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Abstract As the operation frequency reaches gigahertz in deep-submicron designs, 
the effects of inductance on noise and delay can no longer be neglected. Most of the 
previous works on inductance extraction are field-solvers, which are intrinsically more 
accurate but computationally expensive. Others focus on modeling the inductances of 
special routing topologies such as the bus structure. Therefore, it is not suitable to 
incorporate them on-line into a layout (placement and routing) tool for inductance 
(delay and noise) optimization. In this paper, we consider the overlapping of unequal 
wire lengths and dimensions to efficiently extract the loop inductance from the 
coplanar interconnect structure. The difference between our simulation results and the 
estimation values obtained by FastHenry [11] is within 10% for practical cases. In 
particular, our modeling is extremely efficient, and thus can be incorporated into a 
layout tool for inductance optimization. 

 

1. Introduction 

As technology advances into the very deep-submicron era, interconnection delay 
dominates overall circuit performance and noise becomes more serious than before. 
Therefore, accurately predicting the interconnection delay and noise becomes a major 
challenge in high performance designs. For deep-submicron, high-performance circuits, 
ignoring inductance effects may incur a large amount of error, since an RC model as 
compared to an RLC model may create errors of up to 30% in the total propagation 
delay of a repeater system [10], and in some worst cases the noise coupling due to C and 
L may reach around 55% of the supply voltage [8]. As technology improves and die 
size increases, short rise/fall times of signals and long wires make inductance effects 
much more significant than before [14]. Therefore, it is very important to consider the 
self and coupling inductance. 
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Inductance extraction has been studied extensively in the literature. Grover [7] 
collected many formulas for extracting inductance. However, as mentioned in [9], there 
are limitations of applying the equations. For example, they do not consider internal 
inductance, and wire widths are not considered for mutual inductance. Also, Qi et al. 
[13] proposed some formulas for extracting bus structure’s inductance with 
considering different effects such as skin effect and substrate effect. Greengard 
developed a multipole method to extract inductances [6]. Phillips, Kamon, and White 
[12] proposed an FFT-based approach for 3-D inductance extraction. Beattie and 
Pileggi proposed a hierarchical refinement method [3] that improves the running time 
for capturing the near field effects. Also, Beattie et al. proposed equipotential shells 
methodology [2] to efficiently extract the inductance of the bus structure. He et al. 
presented a table-based approach to identify the structure of a circuit for inductance 
extraction [9]. 

Most of the previous works are field-solvers that are intrinsically more accurate but 
are computationally expensive. Others focus on modeling the inductances of special 
routing topologies such as the bus structure. Therefore, it is not suitable to incorporate 
them on-line into a layout tool for inductance optimization. As [4] pointed out, no good 
approximation formula exists for coupling inductances of two parallel lines of unequal 
lengths and dimensions. We consider the overlapping of unequal wire lengths and 
dimensions (widths and heights) to extract the self and coupling inductance. We derive 
formulae and models to approximate both self and coupling inductance efficiently yet 
accurately for the coplanar routing structure. Simulation results show that the 
difference of the inductance values extracted from our models for practical cases is 
within 10% for the wires of unequal lengths and dimensions, compared with FastHenry 
[11]. In particular, our method is extremely fast. For example, the running time for 
extracting the coupling inductance of two wires of 2000 um by using our analytical 
formulas is typically within 0.11 seconds using Mathematica on a 566 MHz Cerelon PC 
with 128 MB RAM while FastHenry requires 141 seconds on SUN Sparc Ultra 60 with 
dual CPUs and 2GB memory. Therefore, it is feasible to incorporate our model into a 
layout tool on-line.  

The rest of this paper is organized as follows. Section 2 describes the coplanar 
interconnect structure and some basic electromagnetic concepts. Section 3 derives 
formulae for self and coupling inductance. Section 4 gives the simulation results on the 
comparisons between our methods and FastHenry. Finally, Section 5 concludes our 
work. 
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2. Preliminaries 

In this section, we describe some basic concepts of electromagnetism [5]. We first 
describe inductance in Subsection 2.1, and then introduce the coplanar structure used in 
this paper in Subsection 2.2. 

 

2.1  Inductance 

Considering two neighboring closed loops, C1 and C2 bounding surface S1 and S2, 

respectively, as shown in Figure 1. If a current I1 flows in C1, a magnetic field 1B  will 

be created. Some of the magnetic flux due to 1B  will link with C2  that is, it will pass 

through the surface S2 bounded by C2. We refer to this mutual flux as Φ12. We have 

∫ ⋅=Φ
2

2112 S
sdB .                       (1) 

From Faraday’s law of electromagnetic induction, we know that a time-varying I1 (and 
therefore a time-varying Φ12) will produce an induced electromotive force or voltage in 
C2. However, Φ12 exists even if I1 is a steady d-c current. From Ampère’s circuital law 
[5] (Equation 2) 

∫ =⋅
C

IldB 0µ ,       (2) 

we know that B1 is directly proportional to I1; hence Φ12 is also proportional to I1. We 
have 

11212 IL=Φ ,                         (3) 

where the proportionality constant L12 is called the mutual inductance or coupling 
inductance between loops C1 and C2, with SI unit henry (H). In case C2 has N2 turns, the 
flux linkage Λ12 due to Φ12 is 

12212 Φ=Λ N ,                         (4) 

Combining Equations (3) and (4), we have 

1

12
12 I

L Λ
= .                          (5) 

The coupling inductance between two circuits is then the magnetic flux linkage with 
the victim circuit (C2 in Figure 1) per unit current in the aggressor circuit (C1 in Figure 
1). 
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Figure 1: Two magnetically coupled loops. 

 

Some of the magnetic flux produced by I1 links only with C1 itself, but not with C2. 
The total flux linkage with C1 caused by I1 is 

11111 Φ=Λ N .                        (6) 

The self-inductance of loop C1 is defined as the magnetic flux linkage per unit current 
in the loop itself; that is 

1

11
11 I

L Λ
= .                          (7) 

 

2.2  Coplanar Structure 
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Figure 2: Coplanar interconnect structure. 
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In this subsection, we introduce the coplanar interconnect structure and the notation 
which is intensively used in this paper. Figure 2 depicts the coplanar interconnect 
structure. Here, s stands for a signal wire while P and G stands for a power and a ground 
grid of identical width, wg. Throughout this paper, both P and G are considered as 
ground wires. Assume that all wires are of the same height h, the width and length of 
each signal wire are ws and lw respectively, and the overlapping length of two signal 
wires is l. We use Li to represent the self-inductance of si and Lij for the coupling 
inductance between si and sj. Throughout our paper, we assume quasi-static conditions, 
which imply that the currents vary very slowly in time and the dimensions of circuits 
are very small in comparison to the wavelength, and set the clock frequency to 3 GHz in 
our experiments. 

Also, we assume that all signals use the nearest P/G wires as their return paths, same 
as [15]. Although quiet or opposite-switching neighboring nets may also serve as return 
paths, they are not ideal because currents returning from signal wires have to go 
through devices, which have significant resistances [15]. Therefore, the other wires that 
are not involved in the computation for the inductance between wires i and j are 
assumed floating. From Faraday’s law, we know that a floating wire will not affect the 
inductance computation since it cannot form any current loop. 

 

3. Inductance Modeling 

In Subsection 3.1, we derive our formula AMAS (Analytical Model Approximation of 
Self-inductance) for extracting self-inductance in the coplanar structure. Subsection 3.2 
AMAC (Analytical Model Approximation of Coupling Inductance) is derived for 
extracting coupling inductance in the coplanar structure. Finally, we re-derive two 
formulas, IAMAC (Improved Analytical Model Approximation of Coupling Inductance) 
and IAMAS (Improved Analytical Model Approximation of Self-inductance), to apply 
on some corner cases for extracting inductances. 

 

3.1  Self-inductance 

Because the rectangular shape of wires, as illustrated in Figure 2, is complex for the 
computation of the magnetic flux density vector induced from it when carrying current, 
we apply cylindrical approximation for rectangular conductors. Figure 3 illustrates the 
approximation. If the current Ii flows in wire si and ground wire and its direction is 
shown as in Figure 3, the current loop C can be determined by the dashed line. The area 
of Si, the gray region shown in Figure 3, is determined by the enclosed region of the 

loop C. To derive self-inductance from Equation (7), we need to compute Ni, Si, and iB , 
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since ∫ ⋅=Φ=Λ
iS iiiiii sdBNN . Although Ni = 1 and Si are already known, iB  

now is still unknown. Hence, we shall first derive the formula of the magnetic flux 

density vector iB . Note that the unit of L' is henry per meter (H/m) and the unit of L is 

henry (H). 
 

 
Figure 3: Degeneration of metal wire from Figure 2. 

 
In the following discussion, we derive the magnetic flux density vector induced by a 

circular conductor which carrying current Ii. The cross-section view of the circular 
conductor is shown in Figure 4 where the radius of the conductor is b. 
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Figure 4: Cross-section view of a circular conductor with radius b. 
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If we align the conductor along the z-axis in the cylindrical coordinate, current Ii 
flows in z-direction, which is outward direction of this paper. Assumed that current Ii is 
uniformly distributed in the conductor and the conductor is infinitely long (lw >> r, r is 
the distance from the conductor’s center to a certain point), we can derive Equations (8) 
and (9) using Equation (2). 

br
b
IraB i

in ≤= 12
10    ,  

2
ˆ

π
µ

φ                       (8) 

br
r
IaB i

out ≥= 2
2

0    ,  
2

ˆ
π
µ

φ              (9) 

where inB  is the magnetic flux density vector inside the conductor and outB  is the 

vector outside the conductor. 

As Ni, Si, and iB are already known, we can then derive the formula of the internal 

inductance per unit length, which is a part of the self-inductance, for a circular wire. 
Consider an annular ring in the inner conductor between radius r and r + dr (r ≤ b). The 
current in a unit length of this annular ring is linked by the flux that can be obtained by 
integrating Equation (8). We have 

∫=Φ′
b

r inin drBd          

)(
4

22
2

0 rb
b
Ii −=

π
µ

.       (10) 

The current in the annular ring, however, is only a fraction ( 22 / 2/ 2 bdrrbdrr =ππ ) 
of the total current Ii. As a result, the flux linkage for this annular ring is 

Φ′=Λ′ d
b
rdrd in 2

2
.                   (11) 

Hence, we can obtain the total flux linkage per unit length by integrating Equation (11): 

∫ Λ′=Λ′
b

inin d
0

         

π
µ
8

0 iI
= .        (12) 

The unit length internal inductance of the circular wire is 

  
i

in
in I

L Λ′
=′          
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8

0

π
µ

= .        (13) 

Then, the total internal self-inductance per unit length of the two wires system of Figure 
3 is 

  
8

2 0

π
µ

×=′inL         

  
4

0

π
µ

= .         (14) 

After computing the internal self-inductance, we derive the external self-inductance. 
Now, We change the coordinate to the Cartesian coordinate. In the xz-plane where the 

two wires lie, as in Figure 3, the contributing B  vectors due to the equal and opposite 

currents in the two wires have only a y-component. Hence, from Equation (9), we 
obtain 

   
2

0

x
IB i

G π
µ

=               (15) 

and 

  
)(2

0

xrrd
IB

sgg

i
si −++
=

π
µ

.              (16) 

The flux linkage per unit length is 

 )(∫
+

+=Φ′
gg

g
i

dr

r sGex dxBB        

 
))((

ln
2

0









 ++
=

gs

gsggi

rr
drdrI

π
µ

.    (17) 

Therefore, the unit length external inductance in Figure 3 is 

i

ex
ex I

L Φ′
=′          

  
))((

ln
2

0









 ++
=

gs

gsgg

rr
drdr

π
µ

.   (18) 

Finally, we can obtain the total self-inductance (Li) in Figure 3 by summing Equations 
(14) and (18) and then multiplying with the signal wire length lw. 

)( exinwi LLlL ′+′=          
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))((

ln
24

00




















 ++
+=

gs

gsgg
w rr

drdr
l

π
µ

π
µ

   (19) 

If another ground wire exists on the other side of the signal wire separated by the 
distance dg2 ( dg2 ≥ dg ), the current flowing in the nearest G wire will decrease. We 
modify Equations (14) and (15) to Equations (20) and (21) with the branch current of 
0.5Ii, which is given from the Kirchhoff’s Current law as follows: 

  
8

)5.01( 0

π
µ

×+=′inL            (20) 

   
2

5.0 0

x
IB i

G π
µ

×= .             (21) 

Then, re-deriving Equations (17) to (19), the new self-inductance formula for the case 
when there are two ground wires can be obtained as follows: 

)( exinwi LLlL ′+′=          




















 ++
+= 5.0

5.0
0 )()(

ln375.0
2 gs

gsggw

rr
drdrl

π
µ

. (22) 

If there are n ground wires, we also simplify these cases to the two ground wires 
system. We named the above formula AMAS (Analytical Model Approximation of 
Self-inductance). 

 

3.2  Coupling Inductance 
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Figure 5: Top view of the coplanar structure. 
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As in the previous subsection, we first consider single ground wire system. The top 
view of the coplanar structure is shown in Figure 5. Now, we consider the xz-plane 

where the three wires lie, as shown in Figure 5. The contributing B vectors due to the 

current flowing in G and si wire have only a y-component. From Equation (9), we have 

   
2

0

x
IB i

G π
µ

=                    (23) 

and 

  
)5.15.0(2

0

xwddw
IB

ssgg

i
si −+++
=

π
µ

.            (24) 

The coupling inductance Lij is proportional to the overlapping area of Si and Sj. The 
overlapping area Slap is shown as the gray region in Figure 5. We can derive the flux 
linkage per unit length from Equation (4). We have 

exex Φ′=Λ′            

∫=
lapS lapBds

l
1

           

∫
++

+= sgg

g
i

wdw

w sG dxBB
5.0

5.0
)(        

 
)5.0(5.0

)5.1)(5.0(
ln

2
0












+

++++
=

ssg

ssgsggi

wdw
wddwdwI

π
µ

.  (25) 

Therefore, the external inductance is 

  
i

ex
ex I

L Λ′
=′                    (26) 

and the internal inductance due to G wire is 

 
8

0

π
µ

=′inL .                (27) 

Hence, the total coupling inductance of Figure 5 is 

 jiij LL =              

 )( exin LLl ′+′=             
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)5.0(5.0

)5.1)(5.0(
ln

4
1

2
0






















+

++++
+=

ssg

ssgsgg

wdw
wddwdwl

π
µ

.(28) 

If another ground wire exists on the other side of the signal wire with distance dg2 
( dg2 ≥ dg + ds + ws ), the current flowing in the nearest G wire will decrease. As in the 
previous subsection, we modify Equations (23) and (27) to Equations (29) and (30) 
with the branch current of 0.5Ii: 

  
2

5.0 0

x
IB i

G π
µ

×=                (29) 

π
µ
8

5.0 0×=′inL .                 (30) 

Re-deriving Equations (25), (26), and (28), the new coupling inductance formula for 
the case when there are two ground wires can be obtained as follows: 

 jiij LL =             

 )( exin LLl ′+′=               

 
)5.0()5.0(

)5.1()5.0(
ln

8
1

2 5.0

5.0
0






















+

++++
+=

ssg

ssgsgg

wdw
wddwdwl

π
µ

. (31) 

If there are n ground wires, we also simplify these cases to the two ground wires 
system as in Subsection 3.1. We named the above formula AMAC (Analytical Model 
Approximation of Coupling Inductance). 

 

3.3  Modeling Short Wires and Small Coupling 

Previous subsections are all based on the assumption that wires are sufficiently long, 
namely, lw>>dg. When wire lengths are comparable to wire spaces, however, Equation 
(9) cannot be used to model the magnetic flux density, since we cannot find a closed 
path around the current-carrying wire such that the magnitude of B  is constant over 
the path. Besides, if two signal wires have no overlapping length between them, does 
the coupling inductance exist? The answer is affirmative, although the coupling 
inductance is very small. Therefore, if we use the equations derived in Subsections 3.1 
and 3.2 for all cases of the coplanar structure, our approximations will cause a large 
amount of errors in some corner cases. Based on the above fact, we should use more 
sophisticated formulas to approximate the inductances for the situations, when  

(1) The wire length is comparable to its distance to the nearest ground wire. 
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(2) The overlapping length is much smaller than the signal wire length. 

If above two situations are encountered, we should rederive the magnetic flux 
density vector induced from the wire before computing the inductance. In this 
subsection, we introduce the Bioat-Savsrt law, Equation (32), to derive the formula of 
magnetic flux density vector. 

∫ ′
=

C
BdB           

 
4 3

0 ∫ ′

×′
=

C R
RldI

π
µ

     (32) 

where C′ is the closed path of current I, and R  is the vector directed from the source to 

the field point. If we have a line segment carrying current I along the z-axis in the 
cylindrical coordinate shown in Figure 6. 

 

z

O

dz'

z'

lw

r

R

P(r, 0, z)

I

 

Figure 6: Top view of a carrying current wire. 

 

Therefore, 

)(ˆˆ zzaraR zr ′−+=                   (33) 

and 

))(ˆˆ(ˆ zzarazdaRld zrz ′−+×′=×′       

zrda ′= φˆ .         (34) 

Using Equations (32) and (34), we can obtain 
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∫ ′−+
′

=
wl

zzr
zrdIaB

0 2/322
0

))((4
ˆ

π
µ

φ .          (35) 

When the magnetic flux density vector is already known, we can then derive the 
formula of coupling inductance. Next, we consider the two ground wires system shown 
in Figure 7. 
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Figure 7: Top view of the coplanar structure. 

 

The internal inductance is 

 
8

5.0 0

π
µ

××= lLin .                (36) 

From Equation (35), we know that the contributing B  vectors due to the equal and 

opposite currents in si and G wires have only a y-component in the Cartesian coordinate. 
Hence, the magnitude of the magnetic flux induced by the G wire of Figure 7 is 

∫ ′−+
′

=
wl

G zzx
zxdIB

0 2/322
0

))((4
5.0

π
µ

,              (37) 

and the flux linkage due to the G wire is 

GG Φ=Λ          

∫=
jS jGdsB          
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dzdxBsgg

g w

wdw

w

l

ll G∫ ∫
++

−
=

5.0

5.0
.    (38) 

For the simplification of our formulation, we reverse the structure and align si with 
the z-axis as shown in Figure 8. 

 

z

O

lw 1

x

s i

s j

lw 2

l

d gd s w s

G

S j

 

Figure 8: Reversed placement of Figure 7. 

 

Then the magnitude of the magnetic flux induced by the si wire in Figure 8 is 

∫ ′−+
′

=
w

i

l

s zzx
zxdIB

0 2/322
0

))((4π
µ

.           (39) 

The flux linkage due to si wire is 

ii ss Φ=Λ          

∫=
j

iS js dsB          

dzdxBsgg

g w
i

wdw

w

l

ll s∫ ∫
++

−
=

5.0

5.0
.           (40) 

Therefore, the total external inductance is 

 
i

ex
ex I

L Λ
=          

 
)(

i

sG

I
i

Λ+Λ
= .       (41) 
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Hence, summing up Equations (36) and (41), we can compute the coupling inductance 
by 

exinij LLL +=         

exLl +=
π
µ
8

5.0 0 .        (42) 

For the simplification of our equation, we do not expand the term Lex. We named the 
above formula IAMAC (Improved Analytical Model Approximation of Coupling 
Inductance). 

Next, we derive the formula of the self-inductance for the situation when a signal 
wire length is comparable to its distance to the nearest ground wire. We consider the 
coplanar structure shown in Figure 3 to derive the formula. The self-inductance also 
includes the internal and the external inductance. Therefore, in a two-ground wires 
system, the internal inductance is 

 
8

)5.01( 0

π
µ

××+= win lL .               (43) 

Assume the loop area is Sj. Since ∫ ⋅=Φ
S

sdB , we have 

GG Φ=Λ          

∫=
jS jGdsB          

dzdxBgg

g w

dw

w

l

ll G∫ ∫
+

−
=

5.0

5.0
      (44) 

and 

ii ss Φ=Λ          

 ∫=
j

iS js dsB          

dzdxBgs

s w
i

dw

w

l

ll s∫ ∫
+

−
=

5.0

5.0
.     (45) 

The formulae of BG and Bsi are the same as Equations (37) and (39). Then we obtain the 
total self-inductance (by Equations (41), (43), (44), and (45)) as follows 

exini LLL +=          

exw Ll +=
π
µ
8

5.1 0 .         (46) 
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Again, we do not expand the term Lex for simplicity. We named the above formula 
IAMAS (Improved Analytical Model Approximation of Self-inductance). 

 

4. Experimental Results 

We verify the accuracy of our formulae, AMAS (Analytical Model Approximation of 
Self-inductance), AMAC (Analytical Model Approximation of Coupling Inductance), 
IAMAC (Improved Analytical Model Approximation of Coupling Inductance), and 
IAMAS (Improved Analytical Model Approximation of Self-inductance), by comparing 
with FastHenry. In Subsection 4.1, experiments of various ground wire structures are 
conducted to find the applicable structures for our formulae. Subsection 4.2 verifies the 
accuracy of our formulae by using different parameters. We show that our formulae are 
also suitable for the bus structure in Subsection 4.3. 

 

4.1  Ground Wire Structure 

 

dg dg ds
dgdg2
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ws
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Figure 9: Cross-section view of the coplanar structure with multiple ground wires. 

 

We discuss the effect of the number of ground wires on inductance in this subsection. 
Consider the cross-section view of the coplanar structure shown in Figure 9 for the first 
experiment. We represent the structure by GGs1s2GG. In our experiment, we set h = 
2µm, ws = 0.8µm, ds = 0.8µm, wg = 2µm, dg = 12µm. Also, we set dg2 = dg + ds + ws = 
18.4 µm to make s2 farther than s1 to a nearest ground wire. The length of the G wire 
was 4500 µm, the lengths of both s1 and s2 were lw = 1000 µm, and the overlapping 
lengths of s1 and s2 were l = 1000 µm. We experimented on the Gs1s2, Gs1s2G, Gs1s2GG, 
Gs1s2GGG, GGs1s2, GGGs1s2, GGGGs1s2, and GGs1s2GG structures and obtained the 
results shown in Figure 10, Figure 11, and Figure 12. From Figure 10, Figure 11, and 
Figure 12 we observe that our formulae are more suitable for the structures with two or 
more G wires since the results are closer to those obtained by FastHenry. This is a 
typical situation in a real design where there must be at least one ground and one power 
grids in a circuit. 
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wire length = overlapping length = 1000um
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Figure 10: Experimental results for different coplanar structures, where x=1 stands 

for Gs1s2, x=2 stands for Gs1s2G, x=3 stands for Gs1s2GG, x=4 stands for 

Gs1s2GGG, x=5 stands for GGs1s2, x=6 stands for GGGs1s2, x=7 stands for 

GGGGs1s2, and x=8 stands for GGs1s2GG. 

 

wire length = wire overlapping length = 100 um
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Figure 11: Experimental results for different coplanar structures, where x=1 stands 

for Gs1s2, x=2 stands for Gs1s2G, x=3 stands for Gs1s2GG, x=4 stands for 

Gs1s2GGG, x=5 stands for GGs1s2, x=6 stands for GGGs1s2, x=7 stands for 

GGGGs1s2, and x=8 stands for GGs1s2GG. 
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wire length = overlapping length = 25um
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Figure 12: Experimental results for different coplanar structures, where x=1 stands 

for Gs1s2, x=2 stands for Gs1s2G, x=3 stands for Gs1s2GG, x=4 stands for 

Gs1s2GGG, x=5 stands for GGs1s2, x=6 stands for GGGs1s2, x=7 stands for 

GGGGs1s2, and x=8 stands for GGs1s2GG. 

 

4.2  Accuracy of AMAS, AMAC, IAMAS, and IAMAC 

In this subsection, we conducted the following two experiments: (1) the accuracy of 
AMAS and IAMAS for self-inductance extraction, and (2) accuracy of AMAC and 
IAMAC for coupling-inductance extraction. In the first experiment, we tested the 
accuracy of AMAS and IAMAS for self-inductance extraction in the Gs1G structure with 
various lw, dg, ws, wg. The parameters, dg2 , dg, h and the wire length of G wire, were 
identical to the previous experiments of previous subsection. The experimental results 
are given in Table 1. Identical values of parameters and conditions are applied to the 
third experiments on the coupling inductance whose results are shown in Table 2. 
Compared with FastHenry, the average errors of our modeling are within 10%, except 
the two corner cases: (1) the wire length is comparable to its distance to the nearest 
ground wire, and (2) the overlapping length is much smaller than the signal wire length. 
The errors may exceed 10% in these cases. This phenomenon proves our assumption in 
Subsection 3.3. For these corner cases, our improved formulae can achieve 
significantly more accurate estimations than the original ones, as shown in Table 1 and 
Table 2. In Figure 13 and Figure 14, the inductance values obtained by our modeling 
and FastHenry are plotted as functions of overlapping and wire lengths, respectively. 
The results show the accuracy of our work. 
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Self-inductance (Unit: 10-10 H) 

( lw, dg, ws, wg ) (µm) FastHenry Time (sec) AMAS Time (sec) Error (%) IAMAS Time (sec) Error (%) 

( 2000, 12, 0.8, 2 ) 18.70280 117.09 20.3658 0.11 8.892 20.3299 8.02 8.700 
( 1500, 12, 0.8, 2 ) 14.51540 120.80 15.2744 0.11 5.229 15.2385 6.97 4.982 
( 1000, 12, 0.8, 2 ) 9.99291 103.41 10.1829 0.11 1.901 10.1470 5.82 1.542 
( 500, 12, 0.8, 2 ) 5.14302 106.79 5.0915 0.11 -1.003 5.0557 5.72 -1.698 

( 25, 12, 0.8, 2 ) 0.22642 99.75 0.2546 0.05 12.436 0.2232 6.15 -1.427 
( 10, 12, 0.8, 2 ) 0.07443 98.60 0.1018 0.06 36.806 0.0761 6.15 2.222 

( 1000, 12, 0.8, 4 ) 9.26282 111.57 9.3216 0.11 0.635 9.5280 5.66 2.863 
( 1000, 12, 0.8, 1 ) 10.59190 117.06 10.9551 0.11 3.429 10.8010 5.55 1.974 
( 1000, 12, 1.6, 2 ) 9.60097 110.11 8.8601 0.11 -7.716 8.8243 5.71 -8.090 
( 1000, 12, 0.4, 2 ) 10.24480 108.13 11.5367 0.11 12.610 11.5008 5.71 12.260 
( 1000, 24, 0.8, 2 ) 12.38490 99.46 12.1906 0.05 -1.569 12.1191 5.71 -2.146 
( 1000, 6, 0.8, 2 ) 7.73106 100.60 8.2411 0.05 6.597 8.2231 5.66 6.365 

Average (absolute value) 107.78 0.09 8.235 6.07 4.522 
 

Table 1: Experimental results of our modelings, AMAS and IAMAS, and FastHenry for self-inductances. The lengths of ground wires are 4,500µm. 
We ran FastHenry on a SUN Ultra 60 model 1450 with dual CPUs and 2GB RAM and ran AMAS and IAMAS by using Mathematica Version 

3.0 on a 566 MHz Cerelon PC with 128 MB RAM. 
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Unit: µm Coupling inductance (Unit: 10-10 H) 

Signal 
wire length

Overlapping length FastHenry Time (sec) AMAC Time (sec) Error (%) IAMAC Time (sec) Error (%) 

2000 17.1868 141.67 17.3525 0.11 0.964 17.2998 6.10 0.657 
2000 

1500 12.2176 141.98 13.0143 0.11 6.521 13.0140 15.82 6.518 

1500 13.4125 124.95 13.0143 0.11 -2.969 12.9617 7.19 -3.361 
1100 9.4542 120.45 9.5439 0.10 0.949 9.5434 16.98 0.944 1500 
750 5.9326 125.98 6.5072 0.05 9.685 6.5071 4.94 9.683 
1000 9.2767 114.34 8.6762 0.06 -6.473 8.6237 5.66 -7.039 

750 6.8253 116.70 6.5072 0.05 -4.661 6.5064 15.70 -4.672 1000 
500 4.3076 116.70 4.3381 0.05 0.709 4.3379 5.22 0.705 

500 4.6593 110.60 4.3381 0.05 -6.894 4.2858 5.55 -8.016 
400 3.7163 110.28 3.4705 0.05 -6.614 3.4684 17.09 -6.669 500 
200 1.7031 110.00 1.7353 0.11 1.887 1.7352 9.12 1.884 

50 0.4887 105.41 0.4338 0.11 -11.237 0.4321 4.94 -11.586 

25 0.2422 106.55 0.2169 0.06 -10.435 0.2191 11.70 -9.523 100 
5 0.0547 109.70 0.0434 0.05 -20.706 0.0561 12.03 2.553 

Average (absolute value) 118.24 0.08 6.479  9.86 5.272 

Table 2: Experimental results of our modelings, AMAC and IAMAC, and FastHenry for coupling inductances. Here, ws = ds = 0.8µm for both signal 

wires, both ground wire length = 4,500µm, wg = 2µm, dg = 12µm. We ran FastHenry on a SUN Ultra 60 model 1450 with dual CPUs and 2GB 
RAM and ran AMAC and IAMAC by using Mathematica Version 3.0 on a 566 MHz Cerelon PC with 128 MB RAM. 
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Figure 13: Coupling inductance vs. signal wire overlapping length when both signal 

wire length = 1,000µm, and the other parameters are identical to 
experiments in the previous subsection. 
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Figure 14: Self-inductance vs. signal wire length when the other parameters are 

identical to experiments in the previous subsection. 
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4.3  Experiments of Bus Structures 

In this subsection, we experiment on the bus structure to show that our model is also 
suitable for the bus structure. In our experiment, the bus structure is 9-bit, all signal 
wire lengths are 2,000 µm, and the other parameters are the same as in the previous 
subsection. Table 3 lists the results. 

 

Inductance (10-10 H) 
Routing FastHenry AMAS&AMAC Error (%) 

L1 19.4186 20.3658 4.878 
L3 20.6165 21.7243 5.373 
L5 21.4648 22.8311 6.365 
L13 13.4016 12.6199 -5.833 
L15 11.1896 10.3177 -7.792 
L35 14.4393 13.7834 -4.542 

Average error (absolute value) 5.797 
 

Table 3: Self and mutual inductance estimated from FastHenry and our formulae for 

the bus structure (Li stands the self-inductance of wire si ; Lij stands the 

mutual inductance between wire si and sj) 

 

From Table 3, we can observe that the average difference between our simulation 
results and those obtained by FastHenry for the self and coupling inductance is about 
5.8%. Therefore, our formulae are also suitable for the bus structure. 

 

5. Conclusions 

In this paper, we first introduced some basic electromagnetic concepts. Using these 
basic concepts, we derived analytical formulae to efficiently approximate the self and 
coupling inductance for wires of unequal lengths and dimensions. We first presented 
efficient formulae, AMAS and AMAC, for general cases. Then we derived more 
sophisticated formulae, IAMAS and IAMAC, for some corner cases to improve accuracy. 
By comparing with FastHenry, experimental results have shown the accuracy of our 
formulae. In particular, our modeling is extremely efficient, and thus can be 
incorporated into a layout tool for inductance optimization. 
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