
Multilevel Full-Chip Routing for the X-Based Architecture

Tsung-Yi Ho1, Chen-Fong Chang1, Yao-Wen Chang2∗, and Sao-Jie Chen2†

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan1

Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan2

ABSTRACT
As technology advances into the nanometer territory, the interconnect
delay has become a first-order effect on chip performance. To handle
this effect, the X-architecture has been proposed for high-performance
integrated circuits. The X-architecture presents a new way of orienting
a chip’s microscopic interconnect wires with the pervasive use of diago-
nal routes. It can reduce the wirelength and via count, and thus improve
performance and routability. Furthermore, the continuous increase of
the problem size of IC routing is also a great challenge to existing routing
algorithms. In this paper, we present the first multilevel framework for
full-chip routing using the X-architecture. To take full advantage of the
X-architecture, we explore the optimal routing for three-terminal nets
on the X-architecture and develop a general X-Steiner tree algorithm
based on the delaunay triangulation approach for the X-architecture.
The multilevel routing framework adopts a two-stage technique of coars-
ening followed by uncoarsening, with a trapezoid-shaped track assign-
ment embedded between the two stages to assign long, straight diagonal
segments for wirelength reduction. Compared with the state-of-the-art
multilevel routing for the Manhattan architecture, experimental results
show that our approach reduced wirelength by 18.7% and average delay
by 8.8% with similar routing completion rates and via counts.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids - Layout, Place and Route

General Terms
Algorithms, Designs

Keywords
Physical design, routing, multilevel optimization, X-architecture

1. INTRODUCTION
As integrated circuit geometries keep shrinking, interconnect delay

has become the dominant factor in determining circuit performance.
To minimize interconnect delay, two key IC technologies have been in-
troduced: (1) copper and low-k dielectrics have replaced aluminum (as
of the 180-nm and 130-nm nodes), reducing both resistance and ca-
pacitance, and (2) the ICs have been adapted to a new interconnect
architecture, called the X-architecture, to shorten interconnect length
and thus circuit delay.

The traditional Manhattan architecture has its obvious advantages
of easier design (placement, routing, etc), but it adds significant and

∗
Yao-Wen Chang’s work was partially supported by National Science Coun-

cil of Taiwan under Grant No’s. NSC 93-2215-E-002-009, NSC 93-2215-E-
002-029, and NSC 93-2752-E-002-008-PAE.
†
Sao-Jie Chen’s work was partially supported by the National Science Coun-

cil of Taiwan under Grant No. NSC 92-2218-E-002-032.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

needless wirelength over the Euclidean optimum. As reported in [22],
the average Manhattan wirelength is significantly longer than the av-
erage Euclidean distance. As shown in [1, 21, 23], the X-architecture’s
pervasive uses of diagonal routing can reduce wirelength and via count.
In addition, the wirelength and via count reduction make the routing
problem easier to solve, resulting in faster timing closure. These benefits
contribute toward an increased probability of first-silicon success.

The most prevailing consortium that advocates routing at 45-degree
increments is the X-initiative [1]. While lithographic considerations
can impinge on the use of arbitrary angles for wiring, the use of 45-
degree wires is fully supported by nearly all current manufacturing tech-
nologies. Recently, Toshiba and Cadence have launched the industry’s
first commercial system-on-chip (SoC) devices built on the innovative
X-architecture design. Toshiba says that the TC90400XBG digital-
media application processor is approximately 11% faster than compa-
rable Manhattan-layout embedded chips in its product line. Thus, the
X-architecture, the first production-worthy approach to the pervasive
use of diagonal interconnect, shows promise to reduce the total inter-
connect while simultaneously improving the chip performance, power
and cost.

Routing complexity is also an important problem for modern routers.
To cope with the increasing complexity, researchers have proposed mul-
tilevel approaches to handle the problem [8, 9, 14, 15, 20]. The mul-
tilevel framework has attracted much attention in the literature re-
cently [10]. It employs a two-stage technique: coarsening followed by
uncoarsening. The coarsening stage iteratively groups a set of circuit
components (e.g., circuit nodes, cells, modules, routing tiles, etc.) based
on a predefined cost metric, until the number of components being con-
sidered falls below a certain threshold. Then, the uncoarsening stage
iteratively ungroups a set of previously clustered circuit components
and refines the solution by using a combinatorial optimization tech-
nique (e.g., simulated annealing, local refinement, etc). The multilevel
framework has been successfully applied to partitioning, floorplanning,
placement and routing in VLSI physical design.

Figure 1 shows our multilevel framework for the X-architecture. To
take full advantage of the X-architecture, we explore the optimal rout-
ing for three-terminal nets on the X-architecture and develop a general
X-Steiner tree (XST) algorithm based on the delaunay triangulation
approach for the X-architecture. Given a netlist, we first run the XST
algorithm to construct the topology for each net. We then decompose
each net into 2-pin connections, with each connection corresponding to
an edge of the XST. Our multilevel framework starts from coarsening
the finest tiles of the lowest level. At each level, pattern routing for
the X-architecture is used for routability-driven global routing. After
the coarsening stage, we perform a trapezoid-shaped track assignment
for diagonal segments. Most long, straight diagonal segments get track-
assigned, and thus we can get lots of run-time improvement—the track-
assignment process not only takes less computation time than detailed
maze routing but also, only short segments (segments in lower levels)
are delegated to the detailed router. In the uncoarsening stage, the
unroutable nets are re-tried by point-to-path maze routing, rip-up and
re-route to refine the routing solution level by level. Compared with
the state-of-the-art multilevel routing [14] for the Manhattan architec-
ture, experimental results show that our approach reduced wirelength
by 18.7% and average delay by 8.8% with similar routing completion
rates and via counts. The results show the promise of our approach.

It should be noted that the 18.7% improvement in wirelength is signif-
icantly better than the 11% improvement obtained by Toshiba’s tool for
routing its TC90400XBG digital-media application processor, as men-
tioned earlier. The difference also implicitly reveals the effectiveness of
our multilevel routing.

The rest of this paper is organized as follows. Section 2 presents the
routing model for the multilevel routing framework. Section 3 presents

Coarsening

Coarsening

Coarsening Uncoarsening

Uncoarsening

Uncoarsening

Perform congestion-
driven pattern routing for
local connections and
then estimate routing
congestion for the next
level.

Perform track assignment for long segments on trapezoid panels, and short segments are
routed by a point-to-path maze router.

Use point-to-path maze
routing to reroute failed
nets level by level.

To-be-routed net Already-routed net

G0

G1

G2

G3 G3

G2

G1

G0

Figure 1: The multilevel framework flow

our novel multilevel routing framework for the X-architecture. Experi-
mental results are shown in Section 4. In Section 5, we summarize our
contributions and suggest future directions for research.

2. PRELIMINARIES

2.1 Routing Model
Routing in modern IC’s is a very complex process, so we cannot

easily obtain solutions directly. Our routing algorithm is based on a
graph-search technique guided by the congestion information associated
with routing regions and topologies, which assigns higher costs to nets
passing through congested areas to balance the net distribution among
routing regions. In this paper, we consider the four-layer routing cases
for experiments on the X-architecture. In these cases, the first two
layers are routed in the preferred direction H and V. Layers 3 and 4
are routed at eight compass directions (which is called liquid routing)
to reduce the number of vias [1, 23].

Before we can apply the graph-search technique to multilevel routing,
we first need to model the routing resource as a graph whose topology
can represent the chip structure. Figure 2 illustrates the graph model-
ing. For the modeling, we first partition a chip into an array of rect-
angular subregions, each of which may accommodate tens of routing
tracks in each dimension. These subregions are usually called global
cells (GCs). A node in the graph represents a GC in the chip, and
an edge denotes the boundary between two adjacent GCs. Then we
add some diagonal edges to connect each two diagonal adjacent nodes
to obtain the multilevel routing graph G0 for the X-architecture. Each
edge is assigned a capacity according to the physical area or the number
of tracks of a tile. A global router finds GC-to-GC paths for all nets on
G0 to guide the detailed router. The goal of global routing is to route
as many nets as possible while meeting the capacity constraint of each
edge and any other constraint, that is specified.

2.2 Multilevel Routing Model
As illustrated in Figure 1, G0 corresponds to the routing graph of the

level 0 of the multilevel coarsening stage. At each level k, our global
router just finds routing paths for the local nets (or local 2-pin connec-
tions) (those nets [connections] that entirely sit inside GCk+1). After
the global routing is performed, we merge four GCk of Gk into a larger
GCk+1 and at the same time perform resource estimation for use at
level k + 1. Coarsening continues until the number of GCs at a level,
say the k-th level, is below a threshold. After finishing coarsening, a
trapezoid-shaped track assignment is performed to assign the longer,
straight diagonal segments to underlying routing resources. The un-
coarsening stage task is to refine the routing solution of the unassigned
segments that belong to level k where both pins are located in GCk+1.

Partitioned
Layout

Partitioned
Layout

Multilevel
Routing Graph

Figure 2: Routing graph.

During uncoarsening, the unroutable nets are directed to perform by
point-to-path maze routing or rip-up and re-route, to refine the routing
solution. Then we proceed to the next level (level k − 1) of uncoarsen-
ing by expanding each GCk to four finer GCk−1. The process continues
until we go back to level 0 when the final routing solution is obtained.

3. MULTILEVEL X ROUTING FRAMEWORK
Our multilevel routing algorithm is inspired by the work [14]. In the

coarsening stage, a fast congestion-driven pattern routing is used for
global routing, level by level. After the coarsening stage, we perform a
trapezoid-shaped track assignment for diagonal segments. Most longer,
straight diagonal segments get track-assigned, and thus can get lots
of run-time improvement—the track-assignment process not only takes
less computation time than detailed maze routing but also, only short
segments (segments in level 0 and level 1) are delegated to the detailed
router. In the uncoarsening stage, the unroutable nets are re-tried by
point-to-path maze routing, rip-up and re-route to refine the routing
solution level by level.

3.1 X-Architecture Steiner Tree Construction
The Steiner minimal tree problem has been proven to be NP-hard

in [12]. In recent years, people have paid more attention to the al-
gorithms for λ-geometry Steiner minimal tree problem. Coulston pre-
sented an exact algorithm for constructing exact octagonal Steiner min-
imal trees (OSMT) [11]. Kahng et al. proposed a highly scalable al-
gorithm for both rectilinear and octilinear Steiner trees [16]. The most
recent progress is Zhu’s octilinear Steiner tree construction based on
spanning graphs [24]. In this paper, we propose an X-Steiner tree al-
gorithm based on the delaunay triangulation approach. By the optimal
routing of each three-terminal net, we can extend the idea to construct
our X-Steiner tree in O(n lg n) time.

3.1.1 Three-Terminal Net Routing Based on X-Architecture
Without loss of generality, given a two-terminal net δ = (1, 2), its

optimal routing solution is one of the path around the parallelogram
formed by δ (see Figure 3). Also, given any three-terminal net Γ =
(1, 2, 3), if terminal 3 is located in the merged region of the two bounding
boxes of the other two terminals (see Figure 4), the optimal routing
solution is the octilinear minimum spanning tree (OMST) of Γ inside
this region.

1

2

Figure 3: Optimal routing of a two-terminal net.

1

2

3

Merged Region

1

2
Bounding box
of 900 and 1800

segments

1

2
Bounding box
of 450 and 1350

segments

Figure 4: Merged region of two bounding-boxes.

1

2

R1 R2

R3

R1’

R4’

R3’

R2’

R4

b a

Figure 5: Octal regions of a two-terminal net.

Lemma 1. The optimal routing solution of a three-terminal net, of
which one terminal is located in the merged region of the other two
terminals, is the OMST of it.

But if terminal 3 is not in the merged region, we can still find the
optimal solution by connecting it to the nearest point of the previously-
formed two-terminal net. For example, given a two-terminal net δ =
(1, 2), the plane can be divided into eight octal regions as shown in
Figure 5. If terminal 3 is located in R2 (R2’), we connect it to the
Steiner point a (b), which is the apex of the parallelogram formed by
terminals 1 and 2, to obtain the optimal routing solution (see Figure 5).
If terminal 3 is located in R4 (R4’), we can take terminal 2 (1) as the
internal terminal inside the merged region of terminal 1 (2) and 3, and
the optimal routing solution can be obtained by Theorem 1. But if
terminal 3 is located in R1 (R1’, R3, or R3’), we divide the region into
R1a and R1b by the vertical line D passing through the point V (see
Figure 6 (a)). Without loss of generality, if terminal 3 is located in
R1a, we can take terminal 1 as the third terminal to connect it to the
Steiner point S of the two-terminal net formed by terminals 2 and 3 to
obtain the optimal routing solution (see Figure 6 (b)). If the connected
edge is perpendicular to the two-terminal net, we will refine the solution
to a shorter wirelength. As shown in Figure 7, the refinement process
will change the T-shaped portion (with length equal to 3

√
2) of the net

shown in the center part of Figure 7(a) to the L-shaped one (with length
equal to 4) shown in Figure 7(b) to reduce the total wirelength.

The algorithm for three-terminal net routing on the X-architecture,
called X3TR, is summarized in Figure 8. Since the numbers of terminals
and wires being considered are both constant, we have the following
theorem:

1

2

R1a

R2

R3

R1’

R4’

R3’

R2’

R4

R1b

3

D

V
S

1

2

3

S

R2

(b)(a)

Figure 6: (a) If terminal 3 is located in region R1a, the optimal

Steiner point will be S. (b) Terminal 1 is in “region 2” formed by

terminal 2 and 3.

2

2
2

2

4 < 3 2

2

(b)(a)

Figure 7: A line is perpendicular to another one, and refinement

will result in the optimal solution.

Theorem 1. The X3TR algorithm finds the optimal routing of the
minimum wirelength for a three-terminal net on the X-architecture in
constant time.

Algorithm : X3TR (3-Terminal Net Routing on X-Architecture)
Input : A three-terminal net Γ = (α, β, γ);

Output : The optimal routing tree To

begin
1 if (ThirdInsideMergedRegion(Γ)==True)
2 To = OMST(Γ);
3 else
4 OutsidePT = FindOutsidePT(Γ);
5 if (OctalRegion(OutsidePT)==R4 ‖ R4’)
6 To = OMST(Γ);
7 else if (OctalRegion(OutsidePT)==R2 ‖ R2’)
8 SteinerPT = ApexOfParallelogram(OutsidePT);
9 To = OMST(Γ, SteinerPT);
10 else if (OctalRegion(OutsidePT)==R1 ‖ R1’ ‖ R3 ‖ R3’)
11 SteinerPT = VerticalOfParallelogram(OutsidePT);
12 To = OMST(Γ, SteinerPT);
end

Figure 8: Algorithm for three-terminal net routing based on X-

architecture.

3.1.2 X-Steiner Tree Algorithm Based On Delaunay Tri-
angulation

Since the optimal routing solution for each three-terminal net can be
found easily, we use the delaunay triangulation approach [3] to divide
all terminals into groups of three-terminal nets (see Figure 9 (a)). After
that, we compute the optimal wirelength of all three-terminal nets, and
sort them by their wirelength (see Figure 9 (b)). Further, we iteratively
pick up a group of three-terminal nets with the minimal wirelength,
then route and merge them to the X-Architecture Steiner Tree (XST)
until it is constructed.

The time complexity for building the delaunay triangulation is O(n lg n),
where n is the number of terminals [3]. And computing the optimal wire
length of all three-terminal nets and sorting also take O(n lg n) time.
Thus, the total time complexity for the XST construction is O(n lg n)
time.

Theorem 2. The XST construction runs in O(n lg n) time, where
n is the number of terminals.

(b)

7.0

13.8

13.4

9.8

7.6

11.8

9.6

8.6

10.6
8.6

12.6

7.4

12.6

8.4

(a) (c)

Figure 9: (a) Delaunay triangulation of terminals (b) Optimal wirelength of each triangle. (c) XST.

Algorithm : X-Architecture Steiner Tree
Input : Delaunay Triangulation DT of terminal set N

Output : X-Architecture Steiner Tree of DT
begin
1 For each terminal v in N
2 Set each v as a new subtree;
3 For each triangle T in DT
4 Compute the optimal wirelength of T ;
5 Sort the wirelength of each T in DT in increasing order;
6 while (the number of subtree > 1) do
7 Route the triangle with minimal wirelength;
8 Merge the three subtrees to a new subtree;
9 Refine the routing result if needed;
end

Figure 10: X-Architecture Steiner Tree Algorithm.

The algorithm for building XST is stated in Figure 10, and the result
of Figure 9 (a) is shown in Figure 9 (c).

3.2 Routability-Driven Pattern Routing
Given a netlist, we first run the XST algorithm to construct the topol-

ogy for each net, and then decompose each net into 2-pin connections,
with each connection corresponding to an edge of the XST. Our mul-
tilevel framework starts from coarsening the finest tiles of level 0. At
each level, tiles are processed one by one, and only local nets (connec-
tions) are routed. The global routing which is based on the approach
used in the pattern router [17] for the X-architecture, first routes local
nets (connections) on the tiles of level 0. Figure 11 illustrates the pat-
tern routing for the X-architecture. Let the multilevel routing graph
Gi = (Vi, Ei). We define Re = { e ∈ Ei | e is the edge chosen to be
routed}. Then the cost of routing Re is defined as:

cost(Re) =
∑

e∈E

ce , (1)

where ce is the congestion of edge e and is defined by

ce = 1/2(pe−de),

where pe and de are the capacity and density associated with e, respec-
tively.

Pattern routing uses a 1-bend or a 2-bend route to make the con-
nection, whichever gives the shortest path length between two points.
The wirelength is minimum, and thus we do not include it in the cost
function at this stage. We measure the routing congestion based on the
commonly used channel density. The channel density associated with
an edge of a multilevel graph is updated level-by-level for fast resource
estimation.

Our global router first tries 1-bend pattern routing. If those routing
fails, we try 2-bend pattern routing. This can be considered as a simple
version of rip-up and re-route. If both pattern routes fail, we give up
routing the connection, and an overflow occurs. We refer to a failed
net (failed connection) as one causes an overflow. The failed nets (con-
nections) will be reconsidered (refined) at the uncoarsening stage. By
this, we can efficiently obtain a good initial solution for the subsequent
track assignment since pattern routing enjoys very low time complexity
and uses fewer resources due to its simple 1-bend and 2-bend routing
patterns.

1-Bend Pattern routing

(a) (b)

m

n

m

n

2-Bend Pattern routing

m

n

)(),min(2 nmnm −+×

m

n

(c) (d)

Shortest path length:

Figure 11: Routing patterns for the X-Architecture.

3.3 Trapezoid-Shaped Track Assignment
Due to the lithography issues of nanometer technology, the high via

count is more likely to reduce yield. Reducing the number of vias is
one of the key challenges for today’s routers. In Figure 12, we show the
difference of a two-pin connection between the Manhattan and the X-
architecture. In this example, the total wirelength of the X-architecture
is less than that of the Manhattan architecture (1 + 2

√
2 ≈ 3.828 <

5). But the via count of the X-architecture is larger than that of the
Manhattan architecture (3 > 1). Therefore, if the wirelength of the
two-pin net is short, the delay caused by via increase may offset the
gains in the reduction of wirelength[23].

To overcome the drawback of via increase and fully utilize the benefit
of wirelength reduction of the X-architecture, we assign only the long
diagonal segments to tracks for better delay reduction.

In the gridded environment, each grid is λ apart from its immediate
neighbors, where λ is the minimum spacing requirement dictated by
the physical design rules. For the Manhattan architecture, this consti-
tutes a perfect environment because there is at least λ distance between
every gridpoint. But for the X-architecture, this commonly used grid-
based model has a drawback: as shown in Figure 13(a), if a gridpoint
has a 45(135)-degree wire passing through, topological design rules of
the minimum spacing requirement dictates that the adjacent gridpoints
cannot be used for routing (

√
2λ/2 < λ).

To overcome this drawback, we shift the aligned tracks to the virtual
tracks for meeting the design rules (see Figure 13(b)). Although the
virtual tracks are not aligned on the grids, we can use short wrong-way

n n

Vias: 1 (VIA12)

Wirelength: 5

Vias: 3 (VIA12, VIA23, and VIA34)

Wirelength: 1+2 828.32 ≈

Metal 1

Metal 2

Metal 3

Metal 4

(a) (b)

Figure 12: Differences between the Manhattan and the X archi-

tecture.

λ

2/2λ

λ

λ
Aligned track

Virtual track

(a) (b)

Figure 13: Virtual tracks to meet the minimum spacing rule (λ).

jogs, which are used on the non-preferred direction routing layer and
thus include no vias, to connect the end points to the nearest grid.

In this paper, we propose a fast track assignment heuristic for long
diagonal segments. After the coarsening stage, we get several long di-
agonal segments. To simplify the track assignment problem, we track-
assign only segments which span more than one complete diamond-
shaped global cell and delegate short segments to the detailed router.
The track assigner works on a trapezoid-shaped row or column of the
diamond-shaped global cell array one at a time (see Figure 14). Each
trapezoid-shaped row (column) is called a trapezoid panel .

Let T be the set of tracks inside a trapezoid panel. Let � be the set
of segments which need to be track assigned in this panel. Each track
t ∈ T can be represented by its set of constituent contiguous intervals.
Denoting these intervals by xi, we have t ≡ ⊎

xi, Each of this xi is
either

• a blocked interval, where no segment from � can be assigned,

• an occupied interval, where segments from � has been assigned,
or

• a free interval, where no segment from the set � has yet been
assigned.

A segment seg ∈ � is called a left (right) segment, if the left- (right-
) end terminal is in the left (right) zone. If a segment is said to be
assignable to t ∈ T , t ≡ ⊎

xi, iff xi ∩ seg �= ø, it implies that either xi

is a free interval or it is an interval occupied by a segment of the same
net. Thus, a trapezoid-shaped track assignment problem can be defined
as follows:

Trapezoid-Shaped Track Assignment Problem: Given a set of
tracks T in a trapezoid panel and a set of segments �, and a cost function
F : � × T −→ N , which represents the cost of assigning a segment to

Diamond-shaped
global cell

Trapezoid panel

Figure 14: Trapezoid panel.

e

Middle Zone

1

2

3

4

a

b

c

f

g

d

Right ZoneLeft Zone

Left Segments

Middle Segments

Right Segments

Obstacles

Figure 15: Example of the trapezoid-shaped track assignment

problem.

a

c

b

e

f

1

2

3

4
d

g

Left Segments

Middle Segments

Right Segments

Obstacles

Figure 16: Solution to the trapezoid-shaped track assignment

problem given in Figure 15.

a track, find an assignment that minimizes the sum of the costs of the
assignment.

In our implementation, we have considered the basic cost metrics
such as the planar anchoring cost and the track and via obstruction
cost defined in [2]. To better utilize the tracks in the trapezoid panel,
we will try to assign the left and right segments to the tracks in the
bottom-up fashion. After these segments have been assigned, other
segments are assigned by the well-known left-edge algorithm [13] for
efficient track assignability.

An example is shown in Figure 15, and the solution is shown in
Figure 16. After the track-assignment phase, we use the short wrong-
way jogs, which include no vias, to connect the two-end terminals to
their nearest grid point. After that, we can perform point-to-path maze
routing to complete both end points, which span at most two global
cells.

4. EXPERIMENTAL RESULTS
We implemented our multilevel X routing system in the C++ lan-

guage on a 1 GHz SUN Blade 2000 workstation with 1GB memory. We
compared our results with [14] based on the six benchmark circuits pro-
vided by the authors (see Table 1 for the benchmark circuits). In Table
1, “Circuits” denotes the names of the circuits, “Size” gives the lay-
out dimensions, “#Layers” denotes the number of routing layers used,
and “#Nets” represents the number of two-pin connections after net
decomposition.

Experimental results on wirelength, the number of vias, the routing
completion rate, and average net delay are listed in Table 2, where
“Davg” represents the average net delay. To perform experiments on
timing-driven routing, we used the same resistance and capacitance
parameters as those used in [14] for comparison. A via is modeled as
the π-model circuit, with its resistance and capacitance being twice
those of a wire segment. Compared with [14], the experimental results
show that our multilevel X router reduced the wirelength and average
delay by about 18.7% and 8.8% with similar routability and number of
vias in shorter running time. The improvement of via count is not as we
expected, because the work of [14] uses four layers for track assignment
which reduces lots of vias, and our multilevel X router just use top-two
layers instead.

It should be noted that the 18.7% improvement in wirelength is signif-
icantly better than the 11% improvement obtained by Toshiba’s tool for
routing its TC90400XBG digital-media application processor, as men-
tioned earlier. The difference also implicitly reveals the effectiveness of
our multilevel routing.

The experimental results also reveal the effectiveness of the interme-

1

198.1

59.8

54.1

20.9

7.9

10.5

Run-
Time

1.13

255.6

71.3

62.6

22.6

8.1

10.6

Run-
Time

106899.1%650188.8e8115199.8%657981.1e9S38584

1

1034

1178

1074

956

1119

Davg

1.09

1146

1253

1243

1009

1258

Davg

1111.001.001.19Comp.

Cmp.
Rates#Vias

Cmp.
Rates#Vias WirelengthWirelength

99.0%491316.1e899.8%498168.0e8S38417

99.4%189992.2e899.7%191262.9e8S15850

99.8%158971.8e899.8%160032.3e8S13207

99.8%63235.5e799.9%62396.0e7S9234

99.8%74327.2e799.8%74518.4e7S5378

Our ResultsResults of [14]
Circuits

1

198.1

59.8

54.1

20.9

7.9

10.5

Run-
Time

1.13

255.6

71.3

62.6

22.6

8.1

10.6

Run-
Time

106899.1%650188.8e8115199.8%657981.1e9S38584

1

1034

1178

1074

956

1119

Davg

1.09

1146

1253

1243

1009

1258

Davg

1111.001.001.19Comp.

Cmp.
Rates#Vias

Cmp.
Rates#Vias WirelengthWirelength

99.0%491316.1e899.8%498168.0e8S38417

99.4%189992.2e899.7%191262.9e8S15850

99.8%158971.8e899.8%160032.3e8S13207

99.8%63235.5e799.9%62396.0e7S9234

99.8%74327.2e799.8%74518.4e7S5378

Our ResultsResults of [14]
Circuits

Table 2: Results of wirelength, via counts, completion rate, delay, and run-time comparison.

4258928177412940x6710S38584

#Pins#Nets#LayersSize (μm)

3221021035411430x6180S38417

12566832147040x3880S15850

10562699546590x3640S13207

4185277444020x2230S9234

4734312444330x2370S5378

Circuits

4258928177412940x6710S38584

#Pins#Nets#LayersSize (μm)

3221021035411430x6180S38417

12566832147040x3880S15850

10562699546590x3640S13207

4185277444020x2230S9234

4734312444330x2370S5378

Circuits

Table 1: Benchmark circuits.

diate stage of track assignments, because most longer, straight diago-
nal segments that get track-assigned can take full advantage of the X-
architecture. Furthermore, the XST algorithm can also reduce the wire-
length and average net delay. Thus, the results show that our new mul-
tilevel X routing framework is capable of handling the X-architecture
for interconnect optimization.

5. CONCLUSION
In this paper, we have proposed a novel framework for fast multilevel

routing for the X-architecture. The experimental results have shown
that our approach is very efficient and effective, and that the multi-
level framework for the X-architecture is an elegant framework for large
SoC, ASIC, and application-specific standard product (ASSP) designs.
Our future work lies in an integrated multilevel placement and routing
system for the X-architecture.

6. ACKNOWLEDGEMENT
We would like to thank Dr. Cliff Hou, Dr. L. C. Lu, and Mr. Ken

Wang of TSMC for very helpful discussions. We also thank anonymous
reviewers for their very constructive comments.

7. REFERENCES
[1] http://www.xinitiative.org/
[2] S. H. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou, “Track

assignment: A desirable intermediate step between global
routing and detailed routing,” Proc. of Int. Conf.
Computer-Aided Design, pp. 59–66, 2002.

[3] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications, 2nd
Edition, Springer-Verlag 2000.

[4] Y.-W. Chang, K. Zhu, and D. F. Wong, “Timing-driven routing
for symmetrical-array-based FPGAs,” Trans. on Design
Automation of Electronic Systems, vol. 5, no. 3, pp. 433–450,
2000.

[5] H. Chen, C. K. Cheng, A. B. Khang, I. I. Mandoiu, Q. Wang,
and B. Yao, “The Y-Architecture for on-chip interconnect:
Analysis and methodology,” Proc. of Int. Conf. Computer-Aided
Design, pp. 13–19, 2003.

[6] H. Chen, B. Yao, F. Zhou, and C. K. Cheng, “The
Y-Architecture: Yet another on-chip interconnect solution,”

Proc. of Asia and South Pacific Design Automation Conf., pp.
840–846, 2003.

[7] B. Choi, C. Chiang, J. Kawa, and M. Sarrafzadeh, “Routing
resources consumption on M-arch and X-arch,” Proc. of Int.
Symp. on Circuits and Systems, 2004.

[8] J. Cong, J. Fang, and Y. Zhang, “Multilevel approach to
full-chip gridless routing,” Proc. of Int. Conf. Computer-Aided
Design, pp. 396–403, 2001.

[9] J. Cong, M. Xie, and Y. Zhang, “An enhanced multilevel
routing system,” Proc. of Int. Conf. Computer-Aided Design,
pp. 51–58, 2002.

[10] J. Cong and J. Shinnerl, Multilevel optimization in VLSICAD,
Kluwer Academic Publishers, 2003.

[11] C. S. Coulston, “Constructing exact octagonal steiner minimal
trees,” Proc. of Great Lake Symp. on VLSI, pp. 1–6, 2003.

[12] M. R. Garey, R. L. Graham, and D. S. Johnson, “The
complexity of computing steiner minimal trees,” SIAM Journal
on Applied Mathematics, pp. 835–859, 1977.

[13] A. Hashimoto and J. Stevens , “Wire routing by optimizing
channel assignment within large apertures,” Proc. of Design
Automation Conf., pp. 155–169, 1971.

[14] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D. T. Lee, “A fast
crosstalk- and performance-driven multilevel routing system,”
Proc. of Int. Conf. Computer-Aided Design, pp. 382–387, 2003.

[15] T.-Y. Ho, Y.-W. Chang, and S.-J. Chen, “Multilevel routing
with antenna avoidance,” Proc. of Int. Symp. on Physical
Design, pp. 34–40, 2004.

[16] A. B. Kahng, I. Mandoiu, and A. Zelikovsky, “High scalable
algorithms for rectilinear and octilinear steiner trees,” Proc. of
Asia and South Pacific Design Automation Conf., pp. 827–833,
2003.

[17] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern
routing: use and theory for increasing predictability and
avoiding coupling,” IEEE Trans. on Computer-Aided Design,
pp. 777–790, 2002.

[18] C. K. Koh and P. H. Madden, “Manhattan or Non-Manhattan?
A study of alternative VLSI routing architectures,” Proc. of
Great Lake Symp. on VLSI, pp. 47–52, 2000.

[19] C. Y. Lee, “An algorithm for path connection and its
application,” IRE Trans. Electronic Computer, EC-10, 1961.

[20] S.-P. Lin and Y.-W. Chang, “A novel framework for multilevel
routing considering routability and performance,” Proc. of Int.
Conf. Computer-Aided Design, pp. 44–50, 2002.

[21] M.Paluszewski, P. Winter, and M. Zachariasen, “A new
paradigm for general architecture routing,” Proc. of Great Lake
Symp. on VLSI, pp. 202–207, 2004.

[22] M. R. Stan, F. Hamzaoglu, and D. Garrett, “Non-manhattan
maze routing,” Proc. of Brazilian Symp. on Integrated Circuit
Design, pp. 260–265, 2004.

[23] S. Teig, “The X Architecture: not your father’s diagonal wiring,”
Proc. of System Level Interconnect Predicition, pp. 33–37, 2002.

[24] Q. Zhu, H. Zhou, T. Jing, X. Hong, and Y. Yang, “Efficient
octilinear steiner tree construction based on spanning graphs,”
Proc. of Asia and South Pacific Design Automation Conf., pp.
687–690, 2004.

