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ABSTRACT

Floorplanning is an important step in an early phase of
VLSI design. For faster design convergence, there is an
urgent need to start floorplanning as early as possible, even
when not all modules are designed. Therefore, it is desir-
able to consider floorplanning with uncertainty to obtain a
compact and reliable floorplan when the dimensions and
interconnections of modules are not fully determined. In
this paper, we propose a sequence-pair based floorplan-
ner, named PLP, for uncertain designs. PLP with uncertain
data can consider non-slicing floorplans, and then gener-
ate reliable and compact floorplans. Experimental results
indicate that its performance is equivalent to the conven-
tional sequence-pair floorplanner, however, PLP attains
significant higher reliability. With 30%–70% uncertainty,
our algorithm achieves at least 80% confidence that the
area derivation is within only 1%.

1. INTRODUCTION

Floorplanning is one of the most important steps in an
early phase of VLSI design. Some critical physical param-
eters, such as area, delay, and power, can be approximated
after this stage. For faster design convergence, there is an
urgent need to obtain a floorplan as early as possible. As
mentioned in [1], by generating a floorplan early in the
design process, i.e., when some modules have not been
completely designed yet, the total design time can be de-
creased since some time-consuming processes can only be
performed after a floorplan is obtained. Therefore, it is de-
sirable to consider the problem of floorplanning with un-
certainty to obtain a compact and reliable floorplan even
when the dimensions and interconnections of modules are
not fully determined.

In practice, some components must be designed from
scratch, whereas some others are modifications of compo-
nents from previous designs, and thus designers can spec-
ify some estimations about the final area of each incom-
pletely designed module and its corresponding probabil-
ity. The conventional floorplanning algorithms take a list
of module information for which each module has a de-
terministic dimension. Therefore, these algorithms cannot
handle the problem that some modules have multiple pos-
sible dimensions, represented by width and height proba-
bility distribution functions (PDF’s). Intuitively, the rea-
sonable approach is to use the expected values of the width

distribution and height distribution as width and height re-
spectively. However, we will show later that the expected
value method cannot generate a reliable floorplan. Nos-
tradamus [1] is the first floorplanner that can cope with
uncertain dimensions of modules, and is effective to ob-
tain a compact floorplan. However, it is based on the slic-
ing structure [2] which does not correspond to most real
designs. Further, it does not consider interconnection cost
which is a crucial metric for contemporary interconnect-
driven VLSI design methodology.

In this paper, we propose a sequence-pair [3] based
floorplanner for uncertain designs. Our floorplanner for
uncertain data can consider non-slicing floorplans [3, 4, 5,
6, 7], and can generate a reliable and compact floorplan.
To cope with the uncertainty, we derive a probability-based
longest path (PLP) algorithm for a constraint graph to eval-
uate the enclosing width and height distributions. Af-
ter applying the PLP algorithm, we can obtain possible
placements and interconnection costs. Our floorplanner
with the estimated uncertain data can effectively generate
a compact and reliable1 floorplan. By a reliable floorplan,
we mean one whose area at the time it is generated does
not differ significantly from its area when all modules are
designed completely. Experimental results indicate that
the resulting average area is similar to the one obtained
by a sequence-pair floorplanner, but PLP attains signifi-
cant higher reliability than the sequence-pair floorplanner.
With 30%–70% uncertainty, we have at least 80% confi-
dence that the area derivation is within only 1%.

2. PROBLEM FORMULATION

In this paper, we follow the formulation presented by [1].
Let M = {m1, m2, ..., mn} be a set of n rectangular
modules. Each module mi ∈ M is associated with a two
tuple (Wi,Hi) which denotes a pair of height and width
distribution. Each distribution list contains pairs of poten-
tial heights (or widths) of a module and their probabilities.

We have

Wi = {(wij , pwij )|1 ≤ j ≤ ri},
Hi = {(hij , phij )|1 ≤ j ≤ si}. (1)

The objective of floorplanning with uncertain designs
is to minimize the expected value of area Atot induced

1A formal definition of a reliable floorplan is given in Section 3.2.



by the assignment of the topology of m i’s, where Atot is
a probability distribution measured by possible enclosing
rectangles of placement.

3. FLOORPLANNING WITH UNCERTAIN
DESIGNS

To cope with uncertainty, we propose a probability-based
longest path (PLP) algorithm to evaluate the enclosing
width and height distributions.

3.1. Probability-based Longest Path (PLP) Algorithm
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Fig. 1. (a) A placement (b) The probability-based constraint
graph.

For uncertain designs, since a module may have many
possible dimensions, the weight of the corresponding node
in a horizontal (vertical) constraint graph gives the width
(height) distribution of the module. Figure 1(b) shows
the probability-based horizontal constraint graph for the
placement of Figure 1(a). An edge n i → nj in a horizon-
tal (vertical) constraint graph denotes that module m i is
on the left (bottom) side of module mj . Since the weight
of a node is a distribution, there could be many possible
longest paths. Our goal is to obtain the enclosing width
(height) distribution of a floorplan which is correspond-
ing to the length distribution of longest paths of horizontal
(vertical) constraint graph.

Thus, we propose the probability-based longest path
(PLP) algorithm to estimate the length distribution of longest
paths. Without loss of generality, we use the notation for
horizontal constraint graphs, and the treatment of the ver-
tical part is similar. Traditional longest path algorithms
assume deterministic width of each node. Therefore, it is
easy to calculate right and left boundary positions. When
the width of modules are probability distributions, we need
to define two distribution operators to manipulate bound-
ary position distributions. The distribution merge opera-
tion is used to find the left boundary distribution,L i, while
the distribution addition operation is used to find the right
boundary distribution, Ri. We detail the two operations
in the following subsections.

3.1.1. Distribution Merge Operation

In traditional constraint graphs, the left boundary of a node
ni is determined by the largest right boundary of the in-

coming nodes of ni. For an example in Figure 1(a), node
a has incoming node e and c. The left boundary of node
a is the right boundary of node e since node e dominates
node c.

For probabilistic constraint graphs, we define the dis-
tribution merge operation that manipulates the set of all
right boundary distributions of incoming nodes of n i to
derive the left boundary distribution. The probability that
the longest path will pass through node e to node a is de-
noted as Pe→a(x). In other words, Pe→a(x) is the prob-
ability of the right boundary, x, of node e is larger than
node c. Therefore,

Pe→a(x) = P (Re = x)P (Rc ≤ x). (2)

The probability that the left boundary of node a is x
is the summation of Pe→a(x) and Pc→a(x). The formal
definition of the probability that the longest path will pass
through ni to nk is defined as follows:

Pni→nk
(x) = P (Ri = x)

∏
nj∈Ink

P (Rj ≤ x). (3)

where Ink
denotes the set of all nk’s incoming nodes.

To represent the left boundary distribution of nk, Lk,
we should merge all possible longest path through n i to
nk for each ni ∈ Ink

into a single random variable Lk as
follows:

P (Lk = x) =
∑

ni∈Ink

Pni→nk
(x). (4)

Let � denote the merge operation of a set of distribu-
tions.

Lk = �(Ri, . . . ,Rj), (5)

where Ri, . . . ,Rj denote the set of right boundary distri-
butions for all nk’s incoming nodes.

3.1.2. Distribution Addition Operation

The distribution addition operation was first presented in
[1], which is defined as follows:

D1 ⊕D2 = {(d1i + d2j , p(d1i)p(d2j))|
(d1i, p(d1i)) ∈ D1, (d2j , p(d2j)) ∈ D2}. (6)

The distribution list of D1⊕D2 consists of elements which
are pairwise “addition” of the elements from the two dis-
tribution list D1 and D2. Thus, it is intuitive that Ri is
derived by distribution addition operation on left bound-
ary distribution and width distribution of node n i

Ri = Li ⊕Wi, (7)

where Wi denotes the width distribution of node n i.



3.1.3. The Algorithm

To evaluate the distribution of the longest path length,
given a weighted, directed acyclic graph G = (V, E) with
source S, target T , and the weight function w : V → W
(where W denotes the width random variable), the PLP
algorithm returns the length distribution of longest paths.
The algorithm traverses each node in increasing topolog-
ical order. For each node nk, we apply the distribution
merge and addition operations to obtain Lk and Rk. Con-
sequently, since target T is the last node of graph G, LT

represents the length distribution of longest paths of graph
G.

Algorithm: Prob Longest Path(G)
Input: G—acyclic directed graph
Output: D—random variable
\\ S is the source node of G
\\ T is the target node of G
\\ Ink is a set of incoming nodes of nk

1 G = Top Sort(G);
2 G = Reduce Transitivity(G);
3 foreach node nk in G with ascending topology order
4 if (S �→ nk)

ni, . . . , nj ∈ Ink

5 Lk = �(Ri, . . . ,Rj );
6 if (T = nk)
7 D = Lk;
8 return D;
9 else
10 Rk = Lk ⊕Wk ;

Fig. 2. The PLP algorithm.

3.2. Reliable Floorplan

In this section, we define a reliability index for both the
area and the wirelength. A reliable floorplan should have
small a variance of the area and the wirelength. However,
the significance of the variance depends on its correspond-
ing mean. We use Chebyshev’s inequality to facilitate the
definition.

The reliability index r of a floorplan is defined as we
have r confidence that the area or wirelength deviation of
the floorplan is within d = 1% of the area or the wire-
length. If X is a random variable with finite sample mean
µ and sample variance σ2, then for any value d > 0,

P {|X − µ| ≥ dµ} ≤ σ2

d2µ2
= 1 − r

P

{∣∣∣∣Xµ − 1
∣∣∣∣ < d

}
> 1 − σ2

d2µ2
= r.

Then, we have

r = 1 − σ2

d2µ2
. (8)

3.3. The Overall Algorithm

We developed a simulated annealing based algorithm [8]
using the sequence pair representation for non-slicing floor-
plan design with uncertain data. Given an initial solution

represented by a sequence pair, the algorithm perturbs the
sequence pair to a new one. Then, the algorithm applies
the PLP algorithm to evaluate the final enclosing width
distribution, W , and the final enclosing height distribu-
tion, H. The cost function during the annealing process
can be E[W ]E[H]. Since obtaining a reliable floorplan
is critical, we add reliability index for the area to the cost
function and try to minimize its expected value and vari-
ance simultaneously. The variance of the area is defined
respectively as:

�AreaW,H = σWσH + µHσW − µWσH, (9)

where σ and µ denote the standard derivation and the mean
of a distribution respectively. The corresponding reliabil-
ity index is denoted as Ia which is defined as:

Ia = 1 −
(�AreaW,H

dµHµW

)2

, (10)

Then, we use the following cost function for simulated
annealing:

cost = β
E[W ]E[H]
Areanorm

+ (1 − β)(1 − Ia), (11)

where β is to control the tradeoff between the expected
value and the variance of the area.

4. EXPERIMENTAL RESULTS

Fig. 3. Ratio of area of the expected value method to the
area of PLP method on different uncertainty levels from
0.3 to 1.

In the following, we show the experimental results
of the MCNC benchmark. It includes apte, xerox, and
hp circuits, and all of them contain interconnect informa-
tion. However, the modules of MCNC benchmark are de-
terministic, we need to randomize the dimension of each
module.

We compare our results with the expected value method
which fills the width (height) of a module by its expected



Fig. 4. Comparison of area reliability between the PLP
method and the expected value method on different un-
certainty levels from 0.3 to 1.

value. To evaluate how well PLP might work in prac-
tice, we perform Monte Carlo simulations to draw the true
dimensions for each module according to its width and
height distributions. By repeating a number of simula-
tions, the statistics of sample area is obtained. In the fol-
lowing, we compare the statistics resulting from the PLP
algorithm and the expected value method.

An important parameter in input data is the uncer-
tainty level. We say an input data set is x% uncertain,
if x% of its modules have probabilistic dimensions and
others have deterministic dimensions, i.e., the rest have
exactly one width and one height value. To demonstrate
the performance of PLP to cope with uncertainty effec-
tively, we compare the results with different percentage of
modules that have probabilistic dimensions.

Figure 3 shows the ratio of average area obtained by
the expected value method to average area obtained by
PLP on different uncertainty levels. The result indicates
that PLP has similar average area performance with the
expected value method. Figure 4 show the area reliabil-
ity of PLP versus the expected value method on different

uncertainty levels ranging from 30% to 100%, where the
reliability index denotes the confidence deviations within
1%. For uncertainty levels ranging from 30% to 70%, PLP
attains 80% area reliability among most of cases. PLP has
the significantly higher area reliability than the expected
value method.

5. CONCLUDING REMARK

We proposed a non-slicing floorplanner, called PLP, that
can deal with uncertain dimensions of modules. Experi-
mental results show that the PLP have powerful ability to
hide the uncertainty and can generate quiet reliable and
compact floorplans. The capability of the PLP shows its
promise in generating a floorplan in early design process.
We propose to explore floorplanning problems for uncer-
tain designs, such as rectilinear and buffer-block planning
for interconnect-driven floorplanning in the future.
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