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ABSTRACT
In this paper, we present a novel flip-chip routing algorithm for
package-board co-design. Unlike the previous works that can con-
sider only either free- or pre-assignment routing, our router is
the first work in the literature that can handle both the free-
and pre-assignment routing. Based on the computational geome-
try techniques (e.g., the Delaunay triangulation and the Voronoi
diagram), the router applies a unified network-flow formulation
to perform congestion estimation for the pre-assignment rout-
ing. According to the congestion map, the network-flow for-
mulation can also consider the free-assignment nets during the
routing for the pre-assignment ones. Then, the router modifies
the network-flow formulation to optimally assign and route the
free-assignment nets, considering the routed pre-assignment nets.
With the package and board co-design flow, we can achieve 100%
routing completion. Experimental results based on industry de-
signs demonstrate the high-quality of our algorithm.

Categories and Subject Descriptors: B.7.2 [Integrated Cir-
cuits]: Design Aids - Layout, Placement and Routing
General Terms: Algorithms, Design
Keywords: Detailed Routing, Global Routing, Physical Design

1. INTRODUCTION
In VLSI designs, the increasing complexity and decreasing fea-

ture size have made the demand of more I/Os a significant prob-
lem to packaging technologies. An advanced packaging technol-
ogy, the flip-chip package, as shown in Figure 1(a), is created for
higher integration density and larger I/O counts. In recent IC’s,
designers place the I/O pads (buffers) in the whole area of a die,
instead of just along the die boundary, to result in shorter wire-
length, higher chip density, and better signal and power integrity.

For the flip-chip applications, typically the top metal or an ex-
tra metal layer, called a re-distribution layer (RDL) as illustrated
in Figure 1(b), is used to redistribute/connect the I/O pads to the
bump pads without changing the placement of the I/O pads [5].

There are two kinds of the RDL routing problems for the flip-
chip design. The first one is the free-assignment (FA for short)
routing problem. In this problem, a router has the freedom to
assign each I/O pad with a signal to any bump pad with no
signal during routing [3]. Therefore, it ignores the routing con-
straints from a printed circuit board (PCB). The second kind of
RDL routing is the pre-assignment (PA for short) routing prob-
lem where the mapping among the I/O pads and the bump pads
is pre-defined before routing and cannot be changed [2]. Fur-
ther, the pre-defined netlist can provide the routing constraints
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Figure 1: (a) Flip-Chip Package. (b) Section of RDL.

from the PCB. However, if the netlist generation does not con-
sider the package routing constraints, the RDL routing might not
be completed. Hence, for package-board (PB) co-design, the two
routing problems shall be considered simultaneously to achieve
greater design flexibility and better design performance. Figure 2
shows two routing examples. An I/O pad and a bump pad with
the same label i form a PA net i, e.g., nets 1–4. Other I/O pads
which are not paired with any bump pad are the FA nets, e.g.,
nets 5–8. In Figure 2(a), since the routing does not consider PB
co-design, net 2 might block net 7, and net 8 forces net 1 to de-
tour. In contrast, in Figure 2(b), considering PB co-design gives a
feasible routing for net 7 and further reduces the total wirelength.
Therefore, it is desirable to develop an RDL routing algorithm to
consider both the PA and FA nets for PB co-design.
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Figure 2: (a) Routing without Package-Board Co-Design.

(b) Routing with Package-Board Co-Design.

1.1 Previous Work
To the best of our knowledge, there is no existing work in the

literature specially for the area-I/O flip-chip routing that consider
both the PA and FA nets for PB co-design. Two related works
on flip-chip routing only consider the FA routing problem [3] or
the PA routing problem [2], but not both together. Furthermore,
the work [2] can only handle the flip-chip structure with the I/O



pads placed along the die boundary. Although the work [3] is
for the area-I/O flip-chip structure, its tile-based flow-network
construction did not consider the PA nets and the positions of I/O
pads which can avoid over design. Another related work is the
routing for Pin-Grid-Array (PGA) packages [6]. The work [6] used
triangulation and its dual to assign pins in the PGA packages.
Since the work represented pre-routed nets by edges (obstacles)
in the triangulation (dual), the topology of the nets cannot be
changed during routing. For PB co-design, however, FA and PA
nets affect each other, and thus the changes of the topology are
inevitable. In addition to the aforementioned differences, a major
deficiency of the previous works is that they cannot handle the
unified constraints induced by both the FA and PA routing.

1.2 Our Contributions
We present in this paper a novel flip-chip routing algorithm

for package and board co-design. Unlike the previous works that
can consider only either FA or PA routing, our router is the first
work in the literature that can handle both the FA and PA rout-
ing. Based on the computational geometry techniques (e.g., the
Delaunay triangulation [DT] and the Voronoi diagram [VD]), the
global routing applies a unified network-flow formulation to per-
form congestion estimation for the PA routing. With the DT and
VD techniques, the positions of I/O pads can be captured more
precisely to avoid wire congestion. According to the congestion
map, the network-flow formulation can also consider the FA nets
during the routing for the PA ones. Then, the router modifies
the network-flow formulation to optimally assign and route the
FA nets, considering the routed PA nets. With the package and
board co-design flow, we can achieve 100% routing completion.
Experimental results based on industry designs demonstrate that
our router can achieve 100% routability and shorter routed wire-
length, compared with the related works.

The rest of this paper is organized as follows. Section 2 gives
the formulation of the routing problem. Section 3 details our
routing algorithm. Section 4 reports the experimental results.
Finally, our conclusion is given in Section 5.

2. PROBLEM FORMULATION
We introduce the notation used in this paper and formally de-

fine the RDL routing problem with both the FA and PA routing
constraints for the PB co-design. Figure 3 shows the modelling
of the routing structure of the area-I/O flip-chip package. Let
N = Nf ∪ Np be the set of FA nets (Nf ) and PA nets (Np) for
routing. Q = Qf ∪ Qp is the set of I/O pads where Qf and Qp

are the I/O pads of the FA and PA nets, respectively. B is the set
of bump pads. For practical applications, each I/O pad is paired
with only one bump pad, and several I/O pads can be routed to
the same bump pad to form a multi-pin net. Let li be the bump-
pad column i, and let wj be the bump-pad row j. Each bump
pad column/row (li/wj) consists of a set of m bump pads, and
each bump pad is represented by bi,j . A tile is constructed by
four adjacent bump pads (bi,j , bi+1,j , bi+1,j+1, bi,j+1). Since the
RDL routing is typically on a single layer, it does not allow wire
crossings, for which two wires intersect each other in the RDL.
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Figure 3: Routing Structure in a Flip-Chip Package.

Now we formally define the addressed problem as follows:

Problem 1. Given a netlist containing both free- and pre-
assignment nets, and a placement of I/O pads and bump pads,
the RDL routing problem for PB co-design is to connect a set of
I/O pads and a set of bump pads so that there is no wire crossing
in RDL and the total wirelength is minimized.

3. THE ROUTING ALGORITHM
3.1 Algorithm Overview

In the routing flow of Figure 4, our algorithm consists of two
major phases: (1) global routing based on DT, VD, and the
minimum-cost maximum-flow algorithm (MCMF) [1], and (2)
detailed routing based on routing-path refinement, net-ordering
determination, and maze routing.
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Figure 4: Routing Flow of Package-Board Co-design.

In the first phase, for PA nets, we construct the flow network
G based on DT and VD to perform congestion estimation by
MCMF. By the congestion map, we can apply maze routing to
route the PA nets on G considering FA nets. Then we modify
G to optimally assign and route the FA nets by MCMF based
on the routed PA nets. To get better routing results, we allow
the FA nets to cross the PA nets. If there are wire crossings, the
crossed PA nets will be ripped up and rerouted or the crossed FA
nets will be forbidden to choose the same routing paths.

In the second phase, we first separate every global-routing path
from VD. Then we create a routing sequence in each tile that can
guarantee to route all nets. Finally, we use maze routing to route
each net based on the routing sequence.

3.2 Global Routing
3.2.1 Congestion Estimation

We construct the flow network G to perform the concurrent as-
signment and routing for the FA nets without considering the PA
ones. Since this network-flow based routing can achieve the op-
timal results for the FA nets, the results can provide an accurate
estimation of the congestion for routing the PA ones. Figure 5
shows an example where nets 1–4 are PA nets, and nets 5–8 are
FA ones. In Figure 5(a), we first insert a set D of DT nodes
on the die boundary and at the middle of each side of the bump
pads. Based on the I/O pads and the DT nodes, we can ob-
tain the corresponding DT (see the dashed edges). By the DT
nodes, we can avoid edge crossings with the bump pads and use
the routing space between the bump pads and the die boundary.
Based on the DT, we can get VD and its corresponding edges
(see the solid edges in Figure 5(a); for better illustration, only a
partial VD is shown in the figure). The white nodes give the set
M of VD nodes. They are inserted at each crossing of VD edges
and the center of every FA bump pad. Figure 5(b) shows part of
G. According to the VD, we construct G = (Q ∪M ∪ {s, t}, E),
where E denotes the edge set, s is the source node, and t is the
sink node. There are five types of edges:
1. Directed edge from an I/O pad to a VD node,
2. Bi-directional edge between a VD node and another one,
3. Directed edge from a VD node to a VD node in a bump pad,
4. Directed edge from the source node to an I/O pad,
5. Directed edge from a VD node in a bump pad to the sink node.
The last two types of edges are not shown in Figure 5. Type-1
edges are constructed from an I/O pad to its surrounding VD
nodes. Type-2 edges are the VD edges. Type-3 edges are con-
nected to a VD node in a bump pad from its surrounding VD
nodes. Each edge is associated with a (cost, capacity) ordered-
pair. The cost is the length le of the edge e. The capacity is
used to avoid wire congestion and equals the maximum number
of wires allowed to pass through the edge. For each Type-2 edge
(VD edge), its capacity is nmax which can be measured by the



length of the DT edge crossing the VD edge. The capacity of
the other edges is 1 because only one signal can be transmitted
from an I/O pad and to a bump pad. Since we also want to avoid
wire congestion in every triangle, the capacity of each VD node
is set to be the maximum capacity of all the edges connecting the
VD node. Figure 5(c) shows an example routing result. Recall
that we do not allow crossings for all wires. Since E represents
the potential global-routing paths of all nets, we can guarantee
that no wire crossing will occur if there exists no crossing among
edges. As a result, we construct all edges and avoid their cross-
ings at the same time. After applying MCMF, we can use the
routing results for the FA nets to accurately estimate the con-
gestion (see the arrows in Figure 5(a)) because MCMF gives the
optimal routes (with the minimum wirelength). MCMF can be

solved in time O(|V |2
p
|E|) [1], where V is the vertex set.
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Figure 5: (a) DT and VD. (b) Flow Network. (c) Global-

routing Paths of FA Nets.

3.2.2 Pre-Assignment Routing
According to the congestion estimation, some edges of G might

be identified as congestion edges with routed FA wires (see Fig-
ure 6(a)). We first divide each multi-pin PA net into a set of
2-pin nets. Then we apply maze routing to route the PA nets
on G. The new cost of each vertex v in G is α × db, where db is
the central distance between two adjacent bump pads, and α is a
user-defined positive constant if the vertex is a high-cost VD node
which represents a crossing between two nets; α = 0, otherwise.
The new cost function of each edge e in G is defined by

Cost(e) = le + β × db × (ne − nmax + 1), (1)

where ne is the number of routed wires through e, including the
FA and PA ones. If ne − nmax + 1 > 0, β is also a user-defined
positive constant. Otherwise, β = 0. In Figure 6(b), if the PA
routing path crosses the wires of I/O pad 5, there is an additional
cost α × db for passing the high-cost VD node. Once a cross is
generated, we make the cost of the high-cost VD node zero in
order not to count the cross again. The reason is that a crossed FA
net can be removed to avoid the crossings. If the PA routing path
is routed through the congestion edges (see the dotted ellipse), the
cost of each edge will be computed by Equation 1. Figure 6(a)
shows the routing result of the PA nets, where net 1 crosses net
5, and net 3 detours to avoid crossing net 7. Since the routing
results for the FA nets are just used for congestion estimation,
we allow wire crossings at this step. Note that no wire crossing
is allowed between the PA nets.

3.2.3 Free-Assignment Routing
After the PA routing, we modify G to optimally route all FA

nets based on the routed PA wires. In Figure 7(a), the routed
PA wires become obstacles during routing the FA nets. Then we
add extra VD nodes into G (see Figure 7(b)) to route FA nets
along the PA wires and thus to avoid wire crossings. The extra
VD nodes are inserted around the VD nodes on the routed PA
wires. The number of extra VD nodes around a VD node equals
the number of edges connecting the VD node. For example, there
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Figure 6: (a) PA Routing based on VD. (b) Additional

Costs of Wire Crossings and Wire Congestion.
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Figure 7: (a) FA Routing based on Modified Flow Network.

(b) Modified Flow Network.

are three edges of the VD node connecting to extra VD node 1.
Thus, we insert an extra VD node between two adjacent edges.

After inserting the extra VD nodes, we remove all the dashed
edges and the edges connecting the routed PA wires from G to
avoid wire crossings. We will construct additional edges later to
replace the removed ones. The thick edges will be kept because
the FA nets can be routed between nets i and j (extra VD nodes
1 and 4). Then in Figure 7(b), we have additional five types of
edges in G (over the previous types in Section 3.2.1) as follows:
6. Directed edge from an I/O pad to an extra VD node,
7. Bi-directional edge between an extra VD node and another one
along a VD edge,
8. Bi-directional edge between an extra VD node and another one
around the same VD node,
9. Bi-directional edge between an extra VD node and a VD node,
10. Directed edge from an extra VD node to a VD node in a bump
pad.
Type-6 edges are constructed from an I/O pad to its surrounding
extra VD nodes. Every Type-7 edge (e.g., the edge between extra
VD nodes 3 and 5) is constructed without crossing the PA wires
(VD edges). Type-8 edges are constructed between two adjacent
extra VD nodes around the same VD node to cross the PA wires.
Type-9 edges consist of two categories. In the first category, if
only one terminal v of a VD edge is on the routed PA wires (e.g.,
VD node 7), a Type-9 edge is constructed between the other
terminal and the closest one of the extra VD nodes surrounding
v (e.g., VD node 6 and extra VD node 3). In the second category,
the edges are constructed between a VD node and its surrounding
extra VD nodes. Type-10 edges are connected to a VD node in
a bump pad from its surrounding extra VD nodes. Each edge is
also associated with a (cost, capacity) ordered-pair.

The cost of the Type-8 edge is γ × db × nw, where γ is a user-
defined positive constant and nw is the number of the crossed PA
wires. In the second category of the Type-9 edges, the cost is
γ×db×nr. If an edge is like the one connecting extra VD node 2
and the thick edges, nr equals the nw between extra VD nodes 1
and 2. Otherwise, nr = 0 like the one on the edge between extra
VD node 1 and the connected VD node. That is because there is
no wire crossing to route into nets i and j. The cost of any other
edge is the edge length le. The capacity of the Type-7 edge is
defined as follows:

Capacity(e) =

�
nmax − nw

ν

�
. (2)



Recall that each Type-7 edge is along a VD edge. On the VD
edge, nw is the number of routed PA wires and nmax is the
maximum capacity. ν = 3 if the VD edge is a thick one. That
is because we can route wires into the middle of the thick edges
except at the two sides. Otherwise, ν = 2. The capacity δ of
the Type-8 edge is infinity. In Section 3.2.4, we will discuss how
to change δ to improve the routing results. For the edge in the
first category of the Type-9 edges, its capacity equals nmax of
the deleted VD edge between one VD node and the other VD
node surrounded by extra VD nodes (e.g. VD nodes 6 and 7). In
the second category of the Type-9 edges, the capacity is given by
Equation 2 where ν = 3. The capacity of the remaining edges is
1. After applying MCMF, Figure 7(a) shows the routing result of
the FA nets. Net 5 crosses net 1 without detouring bump pad 1
since we only set high costs on the Type-8 edges and the edges in
the second category of the Type-9 edges to avoid wire crossings.
The reason is that ripping up and rerouting some PA nets may
further improve the routing results.

3.2.4 Iterative Improvement
After the FA routing, there may be some wire crossings. The

reasons are that there is no solution without wire crossings or the
detours of the FA nets are too long. Then we rip up and reroute
the PA nets crossing the routed FA wires. In Figure 7(a), the
total additional cost of net 5 to cross net 1 on G is γ. In Figure 8,
we rip up and reroute net 1 if and only if the increase of the total
wirelength is less than γ, or there is no other routing path of net
5. If we choose not to rip up and reroute net 1, we will set the
capacity δ of the edge which makes net 1 crossed to be 0. By
doing so, we can forbid net 5 to cross net 1 again. Finally, the
iterative improvement is converged.
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Figure 8: Improvement of Routing Results.

3.3 Detailed Routing
3.3.1 Routing-Path Refinement

After the global routing, only the edge with wires is left. In
Figure 9(a), there are two FA nets and two PA nets. According
to the number of wires (#Wires) on each edge, we can remove
the VD nodes and refine the routing paths without generating
any wire crossing as in [3]. Then, in Figure 9(b), we can split the
edges of the VD nodes into independent wires with wire nodes.
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Figure 9: (a) Global-routing Paths. (b) Path Refinement.

(c) Net-ordering Determination. (d) Maze Routing.

3.3.2 Ordering Determination and Maze Routing
In each tile, we can treat the routing as a channel routing.

So we can modify the net-ordering determination algorithm pre-
sented in [3] to generate a routing sequence of the wires in a
tile. Note that the net-ordering determination algorithm restricts
each terminal to be on the boundary of a tile and to have no de-
tours, but in the detailed routing problem, there may be I/O
pads with detours inside a tile. Hence, in Figure 9(b) and (c),
we insert dummy nodes instead of each I/O pad or wire node
inside the tile. For example, since wire node a shares the same
VD node with wire node 7, two dummy nodes a are inserted
at the right side of wire node 7 to avoid crossing net 8. Since
all terminals are on the boundary now, we can apply the de-
termination algorithm. The resulting routing sequence S =<

w(8, 7), w(a, b), w(3, 4), w(b, 5), w(1, 6), w(2, a) > and then we can
route each wire w(i, j) in a tile without intersecting each other by
maze routing [3]. Figure 9(d) shows the result of maze routing.

4. EXPERIMENTAL RESULTS
We implemented our algorithm in the C++ programming lan-

guage on a 1.2GHz SUN Blade 2000 workstation with 8 GB
memory. The benchmark circuits, listed in Table 1, are real in-
dustry designs. In Table 1, “Circuits” is the names of circuits,
“#I/O Pads (Free-/Pre-assignment)” is the number of I/O pads
of FA/PA nets, and “#Bump Pads” is the number of bump pads.

Table 1: Benchmarks for the Package-Board Co-design.
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Table 2: Comparison between FA-maze, PF-maze, and

Ours. (N/A: Not Available.)
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We compared our algorithm with two heuristics, namely FA-
maze and PF-maze. FA-maze integrates maze routing with some
techniques presented in [3]. In FA-maze, it first tried to optimize
the routing of FA nets by [3]. Then, the PA nets were routed
sequentially by maze routing. PF-maze is our algorithm without
performing the congestion estimation and the iterative improve-
ment. Therefore, we set the values of α, β, and γ in PF-maze
to be 0, 0, and ∞, respectively. In our proposed algorithm, in
contrast, the values of α, β, and γ are set to be 3, 1, and 5, re-
spectively. To fairly compare the three algorithms, we applied the
same routing sequence of the PA nets. The routing sequence was
decided by the non-decreasing order of the Manhattan lengths of
the nets. The experimental results are shown in Table 2. We
report the routability, the total wirelength, and the CPU times.
Compared with FA-maze, our algorithm improves the routability
by 20.42%. Note that for all circuits, FA-maze fails to find a rout-
ing solution while ours can achieve 100% routability. Compared
with PF-maze, our algorithm improves the routability by 9.67%,
which reveals the effects of the congestion estimation and the iter-
ative improvement. The results show that our unified FA and PA
routing algorithm is effective and efficient for the PB co-design.

5. CONCLUSIONS
We have developed a unified FA and PA area-I/O flip-chip

router for PB co-design. Our DT- and VD-based network-flow
algorithm guarantees to find the optimal solution with the mini-
mum wirelength for the free-assignment nets. Our PB co-design
routing flow can facilitate the interactions among free- and pre-
assignment nets and lead to superior routing solutions with 100%
routability and the shorter routed wirelength.
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