An Exact Jumper Insertion Algorithm for Antenna Effect
Avoidance/Fixing -

Bor-Yiing Su
Department of Electrical Engineering
National Taiwan University
Taipei 106, Taiwan

ABSTRACT

As the process technology enters the nanometer era, reliability has
become a major concern in the design and manufacturing of VLSI
circuits. In this paper we focus on one reliability issue—jumper in-
sertion in routing trees for avoiding/fixing antenna effect violations at
the routing/post-layout stages. We formulate the jumper insertion for
antenna avoidance/fixing as a tree-cutting problem. We show that the
tree-cutting problem exhibits the properties of optimal substructures
and greedy choices. With these properties, we present an O(V 1gV')-
time exact jumper insertion algorithm that uses the optimum number
of jumpers to avoid/fix the antenna violations in a routing tree with
V vertices. Experimental results show the superior effectiveness and
efficiency of our algorithm.

Categories and Subject Descriptors: J.6 [Computer-Aided Engi-
neering]: Computer-Aided Design

General Terms: Algorithms, Performance

Keywords: Antenna Effect, Jumper

1. INTRODUCTION

As the process technology enters the nanometer era, product reli-
ability and manufacturing yield have become major concerns in the
design and manufacturing of VLSI circuits. The fine feature size of
modern IC technologies is typically achieved by using plasma-based
processes. In nanometer technology, more stringent process require-
ments cause some advanced high-density plasma reactors adopted in
the production lines to achieve fine-line patterns [4]. However, these
plasma-based processes will charge conducting components of a fabri-
cated structure. As a result, the accumulated charges may affect the
quality of IC’s. This is called the antenna effect.

During metalization, long floating interconnects act as temporary
capacitors and accumulate charges gained from the energy provided
by fabrication steps such as plasma etching. A random discharge
of the floating node due to subsequent process steps could perma-
nently damage transistors in the IC [5, 6]. For instance, the exposed
polysilicon and metal structures connected to a thin-oxide transistor
will collect charge from the processing environment (e.g., reactive ion
etch) and damage the transistor when the discharging current flows
through the thin oxide. The mechanism of antenna damage is not
fully understood, but there is experimental evidence indicating when
charging occurs and how it may affect the quality of gate oxide [5,
6]. Charging occurs when conductor layers not covered by a shielding
layer of oxide are directly exposed to plasma. The amount of such

*This work was partially supported by SpringSoft, Inc. and
National Science Council of Taiwan under Grant No’s. NSC
93-2215-E-002-009, NSC-93-2220-E-002-001, NSC 93-2752-
E-002-008-PAE, and NSC 93-2815-C-002-046-E. Emails:
b90901130@ntu.edu.tw; ywchang@cc.ee.ntu.edu.tw.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2005, June 13-17, 2005, Anaheim, California, USA.

Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

Yao-Wen Chang
Graduate Institute of Electronics Engineering
and Department of Electrical Engineering
National Taiwan University
Taipei 106, Taiwan

charging is proportional to this plasma-exposed area. If conductor
layers are connected to a diffusion layer pattern, such charges are
discharged to the substrate through the diffusion; see Figures 1(b),
(¢), and (d) for illustrations. On the other hand, if the charged con-
ductor layers are connected only to the gate oxide, Fowler-Nordheim
(F-N) tunneling current through thin oxide discharges such charges
and causes damage to the thin oxide [5]; see Figures 1(b) and (c).
As shown in Figure 1, interconnects are manufactured layer by layer.
Before a conducting path to the diffusion is formed in metal 2 layer
pattern etching (see Figure 1(d)), the interconnects in the poly and
metal 1 layers might have accumulated so many charges that they
cause damage on the gate in the left of Figure 1(c). (Note that there
will not be any antenna violation after a conducting path to the dif-
fusion is formed.)
Current

f .

Gate —
apigh Diffusion|

(c)

Current

—/
Metal2 Metall Poly layer

L Diffusion| Current
(a)
Current Current
{ e 2, e sl
Apligh Diffusion oo Diffusion|

(b) (d)

Figure 1: Antenna effect. (a) An example routing. (b) Late
stage of poly layer pattern etching of Figure (a). Charge on
the left poly pattern is discharged through the gate while
charge on the right poly pattern is discharged through the
diffusion. (c) Late stage of metal 1 layer pattern etching of
Figure (a). Charge on the left metal 1 pattern is discharged
through the gate while charge on the right metal 1 pattern
is discharged through the diffusion. (d) Late stage of metal
2 layer pattern etching. Charges on all the metal 2 patterns

are discharged through the diffusion.
There are three kinds of solutions to reduce the antenna effect [1]:

1. Jumper insertion
2. Embedded protection diode
3. Diode insertion after placement and routing

Comparing the three methods, for method 2 of embedded protection
diode, since these diodes are embedded and fixed, they consume un-
necessary areas when there is no violation at the connecting wire.
In the third method, we need extra space in the chip to place the
diodes. Because the number of diodes needed for fixing antenna vio-
lations grows dramatically as the feature shrinks, it is hard to preserve
enough space for diodes in nanometer IC designs. As a result, jumper
insertion becomes the most popular approach for avoiding/fixing an-
tenna violations. The function of jumper insertion can be explained
using Figure 2. In Figure 2(a), when the metal 1 layer is manufac-
tured, the gate on the right might be damaged because the large area
of the metal 1 interconnection can accumulate sufficient charges to
damage the gate. However, if we insert a jumper to route the inter-
connect on the metal 2 layer as shown in Figure 2(b), the effective

conductor layer becomes smaller. Therefore, the stored charge is not
enough to damage the gate on the right, and thus we can avoid the
antenna violation.

=]
Metal2
=
Metall I —
I I N N M

Poly layer
(a) (b)

Figure 2: Jumper insertion. (a) Stage before inserting a
jumper. (b) Stage after inserting a jumper from the metal 1
layer to the metal 2 layer.

Although jumper insertion is currently the most popular approach
for antenna avoidance/fixing, jumpers induce vias that will consume
silicon areas and reduce circuit performance. Therefore, it is desired
to fix antenna violations by using the least jumpers. Recently, Ho,
Chang, and Chen in [3] proposed a bottom-up approach to insert
jumpers in a routing tree for antenna avoidance. The work inserts
jumpers only beside tree nodes, and its optimality holds only for
this special condition of inserting jumpers right beside tree nodes.
As an example shown in Figure 3, the wire segment is of 1.3Lqx
long, where L,,q,; denotes the upper bound for antenna (i.e., any
wire longer than L,q, will violate the antenna rule). For this wire
segment, the work in [3] needs two jumpers to fix the antenna viola-
tion (see Figure 3(a)) while a single jumper suffices to fix the violation
(see Figure 3(b)).

0.3Lmax

— 1.3Lmax Lmax ~
o—0 6——0

(a) (b)
Figure 3: Jumper insertion for a wire of 1.3L,,,, long. (a)
Two jumpers are needed for fixing the antenna violation if
jumpers can be inserted only beside tree nodes, as the as-
sumption made in [3]. (b) One jumper suffices to fix the
antenna violation if jumpers can be inserted at an arbitrary

position of the wire segment.

In this paper, we consider the general case of inserting jumpers at
arbitrary positions (e.g., in any position of a tree edge). We formu-
late the general jumper insertion for antenna avoidance (applicable at
the routing stage) and/or fixing (applicable at the post-layout stage)
as a tree-cutting problem. We show that the tree-cutting problem
exhibits the properties of optimal substructures and greedy choices.
With these properties, a greedy algorithm suffices to find an optimal
solution [2]. Based on the theory, we present an O(V lg V)-time exact
jumper insertion algorithm that uses the minimum number of jumpers
to fix the antenna violations in a routing tree with V vertices. Com-
pared with the previous work in [3], our algorithm outperforms the
method by large margins.

2. PROBLEM DEFINITION

To avoid/fix the antenna violation, we require that the total effec-
tive conductor connecting to a gate is less than or equal to a thresh-
old, Ly,qaz- The threshold can be wire length limit, wire area limit,
or any model of the strength of antenna effect caused by conductors.
Typically, a net is modeled as a routing tree, where a node in the
tree denotes a circuit terminal (a gate or a diffusion) and an edge
denotes the interconnection between two circuit terminals. Since the
interconnection connecting to a diffusion terminal will not cause any
antenna violation, as explained in Section 1, we shall focus on those
connecting to gate terminals.

Let T = (V, E) be a routing tree, which can be a Steiner tree or
a spanning tree of any form. The set V of nodes represents all gate
terminals, the set E of edges denotes the wires connecting the circuit
terminals, and an edge weight gives the measure of the wires with the
same unit as Lyqz. For example, if L,,q, is a wire length limit, an
edge weight denotes the wire length between two circuit terminals. If
Lomax is a wire area limit, the edge weight denotes the wire area. A
gate will violate the antenna rule if the effective conductor incident
on the gate (i.e., the effective weight—the sum of the weights of the
edges incident on the corresponding node) is larger than L.,qz. To
reduce the antenna effects on a gate, we can apply the technique il-
lustrated in Figure 2 by adding a jumper on a wire connecting to the
gate to reduce the effective conductor. This operation is modeled as
adding a cutting node on the tree edge corresponding to the wire to
reduce the effective edge weight associated with the gate node. As
aforementioned, jumpers are implemented by vias which will consume
silicon areas and reduce circuit performance. Therefore, it is desired
to fix antenna violations by using the least jumpers. In other words,
given a routing tree T'= (V, E) and an upper bound on the antenna
Lomaz, we intend to add the minimum number of cutting nodes so

that the effective edge weight associated with each node is smaller
than Ly,qz. Let L(u) denote the sum of edge weights (lengths, wire
areas, etc) between the node u and all its neighbors. We formulate
the problem of jumper insertion on a routing tree for antenna avoid-
ance/fixing as a tree cutting problem as follows:

e Problem JITA (Jumper Insertion on a Routing Tree for An-
tenna Avoidance): Given a routing tree T' = (V, E) and an
upper bound L, qz, find the minimum set C of cutting nodes,
c# uforany ¢ € C and u € V, so that L(u) < Lyqz, Yu € V.

Note that the routing tree in this formulation can be a Steiner
tree or a spanning tree which represents a net in any layout design
stage, e.g., a net to be globally routed, a net after detailed routing (in
the post-layout stage). Therefore, the JITA problem is applicable to
the antenna estimation in the global/detailed routing stage and the
antenna violation fixing in the post-layout stage.

3. ALGORITHM FOR FINDING THE MIN-
IMUM ||

For the JITA problem, we present in this section an O(V 1g V)-time
exact algorithm, named BUJI (Bottom Up Jumper Insertion), for
finding the minimum cutting set C for a given routing tree T' = (V, E)
with V' nodes. (Note that we use V to denote the set or the number
of nodes in a routing tree, which is common in the community of
algorithms; its meaning is clear from the context.) Algorithm BUJI
is summarized in Figure 4. To simplify the presentation, we assume
that the antenna bound L, is measured by wire length. Let I(e)
(or l(u, v)) be the length (i.e., weight) of the edge e = (u,v) in T". In
the BUJI algorithm, we add the cutting nodes into the original tree
in a bottom-up manner. We first define a subleaf node as follows:

Definition 1. A subleaf is a node for which all its children are
leaf nodes, and all the edges between it and its children have lengths
< Limaa-

We derive the algorithm based on the following two steps:
e Step 1 (lines 2—-12 of Algorithm BUJI): We deal with every leaf
node.

In this case, our main goal is to prevent every leaf node from
antenna violation. Obviously, if we have dealt with a leaf node,
we need not consider it any more. Therefore, line 3 of the BUJI
algorithm marks these nodes to make sure that every leaf node
is processed only once. If [(u,p(u)) < Lyqs, the leaf node u
satisfies the antenna rule. Thus, we need not insert any cutting
nodes. However, if I(u, p(u)) > Lmax, we must insert at least
one cutting node to satisfy that L(u) < Ly,qz. For this case,
we can further divide it into two subcases as follows:
1. ueC:
In this subcase, we need at least one cutting node to sat-
isfy the rule that L(u) < Lyqz. We claim that I(u,c) =
l(u, p(u)) (and thus I(c, p(u)) = 0) gives the best position
for inserting the cutting node (the proof is given in the
next section); see Figure 5(a) for an illustration. There-
fore, we add c¢ into C and cut the edge e(u, p(u)) from
the original tree T' (lines 5-8).

2. ugC:

In this subcase, we need at least one cutting node to pre-
vent u from antenna violation. We claim that l(u,c) =
Lpaz (and thus l(c, p(u)) = l(u, p(u)) — Lmaz) gives the
best position for inserting the cutting node (the proof is
given in the next section); see Figure 5(b) for an illus-
tration. Therefore, we add ¢ into C, add ¢ into V, and
cut the node uw and edge e(u, ¢) from the original tree T'
(lines 9-12).

e Step 2 (lines 13-19 of Algorithm BUJI): We deal with every
subleaf node.

In this case, our main goal is to prevent every subleaf node
from antenna violation. Moreover, we delete some nodes and
edges to make each subleaf node as a leaf node. We classify
the subleaf nodes into two categories by the sum of lengths
between the node and its children. Let u, be a subleaf node and

ui, V1 <4 < k, be its children. Let totallen = le (ug, up).

1. Case 1: totallen < Lyqx

‘We use Subroutine LessEqual to deal with this case. If u,
and its children form an isolated component, they must
satisfy the antenna rule, and thus we are done with the
subroutine. If totallen+1(up,p(up)) < Lmax, up will not
violate the antenna rule. Therefore, we simply cut u,’s
children from the original tree to make u, as a leaf node

(lines 3-5 in LessEqual). Otherwise, we must add at least
one cutting node c to prevent u, from antenna violation.
We claim that I(c, up) + totallen = Lyaz gives the best
position for inserting the cutting node; see Figure 6(a).
Therefore, we add ¢ into C, and cut u, and all its children
from the original tree T (lines 6-9 in LessEqual).

2. Case 2: totallen > Lomax

We use Subroutine More to deal with this case. We first
sort edges from u, and its children by their lengths. Let
Ali] = l(ui, up),V1 < 4 < k. Then we find the maximum
number s such that Ej=1 A[j] € Lmas. We claim that
Cs41,--.,C, on edge e(uj,up) with I(c;,up) = 0 (and
thus I(ci, ui) = l(up,u;)) give the best positions for in-
serting the cutting nodes; see Figure 6(b). Therefore, we
add cs41,...,ck into C, and cut usq1,...,ur from the
original tree T' (lines 1-9 in More). Moreover, we call sub-
routine LessEqual to further reduce u, into a leaf node
(line 10 in More).

When the total length of the tree T is < Ly,qz, Algorithm BUJI
terminates and C' is a cutting set of the minimum size.

Algorithm: BUJI(T, Lmax, ttotal, C)
Input: T = (V, E) /* The given tree. */
Lyyaz /* Upper Bound on antenna */
C' /* Cutting set */
tiotal /* Total Edge Length in T */
1 while (torar > Lmas)
2 for each leaf node u € T not having been processed
3 Mark u as processed;
4 if I(u, p(u)) > Lmax
5 ifueC
Let ¢ be the node between u and p(u) with
(u,) = U(u, p(u)) and I(c, p(u)) = 0;
6 C — CU{c};
7 tiotal — ttotal — L(u, p(u));
8 T(V,E) = T(V — {u}, E = {e(u, p(u))});
9 else
Let ¢ be the node between u and p(u) with
l(c,u) = Lmaz and l(c, p(u)) = l(u, p(u)) — Limax;
10 C — CU{c};
11 tiotal < ttotal — Lmaaz;
12 T(V,E) — T(V + {c} — {u}, E — {e(u, 0)});
13 for each subleaf node u, € T
14 Let w1, u2,...,ur denote all children nodes of Up.
15 totallen — Zle l(up, ui);
16 if totallen < Ly ez
17 LessEqual(T, tiotal, C, up, totallen, Lymaz) ;
18 else
19 More(T, tiotar, C, up, totallen, Limaz);

Figure 4: Algorithm BUJI deals with the leaf nodes first,
and then call Subroutines Equal, Less, and More to deal with

the subleaf nodes.

— Lmax : Lmax;

u Cutc p(u) u Cut ¢ p(u)
(a) (b)

Figure 5: Explanation of lines 2—12 in the BUJI algorithm.
(a) Case u € C. (b) Case u ¢ C.

4. PROOF OF THE OPTIMALITY OF |C|

Algorithm BUJI is greedy in nature. To prove that Algorithm
BUJI finds the optimal cutting set (of the minimum size), therefore,
we can show that the JITA problem exhibits optimal substructure
and has the greedy-choice property [2]. A problem exhibits optimal
substructure if an optimal solution to the problem contains within
it optimal solutions to the subproblems; a problem has the greedy-
choice property if a globally optimal solution can be arrived at by
making a locally optimal (greedy) choice [2]. Due to the limitation of
space, we shall omit several proofs for lemmas.

THEOREM 1. The JITA problem exhibits optimal substructure.

Cst1 Cs+2 ...

u u2 w

(a) (b)

Figure 6: (a) Illustration of the LessEqual Subroutine.
Here, l(up,u1) + l(up,u2) + l(up,u3) + (up, ¢) = Lmaz. (b) Il-
lustration of the More Subroutine.

Subroutine: LessEqual(T, tiotqi, C, up, totallen, Lmaz)
1 if p(up) does not exist
2 return
3 if totallen + l(up, p(up)) < Lmaax
4 tiotal < ttotar — totallen;
5 T(V,E) — T(V — Ui_ {wi}, E = Uf_ {e(ui, up)});
6 else

Let ¢ be the node on e(up, p(up))

with I(c, up) + totallen = Lyaz;
7 C — CU{c};
8 trotal < ttotal — Lmaa;
9 T(V,E) — T(V = Ui_ {ui} + {c} — {up},

E — U {e(ui, up)} — {e(u, 0)});

Figure 7: Compute the case when totallen < Ly az-

Now we show that the JITA problem has the greedy-choice prop-
erty, and Algorithm BUJI finds the best solution in each step. First,
we show that Algorithm BUJI has greedy choice property among all
leaf nodes. Then, we show that BUJI has greedy choice property
among all subleaf nodes.

LEMMA 1. Lines 2-12 of Algorithm BUJI finds the best cutting
set so that every leaf node u satisfies the antenna rule (i.e., L(u) <
Lipas,V leaf nodes u).

We proceed to show that lines 13-19 in BUJI finds the best cutting
set for each subleaf node u,. In this step, we classify the subleaf nodes
into two categories based on the sum of lengths between u, and its
children wu;: Zle l(up,u;i) < Lmas, and Zle l(up,u;) > Lmaz-
Therefore, we show that each case is with the greedy-choice property,
and we find the best cutting set in each case.

Subroutine: More(T, tiotar, C, up, totallen, Lmaqx)
Let Afi] — l(ui,up), V1 <4 < k.
Sort A in non-decreasing order;
s« 1;
while (3511 A[j] < Linas)
s«—s+1;
Let cs41,...,cr be the nodes between uy, and usy1,...,ux
with I(ci, up) = 0 and U(c;i, uq) = l(up,u;),V s+ 1 < i < k;
C—CU{c}Vs+1<i<k;
T(V,E) « T(V - U::ﬂ:s+1{“i}v E - U?:s-;-l{e(“ia up)});
minuslen «— E?:s-H Alil;
tiotal < trotar — minuslen;
LessEqual(T, tiotal, C, up, totallen — minuslen);

T W

= © 0 g O

(e}

Figure 8: Compute the situation that totallen > Lyax-

LEMMA 2. Subroutine LessEqual finds the best cutting set so that
every subleaf node u, satisfies the antenna rule (i.e., L(up) <

Lopasz,V subleaf nodes u, satisfying Z,’f=1 l(up,ui) < Lmaz, where
up = p(ui)).

LEMMA 3. Subroutine More finds the best cutting set so that
every subleaf node u, satisfies the antenna rule (i.e., L(up) <
Limaz,V subleaf nodes u, satisfying Z?:1 l(up,u;i) > Lmaz, where
up = p(u;)).

Based on the above theorem and lemmas, we have the following
theorem:

THEOREM 2. The BUJI algorithm finds an optimal solution.

5. COMPLEXITY ANALYSIS

We analyze the time and space complexity of Algorithm BUJI in
this section.

5.1 Time Complexity

In the BUJI Algorithm, we use the bottom-up method to find the
optimal solution for the routing tree. We consider each leaf and each
subleaf only once. Since every node in the tree might be a subleaf
and might be cut into a leaf, we traverse each node at most twice.
When we traverse a leaf node, we need only constant time. When
we traverse subleaf nodes using Subroutine LessEqual, we also need
constant time only. But in Subroutine More, we need to sort the
lengths between subleaf and its children. The only condition that a
node would be sorted is that it is a child of a subleaf node. Moreover,
every node in the tree can be a subleaf node only once. Therefore,
every node in the tree can be sorted at most once. In the O(V'lg V)-
time sorting process, we can interpret that each node is computed
O(lg V) times on average. Thus, when traversing each node, it would
be computed at most O(lg V) times. To sum up, we traverse each
node at most twice, and in each traversal, we compute each node at
most O(lg V) times. Therefore, the total time complexity of the BUJI
algorithm is O(V'Ig V).

5.2 Space Complexity

All we need to save are the tree T and the cutting set C. A tree
needs only O(V + E) space. Moreover, according to the algorithm,
we add at most two cutting nodes for each edge. Therefore, we need
O(FE) space to keep the set C. Since O(E) = O(V) in a tree, the total
space complexity is O(V).

THEOREM 3. Algorithm BUJI optimally solves the JITA problem
in O(V1gV) time using O(V) space.

6. EXPERIMENTAL RESULTS

We implemented the BUJI algorithms in the C++ language on a
2.4 GHz Intel Pentium PC with 256 MB memory under the Windows
XP operating system.

For the JITA problem, we compared our algorithm with the ISPD-
04 work [3].

For comparative study, we first randomly generated tree nodes on
grid planes of the dimension 105p,m X 105p,m, assuming that each
node is a gate terminal. Then, we constructed a routing tree (a min-
imum spanning tree) for the nodes. We performed the following two
experiments for our BUJI algorithm,and the ISPD-04 work [3]:

(1) First, for a given routing tree, we find the minimum number
of jumpers required for fixing all antenna violations for various
Lyae values.

(2) Second, giving Lz as a constant, we find the running times
for the algorithms and the heuristics to fix all antenna viola-
tions for routing trees with various numbers of nodes.

Tablel shows the number of jumpers required for fixing all antenna
violations for a routing tree with 500000 nodes by changing L ax
from 100 pm to 800 pum. Note that the L,,q. range is typical for 90
nm to 250 nm CMOS technologies. Column 1 gives the Lj,q2 value,
and Columns 2 and 3 list the numbers of jumpers required (#J) for
fixing the antenna violations for each L, 4, for the BUJI algorithm
and the ISPD-04 work [3], respectively. Columns 4 gives the percent-
age of additional jumpers required (% More) for the ISPD-04 method
over the BUJI algorithm to fix all antenna violations, i.e., % More
= (#Jumpers of the heuristic — #Jumpers of BUJI)/ #Jumpers of
BUJI. From the table, we have the following finding:

e It is not surprised that BUJI performs much better than the
ISPD-04 method [3]. The phenomenon can be explained as
follows: When we deal with nodes in a bottom-up manner,
BUJI always pushes the jumper upward until at a position that

Las || BUJL | TSPD04 |
(wum) || #J [#J [%More |
100 517851 729048 | +40.8%
200 232063 336084 | +44.8%
300 98465 129891 | +31.9%
400 35178 41136 +16.9%
500 9873 10658 +7.95%
600 1925 1978 +2.75%
700 319 321 +0.63%
800 40 40 0.00%

Table 1: Comparisons of the numbers of jumpers required
for BUJI and ISPD-04 for fixing all antenna violations based
on a routing tree of 500000 nodes.

just satisfies the antenna rule, adding more freedom and thus
reducing the chance of antenna violations for the upper nodes.
Therefore, BUJI can save a significant number of jumpers for
antenna avoidance/fixing. In contrast, the ISPD-04 method [3]
does not have such an optimization scheme.

Table 2 shows the CPU times required for antenna fixing on routing
trees of the number of nodes ranging from 100000 to 900000, based
on Lyqz = 50um. Column 1 gives the numbers of nodes in the rout-
ing trees. Because the numbers of nodes are so huge, the program
spent most of the CPU times on reading the input files. Therefore,
we list the CPU times for reading the input files and running the al-
gorithm/heuristic separately in order to examine the time complexity
more closely. The 2nd column (F'ile) gives the CPU times for reading
the input files. The (Main) columns in each algorithm /heuristic give
the respective CPU times for executing the main body of the algo-
rithm/heuristic. As shown in the table, the empirical running times
for the two methods are close to linear. (Note that the time com-
plexities of the two methods are all O(V'1gV).) In particular, BUJI
requires only 3.8 sec to find an optimal solution for a routing tree of
0.9 million nodes. Therefore, the BUJI algorithm can handle a test
case of a very huge number of nodes in very short time.

node || [BUJI] ISPD-04 |
number || File (s) [Main (s) [[Main (s) |
100000 1.062 0.295 0.284
200000 2.103 0.684 0.641
300000 3.208 1.041 1.031
400000 4.228 1.451 1.451
500000 5.363 1.893 1.872
600000 6.425 2.345 2.356
700000 7.498 2.808 2.798
800000 8.591 3.292 3.292
900000 9.654 3.828 3.754

Table 2: Comparisons of the CPU times required for BUJI
and ISPD-04 to fix the antenna violations, based on L, 4 =
50um.

7. CONCLUSION

We have presented a loglinear-time exact jumper insertion algo-
rithms for avoiding/fixing antenna violations on routing trees. Em-
pirical results have shown that our algorithm approach linear and
obtain solutions of very high quality. Our work can apply to any
routing trees (could be a net to be globally routed or a net after de-
tailed routing) and thus readily be incorporated into a global router
for antenna effect avoidance or a post-layout optimizer for antenna
violation fixing.

8. REFERENCES

[1] P. H. Chen, S. Malkani, C.-M. Peng, and J. Lin, “Fixing
antenna problem by dynamlc diode dropping and jumper
insertion”, Proc. ISQED, pp 275-282, 2000.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein
“Introduction to Algorithms” McGraw-Hill Book Company,
2nd Edition, 2001.

[3] T.-Y. Ho, Y.-W. Chang, and S.-J. Chen, “Multilevel routing
with antenna avoidance,” Proc. ISPD, April 2004.

[4] S. Krishnan, et. al., “Assessment of charge-induced damage to
ultra-thin gate MOSFETS”, Proc. ITEM, pp. 445-448, 1997.

[5] H. Shin, C. -C. King, and C. Hu, “Thin Oxide Damage by
plasma etching and ashing process”, Proc. IRPS, 1992.

[6] H. Watanabe, et.al., “A wafer level monitoring method for
plasma-charging damage using antenna PMOSFET test
structure,” IEEE Trans. Semiconductor manufacturing, vol.
10, no. 2, May. 1997.

