cho 2006]. Therefore, controlling wire den-

sity at the routing stage can alleviate the problems induced by aggressive

dummy feature filling. In addition, good wire distribution can reduce the ran-

dom particle short defects and also benefit the post-layout redundant-via
insertion (see Section 12.6.3.2), which can translate into yield gain.

The density uniformity in different routing stages for CMP variation control

has been addressed in the literature [Cho 2006; Chen 2007b; Li 2007]. Cho

et al. considered CMP variation during global routing [Cho 2006]. They empiri-

cally showed that the number of inserted dummy features can be predicted by

the wire density and observed that a path with higher pin density may not get

much benefit from the wire density optimization, because there is little room

for improvement (it is destined to have high wire density from the beginning).
Therefore, they proposed a minimum pin-density global-routing algorithm

to reduce the maximum wire density.

Figure 12.40 illustrates the minimum pin-density global-routing algorithm.

A net from the source S to the target T to be routed is shown in

(a) (b)

S

a aTT

b bS

T

FIGURE 12.40

Minimum pin-density global routing [Cho 2006]: (a) There are two possible 1-bend paths

a and b from the source S to the target T. (b) The path a with smaller pin density is better

than the path b.
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Figure 12.40a with a pin distribution. If only the L-shaped (1-bend) routing

paths are allowed, there are two possible paths, a and b, with the same wire-
length, but different pin densities. Because the existence of a pin implies at least

one connection to other pins, a path with higher pin density like b would tend

to have higher wire density eventually as shown in Figure 12.40b, resulting in

higher final wire densities. Therefore, a path with the minimum pin density

(like path a) leads to better wire density distribution.

Figure 12.41 shows the two-pass, top-down planarization-driven routing

framework presented in [Chen 2007b], which consists of four major stages:

(1) Prerouting: identify the potential density hot spots on the basis of the pin
distribution and wire connection to guide the following global routing;

(2) Global routing: apply prerouting-guided planarization-aware global pattern

routing for nets and iteratively refine the solution; (3) Layer/track assignment:

perform density-driven layer/track assignment for long segments panel by panel;

and (4) Detailed routing: use segment-to-segment detailed maze routing to route

short segments and reroute failed nets level by level. By handling longer nets

first, the routing density for CMP can be better optimized, because the longer

nets have higher density impact than the shorter ones.
In the prerouting stage, a density critical area analysis algorithm (on the basis

of Voronoi diagrams [Preparata 1985]) is performed to identify the potential den-

sity hot spots. The identified density information of pins and wire connection is

then used to guide the subsequent routing.
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hot spots based on the pin
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connection to guide  the
following global routing.

Apply prerouting-guided
planarization-aware global
pattern routing for local nets
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Perform density-driven
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FIGURE 12.41

The two-pass, top-down planarization-driven routing framework.
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In the first top-down (global-routing) stage, a planarization-aware global router

is used to consider the density lower and upper bounds while minimizing the
density gradient among global tiles. The planarization-aware cost Ft for each

global tile t is defined as follows:

Ft ¼ ~dt þ
kp;
bð2dt � 1Þ þ ð1� bÞðdt � dtÞ2;
kn;

if dt � Bu

if Bl � dt < Bu

if dt < Bl

8<
: ð12:7Þ

where dt is the wire density of t, ~dt is the predicted hot spot cost calculated in
the prerouting stage, dt is the average wire density of tiles adjacent to t, Bl and

Bu are respective density lower and upper bounds specified in foundry’s density

rules, and b, 0 � b � 1, is a user-defined parameter. kp and kn are constants,

where kp is a positive penalty that discourages routing through dense global

tiles, and kn is a negative reward that encourages routing through sparse tiles.

The second equation simultaneously considers the local tile density and mini-

mizes the density gradient among adjacent regions.

The intermediate stage tries to preserve more flexibility for wire density
arrangement. It consists of two phases: (1) a density-driven layer assigner evenly

distributes the segments in a panel (row of global tiles) into layers, and (2) a

density-driven track assigner balances the segment density of each track on

the basis of incremental Delaunay triangulation (DT) [Preparata 1985]. First,

the flexibility of a segment si is defined as follows:

xðsiÞ ¼ ti þ 1

‘i
ð12:8Þ

where ti is the number of assignable tracks of si, and li is the length of si. If the flexi-

bility of si is smaller, si might have a longer length or less space to insert and thus

should be assigned first. Therefore, segments are inserted into tracks in the nonde-
creasing order of their flexibilities. Then, each segment or obstacle is represented

by three points: its left-end, center, and right-end points, and then the resulting DT

is analyzed. The segment is assigned to a track such that the resulting area difference

among all triangles is minimized. Figure 12.42 shows a density-driven track-assign-

ment example by inserting three segments s1, s2, and s3 into tracks with obstacles

O1 (see Figure 12.42). Note that the artificial segments lying on the boundary are

used to model the distribution of segments and obstacles in the neighborhood.

After the track assignment, the actual track position of a segment is known.
Thus, classical segment-to-segment maze detailed routing is performed in the

second top-down (detailed-routing) stage to connect shorter nets, and the

whole routing process is finished.

12.6.3 Routing for reliability

Manufacturing reliability and yield in VLSI designs are becoming a crucial chal-

lenge as the feature sizes shrink into the nanometer scale. Both the antenna
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FIGURE 12.42

A density-driven track assignment example: (a) The initial Delaunay triangulation. (b) Track

assignment for segment s3. (c) Track assignment for segment s2. (d) Track assignment for

segment s1.
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effect arising in the plasma process and the via-open defect are important issues

for achieving a higher reliability and yield.

12.6.3.1 Antenna-avoidance routing

The antenna effect is caused by the charges collected on the floating intercon-
nects, which are connected to only a gate oxide. During the metallization, long

floating interconnects act as temporary capacitors and store charges gained

from the energy provided by fabrication steps such as plasma etching and

CMP. If the collected charges exceed a threshold, the Fowler-Nordheim
(F-N) tunneling current will discharge through the thin oxide and cause gate

damage. On the other hand, if the collected charges can be released before

exceeding the threshold through a low impedance path, such as diffusion, the

gate damage can be avoided.
For example, considering the routing in Figure 12.43a, the interconnects are

manufactured in the order of poly, metal 1, and metal 2. After manufacturing

metal 1 (see Figure 12.43b), the collected charges on the right metal 1 pattern

(a)

(b) (c)

Diffusion

Gate

Discharge
through the

diffusion

++++

++ ++++

+++++++++++++

++ +++++

++ +++++

+++

++ ++++++++

++ +

+++++++ ++++++++++++++

Diffusion

Collected
Charges

Gate

Damage
the gate

++++++++++++ +++ ++++

Diffusion

Gate
Metal 2
Metal 1
Poly Layer

FIGURE 12.43

Illustration of the antenna effect: (a) A routing example. (b) Late stage of metal-1 pattern

etching of (a), where the collected charges on the right side of the metal-1 pattern may

cause damage to the connected gate oxide. (c) Late stage of metal-2 pattern etching of (a),

where all the collected charges can be released through the connected diffusion on the left

side.
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may cause damage to the connected gate oxide. The discharging path is con-

structed after manufacturing metal 2 (see Figure 12.43c), and thus the charges
can be released through the connected diffusion on the left side.

There are three kinds of solutions to reduce the antenna effect [Chen 2000]:

1. Jumper insertion: Break only signal wires with antenna violation and
route to the highest level by jumper insertion. This reduces the charge

amount for violated nets during manufacturing.

2. Embedded protection diode: Add protection diodes on every input

port for every standard cell. Because these diodes are embedded and

fixed, they consume unnecessary area when there is no violation at the

connecting wire.

3. Diode inserting after placement and routing: Fix those wires with

antenna violations that have enough room for “under-the-wire” diode
insertion. During wafer manufacturing, all the inserted diodes are floating

(or ground). One diode can be used to protect all input ports that are

connected to the same output ports. However, this approach works only

if there is enough room for diode insertion.

Jumper insertion is a popular way to solve the antenna problem. To avoid/fix

the antenna violation, it is required that the total effective conductor connecting

to a gate be less than or equal to a threshold, Lmax. The threshold could be the

wirelength limit, the wire area limit, the wire perimeter limit, the ratio of antenna

strength (length, area, perimeter, etc.) to the gate size, or any model of the

strength of antenna effect caused by conductors. As the example shown in

Figure 12.44, we have a two-terminal net in which a is the source node and b is

a b

Metal 1

Metal 2

Metal 3

a

b

1 5

2 4

3 Metal 3

Metal 2

Metal 1

Poly6

(a)

(b)

FIGURE 12.44

(a) A two-pin net. (b) The cross-sectional view.
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the terminal node. In this case, the antenna charge weight of b is the sum of the

antenna charge weight of segments 4, 5, and 6, which may violate Lmax. Note that

once segment 3 is manufactured, a discharging path is established through seg-

ment 1 and the diffusion of the transistor a (see Figure 12.44b). If we add a jumper

at the long segment 5 (see Figure 12.45), the antenna charge weight of b is just the

sum of the length of segments 8, 9, and 10, whichwill not violate Lmax. Thus, if we

add jumpers appropriately, the antenna problem can be easily solved.
Antenna avoidance by jumper insertion has been extensively studied in the lit-

erature (e.g., [Ho 2004, 2007; Wu 2005a; Su 2007]). Ho, Chang, and Chen pro-

posed multilevel routing considering antenna effects by bottom-up jumper

insertion [Ho 2004]. The work inserts jumpers only beside gate terminals, and

its optimality of the use of the least jumpers to satisfy the antenna rule holds only

for this special condition of inserting jumpers right beside gate terminals. Wu, Hu,

and Mahapatra extended the work [Ho 2004] to handle the problem [Wu 2005a].

To fix the antenna violation of a gate terminal, the work first removes all subtrees
around the node that violate the antenna rules. After all such subtrees are

removed, if the sink still violates the antenna rule, the work will continually

remove the heaviest branch from the sink until the antenna rules are satisfied.

This approach still cannot guarantee optimal solutions under some special cases.

Su and Chang formulated the general jumper insertion for antenna avoidance

(applicable at the routing stage) and/or fixing (applicable at the post-layout stage)

as a tree-cutting problem on a routing tree and presented the first optimal algo-

rithm for the general tree-cutting problem [Su 2007]. As usual, a net is modeled as
a routing tree, where a node in the tree denotes a circuit terminal/junction

(a gate, diffusion, or a junction of interconnects), and an edge denotes the inter-

connection between two circuit terminals or junctions. Because the

Metal 3

Metal 2

Metal 1

Poly

(a)

(b)

a b

3

2

1 5 9

4

7

6 8
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a b

Metal 1

Metal 2

Metal 3

FIGURE 12.45

(a) A two-pin net with jumper insertion. (b) The cross-sectional view.
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interconnection connecting to a diffusion terminal will not cause any antenna vio-

lation, the algorithm focuses on those connecting to gate terminals.
Let L(u) denote the sum of edge weight (could be wirelengths, wire area, wire

perimeter limit, the ratio of antenna strength, etc.) between the node u and all its

neighbors. The problem of jumper insertion on a routing tree for antenna avoid-

ance/fixing can be formulated as a tree-cutting problem as follows:

Jumper Insertion on a Routing Tree for Antenna Avoidance Problem:
Given a routing tree T ¼ (V, E ) and an upper bound Lmax, find the minimum set

C of cutting nodes, e 6¼ u for any c 2 C and u 2 V, so that L(u) � Lmax, 8u 2 V.

As the routing-tree example shows in Figure 12.46a, u1 and u2 are two sink
nodes, the number beside each edge denotes the antenna charge weight, and

Lmax is assumed to be 10. For this case, three jumpers suffice to solve the

antenna violations; see the jumpers c1, c2, and c3 shown in Figure 12.46b.

The algorithm performs in a bottom-up manner by dealing with leaf nodes first

followed by sub-leaf nodes of the tree. Here, a leaf node is a node with no children,

whereas a sub-leaf node is a node for which all its children are leaf nodes, and if any

of its children is a gate terminal, the edges between it and its children all have

weights � Lmax. Let p(u) denote the parent node of node u, and l (e) (or l (u, v))
be the antenna charge weight of the edge e ¼ (u, v) in the routing tree.

For a leaf node u, if l(u, p(u)) � Lmax or u is not a gate terminal, then u satis-

fies the antenna rule and thus it does not need to insert any cutting nodes. How-

ever, if l(u, p(u)) > Lmax and u is a gate, then l(u, c) ¼ Lmax gives the best

position for inserting the cutting node c, as illustrated in Figure 12.47. After

adding jumper c, the edge e(u, c) is cut from the tree.

5
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6
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5

5
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(a)

(b)
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u1c1 c3
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v1
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v4v2
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5

FIGURE 12.46

(a) A routing tree with two sink nodes u1 and u2. (b) Three jumpers c1, c2, c3 are inserted to

satisfy the antenna rule.
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For a sub-leaf node up and its children ui, 8 1 � i � k, let total_len ¼Pk
i¼1lðui;upÞ.
There are two cases:

Case 1: total_len � Lmax

If (total_len þ l(up, p(up)) > Lmax, the cutting node c with l(c, up) þ total_

len ¼ Lmax gives the best position, as shown in Figure 12.48a. After adding c, all

up’s children from the original tree are cut from the tree.

Case 2: total_len > Lmax

First sort l(up, ui) 8 1 � i � k in non-decreasing order and find the maximum

s such that
Ps

i¼1lðup;uiÞ � Lmax: Then add the cutting nodes csþ1, . . . , ck as

shown in Figure 12.48b.

For the embedded protection diode, Huang et al. solved the diode insertion

and routing problem by a minimum-cost network-flow based algorithm, called
Diode Insertion and Routing by Min-Cost Flow (DIRMCF) [Huang

2004a]. As shown in Figure 12.49, the antenna-violating wires, the routing grids,

and the feasible diode positions are transformed into a flow network, and then

the problem is solved by the minimum-cost network-flow algorithm. Both the

positions of inserted diodes and the required routing can be determined

through the resulting flow.

Cut cu p (u)

Lmax

FIGURE 12.47

Optimal jumper insertion for a leaf node. The cutting node c is the optimal one among the

nodes on edge e(u, p(u)).

(b)(a)

u1

u2 u2 us us+1 ukus+2,...,

cs+1, cs+2,...,ck

u1

up

u3 ...

up

Cut c

p(up)

FIGURE 12.48

(a) Optimal jumper insertion for a sub-leaf node. (b) Illustration for the case of total_len > Lmax.
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Besides, because the vias of jumper insertion and the routing wires for diode

insertion will both increase the driving load of the antenna violating wires (and

thus the incurred RC delay will reduce the circuit performance), it is desirable to

perform diode and jumper insertion simultaneously and consider the interaction

between them to find a smaller performance degradation for the antenna fixing.
Jiang and Chang [Jiang 2008] proposed a minimum-cost network-flow–based algo-

rithm to solve the simultaneous diode/jumper insertion problem. The proposed

algorithm first computes the jumper cost to fix each violating wire. Then it con-

structs the flow network in a similar way as the DIRMCF algorithm but integrates

the jumper cost into the network. Finally, the antenna-fixed layout with the opti-

mal fixing cost is found by applying the minimum-cost network-flow algorithm.

12.6.3.2 Redundant-via aware routing

In the nanometer technology, via-open defects are one of the important failures.

A via may fail because of various reasons such as random defects, electromi-
gration, cut misalignment, and/or thermal stress–induced voiding effects.

The failure significantly reduces the manufacturing yield and chip performance.
To improve via reliability and yield, redundant-via insertion is a highly recom-

mended technique proposed by foundries. If a via fails, a redundant via can serve as

a fault-tolerant substitute for the failing one. As shown in Figure 12.50, a redundant
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Nodes
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FIGURE 12.49

An example of the DIRMCF algorithm: (a) The violating wires and the routing grids. (b) The

transformed flow network and the resulting flow after applying the minimum cost network-

flow algorithm. (c) The inserted diodes and their corresponding routing.
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via can be inserted adjacent to each via to form a double-via pair. Double vias

typically lead to 10 to 100 smaller failure rates than single vias.

The following gives some terminologies about vias. For a via, a redundant-via
candidate is its adjacent position where a redundant via can be inserted. For the

example shown in Figure 12.51, via v1 has one redundant-via candidate on its left

side, and via v3 has three candidates around it. According to the number of redun-

dant-via candidates, vias can be classified as dead, alive, or critical vias. If a via
has at least one redundant-via candidate, it is an alive via; otherwise, it is called a
dead via. Note that if an alive via has exactly one redundant-via candidate, it is also

called a critical via. As shown in Figure 12.51, both vias v1 and v3 are alive vias, v2
is a dead via, and v1 is also a critical via.

Traditionally, redundant-via insertion is performed at the post-layout stage,

which can be formulated as a maximum independent set (MIS) problem

[Lee 2006], 0-1 integer linear programming (ILP) [Lee 2008], or maximum bipar-

tite matching [Yao 2005; Chen 2008a]. However, it has been reported that if the

router can minimize the number of dead and critical vias, the post-layout dou-
ble-via insertion rate can be significantly improved. The reason is that the dead

vias cannot be paired with redundant vias, and critical vias may not be paired

because of the competition with other vias. For a routing instance from the

source S to the target T shown in Figure 12.52a, an inferior routing path as

metal 1

metal 2

via

redundant via

FIGURE 12.50

Double-via insertion. Each via is paired with a redundant via to form a double-via pair.

critical via

dead viaalive vias

metal 1

metal 2

via

redundant-via candidate

v1

v2

v3

FIGURE 12.51

Illustration of redundant-via candidates, dead vias, alive vias, and critical vias. Vias v1, v2, and

v3 have one, zero, and three redundant-via candidates, respectively. Both v1 and v3 are alive

vias, v2 is a dead via, and v1 is also called a critical via.
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shown in Figure 12.52b would make via v a dead via and cannot be paired with
any redundant vias. In contrast, for the better routing result as shown in

Figure 12.52c, via v still remains alive for double-via insertion. Therefore, it is

desirable to consider the redundant-via insertion at the routing stage to facilitate

and preserve more flexibility for the post-layout double via insertion, as pointed

out by [Xu 2005].

Chen et al. developed a redundant-via aware detailed-routing algorithm

[Chen 2008a]. For each redundant-via candidate ri of a via v, the redundant-

via cost of ri, cost(ri), is set as

costðriÞ ¼ 1

DoFv
ð12:9Þ

where DoFv stands for the degree of freedom of v and equals the number of
redundant-via candidates of v. The redundant-via penalty for a connection

path p is calculated as the summation of the redundant-via costs of these

redundant-via candidates on p.

Figure 12.53 illustrates the routing algorithm. Figure 12.53a shows a detailed-

routing instance connected from the source S to the target T. The redundant-via

costs of redundant-via candidates are shown in Figure 12.53b. The router can find

a better routing path by choosing one with smaller redundant-via penalty, as

shown in Figure 12.53c. Finally, the routing solution would be more redundant-
via friendly as shown in Figure 12.53d, which contains more alive vias and pre-

serves more redundant-via candidates to benefit the post-layout redundant-via

insertion.

12.7 CONCLUDING REMARKS
Routing is one of the most fundamental steps in the physical design flow and is
typically a very complex optimization problem. Effective and efficient routing

(c)(b)(a)

S

TT

S

TT

S

T

dead via alive via

v

FIGURE 12.52

Redundant-via aware routing benefits the post-layout double-via insertion: (a) A detailed-

routing instance for a 2-pin connection from the source S to the target T. (b) If an inferior

routing path is selected, via v would become a dead via and cannot be paired. (c) For a

better routing path, via v would remain alive for double-via insertion.
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algorithms are essential to handle the challenges arising from the fast growing

scaling of IC integration. Traditionally, the routing problem is usually solved

by a two-stage approach of global routing followed by detailed routing to tackle

its high complexity.
In this chapter, we have first formulated the global and detailed routing as

graph-search problems and examined the general-purpose routing algorithm,

which includes the maze, line-search, and A*-search routing and can be applied

to both global and detailed routing. Then we have discussed the global-routing

algorithms, including sequential, concurrent, and tree-based approaches. For the

detailed routing, we have covered channel routing and full-chip routing and
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FIGURE 12.53

Redundant-via aware detailed routing: (a) A detailed-routing instance connected from the

source S to the target T. (b) The redundant-via costs of redundant-via candidates. (c) The

router can find a better routing path with smaller redundant-via penalty. (d) The routing

solution would be more redundant-via friendly by preserving more redundant-via candidates.
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discussed the flat, hierarchical, and multilevel routing frameworks. Last, we have

addressed routing for some important nanometer effects, including signal integ-
rity, manufacturability, and reliability. As the technology nodes keep shrinking,

all these effects should be considered in the earlier design stages. Considering

the tradeoff between optimization flexibility and layout-information availability,

routing seems to be the best stage to handle these effects.

“Old routers never die; they just fade away.” With emerging design chal-

lenges (such as manufacturability, reliability, complexity, new chip architec-

tures, and technologies), routers will keep evolving, with key techniques still

remaining. It would be necessary to develop new data structures, algorithms,
frameworks, and/or methods for the next-generation routers to handle the

severe challenges yet to come.

12.8 EXERCISES

12.1. (General-Purpose Routing) Consider the chessboard shown in

Figure 12.54. Some squares are shaded, denoting blockages. We

intend to find a shortest path, if one exists, that starts at the square

designated by s, after visiting the minimum number of squares, and

ends at the square designated by t. The path must not pass through
any shaded square. Formulate this problem as a graph-search routing

problem and give an efficient algorithm to solve this problem. What

is the time and space complexity of your algorithm?

12.2. (Concurrent Global Routing) You are asked to derive a routing

algorithm for large-scale circuit designs on the basis of integer lin-
ear programming (ILP). ILP is typically very time-consuming for

such large-scale designs. Instead of processing the whole routing

region at one time, give at least two systematic approaches to divide

S

t

FIGURE 12.54

The graph-search problem of Exercise 12.1.
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the routing region into subregions such that your algorithm can
handle the routing problem subregion by subregion to reduce the

problem size.

12.3. (Routing Tree)Given a netnwith the four pins p1 ¼ (6, 3), p2 ¼ (3, 6),

p3 ¼ (1, 5), and p4 ¼ (4, 2), let the estimated wirelengths by use of the

minimum rectilinear spanning tree (MST) and theminimum recti-
linear Steiner tree (MRST) be p and q, respectively. Find p and q.

12.4. (Routing Tree) Give an O(E lg V )-time algorithm to find a minimum

spanning tree T of an undirected graph G ¼ (V, E ) so that the maxi-
mum edge weight of T is minimum over all spanning trees of G.

Analyze the time complexity of your algorithm.

12.5. (Line-Search Routing) For the Hightower line-search router, there

is no guarantee that we can find a path if such a path exists. Give

an example routing configuration for this situation.

12.6. (Channel Routing) Given the channel-routing instance shown in

Figure 12.55,

(a) Draw the horizontal constraint graph (HCG) and the vertical
constraint graph (VCG) for the given instance.

(b) Determine a tight lower bound on the channel height from

the HCG.

(c) Route the instance by the dogleg channel routing algorithm.

What is the final channel height?

(d) Route the instance by the constrained left-edge channel routing

algorithm. What is the final channel height?

12.7. (Channel Routing) Design an efficient algorithm to produce optimal

routing solutions for 3-layer channel routing with the VHV model. (In

the VHV model, the top and the bottom layers are reserved for vertical

wires, and the middle layer is reserved for horizontal wires.)

A F B G J G E H D J H

C K K C F A B G D E H

FIGURE 12.55

The channel routing instance of Exercise 12.6.

1 2 k n

FIGURE 12.56

The routing instance of Exercise 12.8.
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12.8. (Channel Routing) Label the terminals of the channel boundary
1, 2, . . . , n in Figure 12.56, starting from the left and to the right.

Let N(i, j ) denote the maximum number of nonintersecting connec-

tions between terminals i and j that can be routed on a single layer.

Assume that there is a connection between terminals 1 and k. Give

the recurrence N(i, j ) for the maximum number of nonintersecting

connections in the layer in terms of the indices k and n. Apply

dynamic programming to compute N(1, n).

12.9. (Multilevel Routing) Given a netlist N ¼ {[(1, 1), (2, 2)], [(2, 10),
(2, 14)], [(6, 2), (10, 10)], [(6, 10), (10, 14)], [(10, 2), (14, 2)]}, where

[(p, q), (r, s)] denotes a route from the coordinate (p, q) to (r, s), you

are asked to apply a 3-level routing (L-shaped multilevel routingwith

three levels) to route the instance N on a 16 � 16 chip plane. Suppose

only straight and L-shaped routes are allowed during the coarsening

stage, whereas maze routing is applied during uncoarsening. Also, all

wire spacing (including point-to-wire spacing) must be at least 4 units.

Show step by step how you obtain the routing solution.
12.10. (Maze Routing) Explain how you will extend the maze router for

the X-architecture on which vertical, horizontal, 45�, and 135� routes
are allowed for routing.

12.11. (Programming) This programming problem is modified from the

2007 ACM ISPD (Int. Symp. on Physical Design) Global Routing

Contest [Nam 2007]. This programming assignment asks you to

write a global router that can route 2-pin nets. To simplify the prob-

lem, we have some simplifications as follows:

1. Consider only two layers (layer 1 is for horizontal routes, and

layer 2 is for vertical ones).

2. Consider only 2-pin nets.

3. Consider only tile-based coordinates. All lower left corners of the
global routing regions are (0, 0). The tile width and height are

ignored, because all X and Y are tile-based.

4. Consider only fixed wire width and spacing. All wire widths,

wire, and via spacing are equal to 1.

(1) Input/output specification
Input format

The file format for the global routing contest is shown, with comments in

italics (actual input files do not contain these comments). The example

below gives an instance with two routing layers. The first line gives the

problem size in terms of the number of horizontal and vertical tiles and

the number of routing layers. Each global-routing tile (tile in short) has a
capacity on each of its four boundaries to measure the available space.

742 CHAPTER 12 Global and detailed routing



The default capacity value of each layer is given in the second and third

lines, which represents the maximum number of routing paths allowed to
pass through a tile boundary. For example, the tile boundary with capacity

10 can accommodate up to 10 routing paths. The file format is as follows:

Output format

All the routes in the output could only be horizontal lines, vertical lines, or

via connections. For example (18, 61, 1)-(19, 62, 1) is not acceptable,

because it is diagonal. All the nets are written in the output file in the same

order as the input file. The output file format is shown as follows:

(2) Problem statement

Given the problem size (the number of horizontal and vertical tiles and layers),

horizontal and vertical capacities on each layers, and a netlist, the global router

routes all nets in the routing region. Themain objective is tominimize the total

number of overflows, and the second objective is to minimize the total wire-

length. Here the overflow on a tile boundary is calculated as the amount of

demand that exceeds the given capacity (i.e., overflow ¼ max(0, demand-

capacity)).

Following is an example of Input/Output files for Figure 12.57 with two
routing layers.

grid # # # //number of horizontal tiles, vertical tiles, and layers

vertical capacity # # //vertical capacity by default on each layer

horizontal capacity # # //horizontal capacity by default on each layer

num net # //number of nets

net_name net_id number_of_pins

x y layer

x y layer

. . .

[repeat for the appropriate number of nets]

Net net_name net_id

([x11], [y11], [z11])-([x12], [y12], [z12])

([x21], [y21], [z21])-([x22], [y22], [z22])

. . .

!

[repeat for the appropriate number of nets]
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Input file:

(0, 1) (1, 1)

(0, 0) (1, 0)

A

C

D

B

FIGURE 12.57

A routing problem and its solution.

grid 2 2 2

vertical capacity 0 2

horizontal capacity 2 0

num net 4

A 0 2

0 1 1

1 1 1

B 1 2

0 1 1

1 0 1

C 2 2

0 0 1

1 1 1

D 3 2

0 0 1

1 0 1
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Output file:

The total overflow is 0, and the total wirelength is 10.
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