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Abstract
The flip-chip package gives the highest chip density of any packaging

method to support the pad-limited ASIC design. One of the most important
characteristics of flip-chip designs is that the input/output buffers could be
placed anywhere inside a chip. In this paper, we first introduce the floorplan-
ning problem for the flip-chip design and formulate it as assigning the posi-
tions of input/output buffers and first-stage/last-stage blocks so that the path
length between blocks and bump balls as well as the delay skew of the paths
are simultaneously minimized. We then present a hierarchical method to solve
the problem. We first cluster a block and its corresponding buffers to reduce
the problem size. Then, we go into iterations of the alternating and interact-
ing global optimization step and the partitioning step. The global optimization
step places blocks based on simulated annealing using the B*-tree representa-
tion to minimize a given cost function. The partitioning step dissects the chip
into two subregions, and the blocks are divided into two groups and are placed
in respective subregions. The two steps repeat until each subregion contains
at most a given number of blocks, defined by the ratio of the total block area
to the chip area. At last, we refine the floorplan by perturbing blocks inside a
subregion as well as in different subregions. Compared with the B*-tree based
floorplanner alone, our method is more efficient and obtains significantly bet-
ter results, with an average cost of only 51.8% of that obtained by using the
B*-tree alone, based on a set of real industrial flip-chip designs provided by
leading companies.

I. INTRODUCTION

A. Flip-chip Design
Flip-chip bonding gives the highest chip density of any packaging method

to support the pad limited ASIC design. The important characteristics of flip-
chip designs is that the signals or power could be imported from the signal
bumps or power bumps distributed on the whole chip, and the input and output
buffers could be placed anywhere inside a chip, like core cells. There exist
a few different flip-chip architectures. See Figure 1 for an example layout of
the flip-chip design available from UMC and ASE. We use the top metal or an
extra metal layer, called Re-Distributed Layer (RDL), to connect input or out-
put buffers to bump balls. Figure 2 illustrates the cross section of RDL. Bump
balls are placed on RDL and use RDL to connect to IO buffers. Therefore,
bump balls can overlap with input/output buffers and blocks.
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Fig. 1. Example layout of the flip chip.
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Fig. 2. Cross section of RDL.

In a wire-bond IC, in contrast, the circuit core is surrounded by the I/O
pads on the perimeter of the chips. In general, the interconnection between an
input/output gate and an I/O pad consists of two segments: the inner part and
outer part. The inner-part segment is the portion of interconnection within the
core while the outer part is between the core and the pads. Unlike the wire-
bond I/O pads which are placed only on the perimeter of the chip, the flip-
chip I/O pads are placed within the chip core. The inner-part routing can be
minimized by placing the I/O pads. In the wire-bond layout, the area between
the core and the pads is utilized for routing the interconnection of the outer-
part segment. This area can be eliminated in a flip-chip IC by integrating the
I/O pads within the core. This is a great saving in silicon area and generally
occurs when there is a small core with a high number of I/O pins. The study
conducted in [11] showed the reduction of die size and the increase in I/O
count when the peripheral wire-bond technology was replaced by the flip-chip
technology. Further, the bump balls in the flip chip have lower inductance than
the bond-wires in the classical IC.

In this paper, we assume that all the bump balls are placed at pre-defined
locations and their signals are determined, which is true for most real appli-
cations since they are often predefined by the packaging site. All core cells
are partitioned or grouped into blocks. The input/output signals are connected
to block ports through the input/output buffers to the bump balls. We need to
place the input/output buffers and the blocks without overlapping with each
other into a pre-defined chip area so that the path length between blocks and
bump balls is minimized.

For most practical designs, like memory controllers, there are a large num-
ber of input/output pins being used as data buses. For such designs, we have
to control the timing of the input/output signals. In other words, we have to
make sure that the input signals arrive at the core simultaneously. In the same
way, it also needs to make sure that the output signals arrive at bump balls si-
multaneously. This can be achieved through controlling the positions of bump
balls, input/output buffers and blocks to minimize the signal skew.

B. Previous Work

The placement problem for the classical wire-bond IC’s has been studied
very extensively [1, 2, 5, 7, 8, 12, 13, 16, 17, 18, 22, 24, 25]. Nevertheless,
most of these previous works target on standard cell designs, for which cells
are of the same height and are placed in rows. For the floorplanning problem
addressed here, it does not have such restrictions, making the previous works
not flexible enough to the flip-chip floorplanning problem. (Note that although
a few existing placers can handle the mixed-size placement problem, they usu-
ally focus more on the standard-cells of the same heights. Therefore, the plac-
ers cannot handle the floorplanning problem well. We have tried well-known
publicly available placers such as Feng Shui 2.6/5.0 [13] and mGP [8, 22].
They all cannot obtain desirable floorplans for the flip-chip design directly.)
Recently, Hsieh and Wang presented an analytical formulation for flip-chip
placement in [15]. The work targets at an objective function of the sum of path
delay and sum of skew between all input paths, which runs in quadratic time.
Further, the sum of skew does not model the skew cost well.



In contrast, most floorplanning techniques can handle much more general
objective functions by applying simulated annealing [9, 14, 21, 23, 26]. How-
ever, traditional floorplanning/placement algorithms do not scale well as the
circuit size, complexity, and constraints increase. The B*-tree, in contrast, has
been shown an efficient and effective data structure for floorplanning [6, 9, 20].
(In particular, the B*-tree tool is available on-line [4].) The B*-tree is partic-
ularly suitable for representing a floorplan/placement with mixed-size blocks,
like the blocks and the I/O buffers for the flip-chip design; further, it does not
have the cell height and the row placement constraints, imposed by the classi-
cal placement algorithms. Therefore, we shall take advantage of the nice prop-
erties of the B*-tree to develop our algorithm for flip-chip placement. Never-
theless, a key limitation of the B*-tree based floorplanner lies in its packing
nature—the B*-tree based floorplanner always compacts blocks to the left and
bottom as shown in Figure 3. If the total block area is much smaller than the
chip area, then some blocks might not be placed at the desired positions to
optimize the interconnection cost. As illustrated in Figure 3, the top and right
sides of the chip are empty.
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Fig. 3. The B*-tree based floorplanner always packs blocks to the left and to
the bottom.

C. Our Contributions

In this paper, we first introduce the floorplanning problem for the flip-chip
design and formulate it as assigning the positions of input/output buffers and
first-stage/last-stage blocks so that the path length between blocks and bump
balls as well as the delay skew of the paths are simultaneously minimized.
In this formulation, we address practical issues in the industrial flip-chip de-
sign, such as the minimization of interconnection delay and data bus skew. To
handle such objectives, the classical standard-cell/mixed-size placement tech-
niques (like Aplace [16], Capo [1], GORDIAN [18], GORDIAN-L, mPG [8],
mPL [7], FastPlace [24], Feng Shui [17], Dragon [25]) and the B*-tree floor-
planning technique alone have their limitations. For example, the skew objec-
tive leads to a non-quadratic, non-convex term for which most analytic placers
(such as Aplace, GORDIAN, mPL) rely on for the global optimization, the cell
height and row placement constraints make the classical standard-cell placers
not directly applicable to the flip-chip placement, and the compaction nature
of the B*-tree limits the quality of interconnection optimization.

To remedy the limitations of the classical standard-cell/mixed-size placers
and the B*-tree, we present a hierarchical top-down method to solve the prob-
lem based on a more accurate and efficient cost function. We first cluster a
block and its corresponding buffers to reduce the problem size. Then, we go
into iterations of the alternating and interacting global optimization step and
the partitioning step. The global optimization step places blocks based on
simulated annealing using the B*-tree representation to minimize a given cost
function. The partitioning step dissects the chip into two subregions, and the
blocks are divided into two groups and are placed in respective subregions.
The two steps repeat until each subregion contains at most a given number of
blocks, defined by the ratio of the total block area to the chip area. At last,
we refine the floorplan by perturbing blocks inside a subregion as well as in
different subregions. Compared with the B*-tree based floorplanner alone, our
method obtains significantly better results, with an average cost of only 51.8%
of that obtained by using the B*-tree alone, based on a set of real industrial
flip-chip designs provided by leading companies. Further, our floorplanner is
more efficient than the B*-tree alone.

The remainder of this paper is organized as follows. Section 2 formulates
the problem of block and input/output buffer floorplanning for flip-chip design.
Section 3 reviews the B*-tree representation. Section 4 presents our algorithm
for handling the floorplanning problem. Section 5 reports the experimental
results, and finally the conclusions and future work are given in Section 6.

II. PRELIMINARIES

We consider the block-based design, for which blocks and buffers are rec-
tangular and can be placed anywhere in the given flip-chip to minimize the
objective function. All the input/output signals are connected to block ports
through the input/output buffers. We assume that all the bump balls are placed
at pre-defined locations (typically defined by packaging sites) and their signals
are determined. We intend to minimize the interconnection length among the
bump balls, the I/O buffers, and blocks. For most practical designs, as men-
tioned earlier, there are a large number of input/output pins being used for data
buses. Therefore, it is also desired to make sure that all input signals from
bump balls via input buffers to blocks arrive simultaneously and output sig-
nals from blocks via output buffers to bump balls also arrive simultaneously.
To achieve the goal, we define the objective function Γ as follows:

Γ = αφ1 + βφ2, (1)

where

φ1 =

n1∑
j=1

di
j +

n2∑
j=1

do
j

φ2 =

(
max

1≤j≤n1
di

j − min
1≤j≤n1

di
j

)2

+

(
max

1≤j≤n2
do

j − min
1≤j≤n2

do
j

)2

.

In Γ, φ1 gives the sum of path delays, and φ2 gives the sum of the squares
of the maximum (critical) input and output signal skews. (Note that we adopt
the squares of the signal skews in order to match the magnitude of the path
delay cost.) Here, α and β are the user-specified weighting factors, n1 and
n2 are the numbers of input and output signals, respectively, and di

j and do
j

are the respective path delays of the jth input signal and the jth output signal.
The path delay of an input signal is the delay of a path from a bump ball via
an input buffer to a block port; the path delay of an output signal is the delay
of a path from a block port via an output buffer to a bump ball. The path delay
is measured by the rectilinear path length between two circuit components
(bump balls, buffers, or block ports), i.e., the Manhattan distance between
the two points. Minimizing the above objective function means that it needs
to minimize the critical skew of the path delays of all input signals, output
signals, and the total path delay.

It should be noted that the above objective function does address the re-
quirements needed for the recent real industrial flip-chip designs (e.g., from
the leading foundry UMC and its design service company Faraday) to be re-
ported in Section 5. Also, unlike the objective function used in [15] which
cannot model the skew cost accurately and needs quadratic time for evalua-
tion, the new objective function is more accurate and needs only linear time
for evaluation.

III. THE B*-TREE REPRESENTATION

As mentioned earlier, we extend the B*-tree representation to handle the
problem of block and I/O buffer floorplanning for flip-chip design. Thus, we
shall give a review of the B*-tree representation.

Given a compacted placement P that can neither move down nor move left
(called an admissible placement [14]), we can represent it by a unique B*-tree
T [9]. (See Figure 4(b) for the B*-tree representing the placement shown in
Figure 4(a).) A B*-tree is an ordered binary tree (a restriction of the O-tree [14]
with faster and more flexible operations) whose root corresponds to the block
on the bottom-left corner. Using the depth-first search (DFS) procedure, the
B*-tree T for an admissible placement P can be constructed in a recursive
fashion. Starting from the root, we first recursively construct the left subtree
and then the right subtree. Let Ri denote the set of blocks located on the right-
hand side and adjacent to mi. The left child of the node ni corresponds to the
lowest block in Ri that is unvisited. The right child of ni represents the lowest
block located above mi, with its x-coordinate equal to that of mi.

Figure 4(b) illustrates the resulting B*-tree for the placement shown in Fig-
ure 4(a). The B*-tree keeps the geometric relationship between two blocks as
follows. If node nj is the left child of node ni, block mj must be located on
the right-hand side and adjacent to block mi in the admissible placement; i.e.,
xj = xi + wi. Besides, if node nj is the right child of ni, block mj must be
located above block mi, with the x-coordinate of mj equal to that of mi; i.e.,
xj = xi. Also, since the root of T represents the bottom-left block, the x- and
y-coordinates of the block associated with the root (xroot, yroot) = (0, 0).
Therefore, given a B*-tree, the x-coordinates of all blocks can be determined
by traversing the tree once. The y-coordinate can be computed based on the
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Fig. 4. (a) An admissible placement. (b) The corresponding B*-tree.

contour data structure presented in [14] in amortized O(1) time for each node.
Therefore, an n-node B*-tree can be evaluated very efficiently in amortized
O(n) time.

IV. OUR ALGORITHM

Our algorithm is illustrated in Figure 5. Given inputs of net list and the
geometry of the chip, we first cluster a block and its corresponding I/O buffers
into a clustered block. Then we go into the main steps of alternating and in-
teracting global optimization and partitioning steps. The global optimization
step places blocks based on simulated annealing using the B*-tree representa-
tion to minimize a given cost function. The partitioning step dissects the chip
into two subregions, and the blocks are divided into two groups according to
their coordinates and are placed in respective subregions. Until each region
contains at most q clustered blocks, we decluster these clustered blocks. After
the declustering step, the global optimization and the partitioning steps repeat
until each region contains at most k blocks. At last the final floorplanning step
starts. In the final floorplanning step, we refine the floorplan by perturbing
blocks inside a subregion as well as in different subregions. Note that the val-
ues of q and k control the resulting number of subregions. The smaller the
values, the more the resulting subregions. If the area utilization ratio (the total
block area divided by the total chip area) is large, it is harder to place blocks
into subregions if we cut the chip into too many small subregions, and thus we
shall favor larger q and k for this situation. We shall explain each step of the
algorithm and the choices of q and k in the following sections.
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Fig. 5. Our algorithm.

A. Clustering

In this step, we apply simulated annealing using the B*-tree representation
to group a block and its I/O buffers to a clustered block. The objective function
is defined by area and the path delay between the input (output) port of a block
and the output (input) port of an I/O buffer. By this process, I/O buffers will
be clustered around its corresponding block. See Figure 6 for an example.

We introduce a node in the B*-tree based on the placement of a block and
its clustered I/O buffers, called a block node. The width and height of the

block node are equal to the respective width and height of the floorplan of the
block and its clustered I/O buffers. When we perform the global optimization
and partitioning, each block node represents its block and corresponding I/O
buffers until declustering. Therefore, the problem size can significantly be
reduced by clustering.
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Fig. 6. (a) The geometry of a block and its clustered I/O buffers. (b) The
B*-tree topology. m0 is the block and m1, m2, · · · , mn are the I/O buffers.
The dotted line gives the boundary of the clustered block.

B. Global Optimization and Partitioning

The floorplanning procedure is composed of alternating and interacting
global optimization and partitioning steps. In the global optimization step,
we place blocks by simulated annealing using the B*-tree representation.

For the region ρ, the positions of all blocks in the region, denoted by Mρ,
are derived from simulated annealing using the B*-tree representation. We
assume that W r

ρ (Hr
ρ ) is the width (height) of region ρ, and W m

ρ (Hm
ρ ) is

the width (height) of the floorplan in region ρ. The width (W r
ρ ), height (Hr

ρ ),
and the coordinates of regions are determined in the partitioning step. The
coordinate of each region is set to the bottom-left corner of the region, and the
coordinates of blocks in Mρ are relative to the coordinate of the region ρ.

There are two stages in the global optimization step, distinguished by the
declustering step. For the global optimization before declustering, we place
blocks only to minimize the objective function φ1, and blocks might be placed
out of the region at this stage. Here, φ1 denotes the sum of wirelengths be-
tween the clustered blocks and bump balls. This process makes a clustered
block closer to its corresponding bump balls. Although we do not consider
the signal skew and the fixed outline of the flip chip at this stage, we can still
fix/refine the solution at the final floorplanning stage or the global optimization
step after declustering.

For the global optimization after declustering, we apply the objective func-
tion Γ. In order to place blocks into their region boundary (i.e., fixed-outline
floorplanning), we shall also consider the width and height of the resulting
floorplan individually so that neither dimension violates the outline constraint.
To do so, we modify the objective function as follows:

Γ′ = Γ + γΦ, (2)

where

Φ = max(0, W m
ρ − W r

ρ ) + max(0, Hm
ρ − Hr

ρ). (3)

Here, cost Φ is used to force blocks to be packed into the chip during sim-
ulated annealing. In order to satisfy the fixed-outline constraint, γ is set to a
huge constant (say, 1000) to guarantee that the cost Φ is much bigger than any
cost Γ if the fixed-outline constraint is violated.

After each global optimization process, a new partitioning step starts; we
divide the region into two subregions and partition blocks into two groups de-
pending on their positions. In the partitioning step, for each region ρ with
|Mρ| > k, if the region width (W r

ρ ) is larger than its height (Hr
ρ ), the blocks

in Mρ are sorted according to the x-coordinates of the blocks, and the region
is cut vertically. In contrast, if the region height is larger than its width, the
blocks in Mρ are sorted according to the y-coordinates, and the region is cut
horizontally. Then, Mρ is divided into Mρ′ and Mρ′′ such that the summation
of the block areas in Mρ′ and Mρ′′ are approximately the same. The rectan-
gular area of region ρ is dissected accordingly. See Figure 7 for an illustration
of the processing.
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Fig. 7. Illustration of the interactive global optimization and partitioning
steps (q = 2).

C. Declustering

If the number of blocks in any region is smaller than q (so the problem size
is small enough), we shall ungroup each block which was formed by clustering
a block and its corresponding I/O buffers previously in this region. Each node
in the B*-tree is then expanded into a subtree representing the block’s compo-
nents which are constructed at the clustering step. The number of nodes after
declustering is definitely larger. To cope with the increasing problem size, we
process as follows to avoid a dramatic change in the resulting floorplan due to
the declustering.

Suppose that the original tree has the nodes n0, n1, · · · , nn, denoting
blocks m0, m1, · · · , mn, respectively; each block mi corresponds to the sub-
tree Ti constructed at the clustering step. There are two kinds of relations be-
tween two connected nodes in the original tree; a node is a left child or a right
child of another node. Let nl and nr denote the left and right child of the node
ni; ml and mr represented by nl and nr are located right to or above mi.

First we expand the parent node ni into the subtree Ti and record the last
contour when performing the B*-tree packing. The root node of the contour
croot represents the left- and top-most cell of the block mi, and the tail node
of the contour ctail represents the right- and top-most cell. See Figure 8 for
an illustration.

rootc
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Fig. 8. The inter blocks and the last contour of the clustered block mi.

Then, if the child of ni is a left child nl, we make the root node of the
subtree Tl as the left child of the node ctail. Thus the block represented by
the root node of the subtree Tl is located adjacent to the right side of the right-
most cell of block ni, as illustrated in Figure 9. In contrast, if the child of ni

is a right child nr , the root node of subtree Tl becomes the right child of the
node croot. The root cell will be located above the top-most cell of block ni,
as illustrated in Figure 10. By this process, the floorplan will not be changed
dramatically after declustering.
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Fig. 9. The blocks of solid lines belong to a clustered block mi, and the
blocks of dotted lines belong to another clustered block ml. ml is the left
child of mi. (a) mi and ml after declustering. (b) The corresponding tree
topology after declustering. (Here, m4 is the tail bock on the last contour.)
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Fig. 10. The blocks of dotted lines belong to the clustered block mr . mr is
the right child of mi. (a) mi and mr after declustering. (b) The
corresponding tree topology after declustering.

D. Final Floorplanning

In this step, the chip has been dissected into several subregions, and blocks
have been divided into several groups and placed in respective subregions. The
simulated annealing process starts again. We refine the floorplan by perturbing
blocks inside a subregion as well as in different subregions. The objective
function is the same as the function in the global optimization step, but the
perturbation operations are different. We select two blocks randomly and swap
them if the swap will not cause any outline violation. It gives a chance that a
block can change its subregion. After changing blocks, we only re-compute
the coordinates of blocks at the changed subregions. Doing so, we have a
chance to further refine the floorplan solution.

E. Summary of Our Algorithm

The flow of our algorithm is shown in Figure 12 (the procedure is shown
in Figure 5). The result of our floorplanning method may be influenced by the
parameters q and k. The parameter q controls the degree of the partitioning
step. A smaller q implies that more subregions will be partitioned. We suggest
that if the total block area is much smaller than the chip area (i.e., the chip
utilization ratio is small), the parameter q should be smaller to generate more
subregions to prevent blocks from being packed together at the bottom-left
corner of some subregion. (Note that this is an intrinsic behavior of a com-
pacted floorplanner like the B*-tree.) Otherwise, we shall choose a larger q
since it is harder to place blocks into subregions if we cut the chip into too
many small subregions. The parameter k plays the same role as parameter
q after declustering. The optimal q and k may be different for different test
cases. Nevertheless, we propose a heuristic to define them based on the ratio
of total block area to the chip area; the heuristic is given in Figure 11. It is
clear that this heuristic leads to appropriate q and k for flip-chip design.



1 q = # clustered blocks;
2 k = # blocks;
3 r = total blocks area/chip area /* utilization ratio */
4 if ( r < 0.75 )
5 q = 10 × r;
6 k = 10 × r × (#blocks/#clustered blocks)
7 else
8 k = 10 × r × (# blocks / # clustered blocks)
9 q = max{q, 3}; /* the smallest q = 3 */
10 k = max{k, 20} /* the smallest k = 20 */;

Fig. 11. A heuristic to define the parameters q and k.
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Fig. 12. The flow chart of our floorplanning method.

V. EXPERIMENTAL RESULTS

We implemented our algorithm in the C++ programming language on a
1.2GHz SUN Blade 2000 workstation with 8 GB memory. (We will make
this tool available to the public after this work is published to facilitate future
research along this direction.) The benchmark circuits fc1, fc2, . . ., fc7 are real
consumer designs (DVD players, MP3, etc) and were provided by the leading
foundry UMC and its design service company Faraday. Table I lists the names
of circuits, the number of blocks, the number of buffers, the chip areas, the
ratio of the total blocks area (including blocks and I/O buffer blocks) to the
chip area, and the parameters α and β (also defined by the company). The
parameter α is the weighting factor of the path delay part φ1 of the objective
function Γ, and the β is that of the skew part φ2 of Γ. The test cases fc4, fc5,
fc6, and fc7 are for the same design with different assignments of block ports
and wire connections; therefore, their chip sizes and the block sizes are all the
same. (So the problem sizes range from 31 blocks + I/O buffers to 412 blocks
+ I/O buffers, representing the typical problem sizes for recent applications.)

We compared our algorithm with the state-of-the-art B*-tree floorplanner
and the TCG [21] one using the same cost function Γ. It should be noted that
we do not compare with the classical standard-cell placers. As mentioned ear-
lier, the classical standard-cell and/or mixed-size placers (such as the famous
Aplace, Capo, GORDIAN, GORDIAN-L, mPG, mPL, FastPlace, Feng Shui,
Dragon) cannot directly apply to the flip-chip floorplanning problem well be-
cause of the cell height and row placement constraints and the non-quadratic,
non-convex term in the problem formulation. (As mentioned earlier, we have
tried well-known publicly available placers such as Feng Shui 2.6/5.0 [13] and
mGP [8, 22]. They all cannot obtain desirable floorplans for the flip-chip de-
sign directly.) We shall also note that the B*-tree floorplanner is considered a
leading tool in block floorplanning [6, 10, 20].

The results are listed in Table II. The B*-tree package that we used here
is the state-of-the-art version used in [20], which has been shown to be able
to handle up to thousands of blocks. The source code of the B*-tree package

Circuit # # chip block area α β
blocks buffers area /chip area

fc1 6 25 1040x1040 0.4216 0.5 0.5
fc2 12 168 3440x3440 0.5598 0.5 0.5
fc3 23 320 4240x4240 0.6584 0.7 0.3
fc4 28 384 4440x4440 0.7276 0.7 0.3
fc5 28 384 4440x4440 0.7276 0.7 0.3
fc6 28 384 4040x4040 0.8788 0.7 0.3
fc7 28 384 4040x4040 0.8788 0.7 0.3

TABLE I
STATISTICS OF THE TEST CIRCUITS.

Ckt B*-tree alone TCG alone Our Method

Tot. path delay 23390 1.32 28430 1.60 17760 1.0
Max. input skew 160 1.33 120 1.00 120 1.0

fc1 Max. output skew 100 1.11 100 1.11 90 1.0
Cost Γ 2.95e+06 1.46 2.641e+06 1.31 2.01e+06 1.0
CPU Time 1 s 0.73 32 s 33.83 1 s 1.0

Tot. path delay 521030 1.44 750450 2.08 361650 1.0
Max. input skew 1360 1.37 1390 1.38 1010 1.0

fc2 Max. output skew 1890 1.36 1740 1.25 1390 1.0
Cost Γ 2.97e+08 1.79 2.855e+08 1.72 1.66e+08 1.0
CPU Time 20 s 1.29 9944 s 631.76 16 s 1.0

Tot. path delay 1033800 1.67 NR - 619200 1.0
Max. input skew 3320 2.00 NR - 1660 1.0

fc3 Max. output skew 2500 1.47 NR - 1700 1.0
Cost Γ 1.24e+09 3.00 NR - 4.14e+08 1.0
CPU Time 85 s 1.66 >10 hr - 51 s 1.0

Tot. path delay 1153560 1.59 NR - 726040 1.0
Max. input skew 3380 1.54 NR - 2190 1.0

fc4 Max. output skew 2820 1.18 NR - 2380 1.0
Cost Γ 1.39e+09 1.84 NR - 7.54e+08 1.0
CPU Time 130 s 1.80 >10 hr - 72 s 1.0

Tot. path delay 969140 1.37 NR - 707430 1.0
Max. input skew 3300 1.91 NR - 1730 1.0

fc5 Max. output skew 3200 1.48 NR - 2160 1.0
Cost Γ 1.51e+09 2.71 NR - 5.57e+08 1.0
CPU Time 130 s 1.66 >10 hr - 78 s 1.0

Tot. path delay 1233720 1.65 NR - 745880 1.0
Max. input skew 3580 1.19 NR - 3000 1.0

fc6 Max. output skew 4360 1.39 NR - 3140 1.0
Cost Γ 2.26e+09 1.69 NR - 1.34e+09 1.0
CPU Time 108 s 0.68 >10 hr - 160 s 1.0

Tot. path delay 1159560 1.59 NR - 729180 1.0
Max. input skew 3880 1.11 NR - 3500 1.0

fc7 Max. output skew 4720 1.65 NR - 2860 1.0
Cost Γ 2.65e+09 1.82 NR - 1.45e+09 1.0
CPU Time 251 s 1.11 >10 hr - 226 s 1.0

TABLE II
EXPERIMENTAL RESULTS OF OUR FLOORPLANNING METHOD, THE

B*-TREE REPRESENTATION ALONE AND TCG REPRESENTATION ALONE.
*NR: NO RESULTS OBTAINED.

is available to the general public on-line [4]. We implemented our algorithm
based on the same simulated annealing scheme as that used by the B*-tree
package. Unlike the B*-tree based floorplanner which always compacts blocks
to the left and bottom, the TCG based floorplanner results in general floor-
plans, which well addresses the layout requirement for the flip-chip design.
Nevertheless, TCG has a higher complexity of O(n2) time for its operations
and packing with n blocks. This limits the applicability and quality of TCG
for large-scale designs.

As shown in Tables II and III, our method obtains significantly better re-
sults in total path delays and the input/output signal skews; the B*-tree based
algorithm (the TCG based algorithm) results in the overall cost of 2.04 times
(1.52 times) of that of our algorithm. Note that because of the higher com-
plexity in operations and packing, the TCG based floorplanner alone is only
feasible for the first two cases. Further, our method is more efficient than the
B*-tree and the TCG-based flooprlanners. The results justify the effectiveness
and efficiency of our method; the B*-tree based algorithm (the TCG based al-
gorithm) needs 1.28 times (more than 332 times) of our CPU time. The results
show the effectiveness and efficiency of our algorithm. The resulting layout
fc3 is shown in Figures 13.

It should be noted that the reason why our method is even more efficient
than the B*-tree based floorplanner mainly lies in the hierarchical framework
and the clustering and declustering schemes adopted in our work. By using
the framework and the schemes, we can control the problem sizes well at each



Total Max. Max. Cost CPU
path input output Γ Time

delays skew skew

Our method 1.00 1.00 1.00 1.00 1.00
B*-tree alone 1.52 1.49 1.38 2.04 1.28
TCG alone 1.84 1.19 1.18 1.52 332.80

TABLE III
THE AVERAGE COST AND CPU TIME RATIOS FOR THE B*-TREE AND THE

TCG BASED ALGORITHMS VS. OUR ALGORITHM FOR ALL TEST

CIRCUITS.

stage. Therefore, our method has better scalability than the B*-tree and TCG-
based floorplanners for handling the flip-chip floorplanning of various problem
sizes.
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Fig. 13. The floorplanning result of fc3.

VI. CONCLUSION

We have presented a B*-tree based hierarchical top-down method for the
block and input/output buffer floorplanning for flip-chip design. This method
not only remedies the limitations of the classical standard-cell placers and the
B*-tree, but also speeds up the running time by applying the hierarchical top-
down scheme. Experimental results based on real industrial flip-chip designs
provided by leading companies have shown the effectiveness and efficiency
of our algorithm. Future work lies in developing other heuristics to slice the
chip to further improve the results. Also, the routing and tighter integration of
layout and packaging co-synthesis for the flip-chip design are on-going.

REFERENCES

[1] S. N. Adya, I. L. Markov, and P. G. Villarrubia, “On whitespace in
mixed-size placement and physical synthesis,” Proc. of IEEE/ACM Int.
Conf. on Computer-Aided Design, pp. 311–318, 2003.

[2] A. R. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and
P. H. Madden, “Fractical cut: improved recursive bisection placement,”
Proc. of IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 307–
310, 2003.

[3] P.H. Buffet, J. Natonio, R.A. Proctor, Yu H. Sun, and G. Yasar,
“Methodology for I/O cell placement and checking in ASIC designs us-
ing area-array power grid,” Proc. of IEEE Custom Integrated Circuits
Conf., pp. 125–128, 2000.

[4] B*-tree: http://cc.ee.ntu.edu.tw/∼ywchang/research.html.

[5] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive bisec-
tion alone produce routable placement?,” Proc. of ACM/IEEE Design
Automation Conf., pp. 477–482, 2000.

[6] H. H. Chan, S. N. Adya, and I. L. Markov, “Are floorplan representa-
tions important in digital design?” Proc. of ACM International Sympo-
sium on Physical Design, pp. 129–136, 2005.

[7] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” Proc. of ACM International Symposium
on Physical Design, 2005.

[8] C. C. Chang, J. Cong, and X. Yuan, “Multilevel placement for large-
scale mixed-size IC designs,” Proc. of ACM/IEEE Asia and South Pa-
cific Design Automation Conf., pp. 325–330, 2003.

[9] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-Trees: a new
representation for non-slicing floorplans,” Proc. of ACM/IEEE Design
Automation Conf., pp. 458–463, 2000.

[10] J. Con, G. Nataneli, M. Romesis, and J. R. Shinnerl, “An area-
optimality study of flooprlanning,” Proc. of ACM International Sym-
posium on Physical Design, pp. 78–83, April 2004.

[11] P. Dehkordi and D. Bouldin, “Design for packageability: the impact of
bonding technology on the size and layout of VLSI dies,” Proc. Multi-
chip Module Conf., pp. 153–159, 1993.

[12] H. Eisenmann and F. M. Johannes, “Generic global placement and
floorplanning,” Proc. of ACM/IEEE Design Automation Conf., pp. 269–
274, 1998.

[13] FengShui Placer. http://vlsicad.cs.binghamton.edu/software.html.

[14] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation
of non-slicing floorplan and its applications,” Proc. of ACM/IEEE De-
sign Automation Conf., pp. 268–273, 1999.

[15] H.-Y. Hsieh and T.-C. Wang, Simple yet effective algorithms for block
and I/O buffer placement in flip-chip designs, Proc. of IEEE Interna-
tional Symposium on Circuits and Systems, pp. 1879–1882, May 2005.

[16] A. B. Kahng and Q. Wang, “Implementation and extensibility of an
analytic placer,” Proc. of ACM International Symposium on Physical
Design, pp. 18–25, April 2004.

[17] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh,
and P. H. Madden, “Recursive bisection based mixed block placement,”
Proc. of ACM International Symposium on Physical Design, pp. 84–89,
April 2004.

[18] J.M. Kleinhans, G. Sigl, F.M. Johannes, K.J. Antreich, “GORDIAN:
VLSI placement by quadratic programming and slicing optimization,”
IEEE Trans. Computer-Aided Design, pp. 356–365, 1991.

[19] J.N. Kozhaya, S.R. Nassif, F.N. Najm, “I/O buffer placement method-
ology for ASICs,” Proc. of IEEE International Conference on Electron-
ics, Circuits and System, pp. 245–248, 2001.

[20] H.-C. Lee, Y.-W. Chang, J.-M. Hsu, and H. Yang, “Multilevel floor-
planning/placement for large-scale modules using B*-trees,” Proc. of
ACM/IEEE Design Automation Conf., Anaheim, CA, June 2003.

[21] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph based
representation for non-slicing floorplans,” Proc. of ACM/IEEE Design
Automation Conf., pp. 764–769, Las Vegas, NV, June 2001.

[22] mGP: Multilevel Global Placement. http://ballade.cs.ucla.edu/mGP/.

[23] Parquet: Fixed-Outline Floorplanner,
http://vlsicad.eecs.umich.edu/BK/parquet/

[24] N. Viswanathan and C. C.-N. Chu, “FastPlace: efficient analytical
placement using cell shifting, iterative local refinement and a hybrid
net model,” Proc. of ACM International Symposium on Physical De-
sign, pp. 26–33, April 2004.

[25] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: standard-cell
placement tool for large industry circuits,” Proc. of IEEE/ACM Int.
Conf. on Computer-Aided Design, pp. 260–263, June 2000.

[26] H. Zhou and J. Wang, “ACG–Adjacent constraint graph for general
floorplans,” Proc. of IEEE Int. Conf. on Computer Design, pp. 572–
575, October 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


