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Abstract As the operation frequency reaches gigahertz in deep-submicron designs,
the effects of inductance on noise and delay can no longer be neglected. Most of the
previous works on inductance extraction are field-solvers, which are intrinsically more
accurate but computationally expensive. Others focus on modeling the inductances of
special routing topologies such as the bus structure. Therefore, it is not suitable to
incorporate them on-line into a layout (placement and routing) tool for inductance
(delay and noise) optimization. In this paper, we consider the overlapping of unequal
wire lengths and dimensions to efficiently extract the loop inductance from the
coplanar interconnect structure. The difference between our simulation results and the
estimation values obtained by FastHenry [11] is within 10% for practical cases. In
particular, our modeling is extremely efficient, and thus can be incorporated into a

layout tool for inductance optimization.

1. Introduction

As technology advances into the very deep-submicron era, interconnection delay
dominates overall circuit performance and noise becomes more serious than before.
Therefore, accurately predicting the interconnection delay and noise becomes a major
challenge in high performance designs. For deep-submicron, high-performance circuits,
ignoring inductance effects may incur a large amount of error, since an RC model as
compared to an RLC model may create errors of up to 30% in the total propagation
delay of a repeater system [ 10], and in some worst cases the noise coupling due to C and
L may reach around 55% of the supply voltage [8]. As technology improves and die
size increases, short rise/fall times of signals and long wires make inductance effects
much more significant than before [14]. Therefore, it is very important to consider the

self and coupling inductance.



Inductance extraction has been studied extensively in the literature. Grover [7]
collected many formulas for extracting inductance. However, as mentioned in [9], there
are limitations of applying the equations. For example, they do not consider internal
inductance, and wire widths are not considered for mutual inductance. Also, Qi et al.
[13] proposed some formulas for extracting bus structure’s inductance with
considering different effects such as skin effect and substrate effect. Greengard
developed a multipole method to extract inductances [6]. Phillips, Kamon, and White
[12] proposed an FFT-based approach for 3-D inductance extraction. Beattie and
Pileggi proposed a hierarchical refinement method [3] that improves the running time
for capturing the near field effects. Also, Beattie et al. proposed equipotential shells
methodology [2] to efficiently extract the inductance of the bus structure. He et al.
presented a table-based approach to identify the structure of a circuit for inductance
extraction [9].

Most of the previous works are field-solvers that are intrinsically more accurate but
are computationally expensive. Others focus on modeling the inductances of special
routing topologies such as the bus structure. Therefore, it is not suitable to incorporate
them on-line into a layout tool for inductance optimization. As [4] pointed out, no good
approximation formula exists for coupling inductances of two parallel lines of unequal
lengths and dimensions. We consider the overlapping of unequal wire lengths and
dimensions (widths and heights) to extract the self and coupling inductance. We derive
formulae and models to approximate both self and coupling inductance efficiently yet
accurately for the coplanar routing structure. Simulation results show that the
difference of the inductance values extracted from our models for practical cases is
within 10% for the wires of unequal lengths and dimensions, compared with FastHenry
[11]. In particular, our method is extremely fast. For example, the running time for
extracting the coupling inductance of two wires of 2000 um by using our analytical
formulas is typically within 0.11 seconds using Mathematica on a 566 MHz Cerelon PC
with 128 MB RAM while FastHenry requires 141 seconds on SUN Sparc Ultra 60 with
dual CPUs and 2GB memory. Therefore, it is feasible to incorporate our model into a
layout tool on-line.

The rest of this paper is organized as follows. Section 2 describes the coplanar
interconnect structure and some basic electromagnetic concepts. Section 3 derives
formulae for self and coupling inductance. Section 4 gives the simulation results on the
comparisons between our methods and FastHenry. Finally, Section 5 concludes our

work.



2. Preliminaries

In this section, we describe some basic concepts of electromagnetism [5]. We first
describe inductance in Subsection 2.1, and then introduce the coplanar structure used in

this paper in Subsection 2.2.

2.1 Inductance
Considering two neighboring closed loops, C; and C, bounding surface S; and S,

respectively, as shown in Figure 1. If a current /; flows in C;, a magnetic field El will

be created. Some of the magnetic flux due to El will link with C; —that is, it will pass

through the surface S, bounded by C,. We refer to this mutual flux as ®;,. We have

®, = ngl 'd§2 . (1)

From Faraday’s law of electromagnetic induction, we know that a time-varying /; (and
therefore a time-varying ®;,) will produce an induced electromotive force or voltage in

C,. However, @), exists even if /; is a steady d-c current. From Ampeére’s circuital law
[5] (Equation 2)

§.B-dl =l , 2

we know that B, is directly proportional to /;; hence @, is also proportional to /;. We

have

(D12 = L1211 5 (3)

where the proportionality constant L;, is called the mutual inductance or coupling
inductance between loops C; and C,, with ST unit henry (H). In case C has N, turns, the
flux linkage A, due to @, is

Ay, =N,D,,, 4)
Combining Equations (3) and (4), we have

L,=—=. (5)

The coupling inductance between two circuits is then the magnetic flux linkage with

the victim circuit (C; in Figure 1) per unit current in the aggressor circuit (C; in Figure

1.
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Figure 1: Two magnetically coupled loops.

Some of the magnetic flux produced by /; links only with C; itself, but not with C,.
The total flux linkage with C; caused by /; is

A11 :qu)u- (6)

The self-inductance of loop C; is defined as the magnetic flux linkage per unit current

in the loop itself; that is

Lyy=—. (7

2.2 Coplanar Structure

P G

Figure 2: Coplanar interconnect structure.



In this subsection, we introduce the coplanar interconnect structure and the notation
which is intensively used in this paper. Figure 2 depicts the coplanar interconnect
structure. Here, s stands for a signal wire while P and G stands for a power and a ground
grid of identical width, w,. Throughout this paper, both P and G are considered as
ground wires. Assume that all wires are of the same height %, the width and length of
each signal wire are wy and /,, respectively, and the overlapping length of two signal
wires is /. We use L; to represent the self-inductance of s; and L;; for the coupling
inductance between s; and s;. Throughout our paper, we assume quasi-static conditions,
which imply that the currents vary very slowly in time and the dimensions of circuits
are very small in comparison to the wavelength, and set the clock frequency to 3 GHz in
our experiments.

Also, we assume that all signals use the nearest P/G wires as their return paths, same
as [15]. Although quiet or opposite-switching neighboring nets may also serve as return
paths, they are not ideal because currents returning from signal wires have to go
through devices, which have significant resistances [15]. Therefore, the other wires that
are not involved in the computation for the inductance between wires i and j are
assumed floating. From Faraday’s law, we know that a floating wire will not affect the

inductance computation since it cannot form any current loop.

3. Inductance Modeling

In Subsection 3.1, we derive our formula AMAS (Analytical Model Approximation of
Self-inductance) for extracting self-inductance in the coplanar structure. Subsection 3.2
AMAC (A4nalytical Model Approximation of Coupling Inductance) is derived for
extracting coupling inductance in the coplanar structure. Finally, we re-derive two
formulas, /JAMAC (Improved Analytical Model Approximation of Coupling Inductance)
and IAMAS (Improved Analytical Model Approximation of Self-inductance), to apply

on some corner cases for extracting inductances.

3.1 Self-inductance

Because the rectangular shape of wires, as illustrated in Figure 2, is complex for the
computation of the magnetic flux density vector induced from it when carrying current,
we apply cylindrical approximation for rectangular conductors. Figure 3 illustrates the
approximation. If the current /; flows in wire s; and ground wire and its direction is
shown as in Figure 3, the current loop C can be determined by the dashed line. The area

of S;, the gray region shown in Figure 3, is determined by the enclosed region of the

loop C. To derive self-inductance from Equation (7), we need to compute V;, S;, and B i
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since A, = N,®, =N, _[S_ B, -ds, . Although N; = 1 and S; are already known, B,

now is still unknown. Hence, we shall first derive the formula of the magnetic flux

—

density vector B, . Note that the unit of L’ is henry per meter (H/m) and the unit of L is

henry (H).

= 0.5wg

Figure 3: Degeneration of metal wire from Figure 2.

In the following discussion, we derive the magnetic flux density vector induced by a
circular conductor which carrying current /;. The cross-section view of the circular

conductor is shown in Figure 4 where the radius of the conductor is b.

Figure 4: Cross-section view of a circular conductor with radius b.



If we align the conductor along the z-axis in the cylindrical coordinate, current /;
flows in z-direction, which is outward direction of this paper. Assumed that current /; is
uniformly distributed in the conductor and the conductor is infinitely long (/,, >>r, ris
the distance from the conductor’s center to a certain point), we can derive Equations (8)
and (9) using Equation (2).

5~ Mol
n =S g S ®)
5 e
B =a , h=>2b 9
out ¢27Z7"2 2 ()

where B,

n

is the magnetic flux density vector inside the conductor and B,, is the

vector outside the conductor.
As N, S;, and B, are already known, we can then derive the formula of the internal

inductance per unit length, which is a part of the self-inductance, for a circular wire.
Consider an annular ring in the inner conductor between radius » and » + dr (r < b). The
current in a unit length of this annular ring is linked by the flux that can be obtained by

integrating Equation (8). We have

d@,, = ['B,dr

Mol b2 — 2
=——(0" —17). 10
The current in the annular ring, however, is only a fraction (27 dr/ zb”> = 2r dr/b*)
of the total current /;. As a result, the flux linkage for this annular ring is

, 2rdr ,_,
dN;, === d@'. (11)
Hence, we can obtain the total flux linkage per unit length by integrating Equation (11):
b
Ain = _[0 dAln

I
= Hoi (12)

Y4

The unit length internal inductance of the circular wire is

Li,n:h
I

1



Hy
=— . 13
& (13)
Then, the total internal self-inductance per unit length of the two wires system of Figure
3is
L =2xt
kY4

Hy
=— 14

After computing the internal self-inductance, we derive the external self-inductance.

Now, We change the coordinate to the Cartesian coordinate. In the xz-plane where the

two wires lie, as in Figure 3, the contributing B vectors due to the equal and opposite

currents in the two wires have only a y-component. Hence, from Equation (9), we

obtain
I
By=1r (15)
and
_ Mol (16)
Y 2n(d, 1,41 —x)
The flux linkage per unit length is
rg+dg
®, =" (Bs +B, )dx
_ Ml In (rg +dg)(rs +dg)
Y rr ’ 17
s'g
Therefore, the unit length external inductance in Figure 3 is
D
ex ]l
My 1 (rg +dg)(rs +dg)
= 2— n . (18)
V4 1,

Finally, we can obtain the total self-inductance (L;) in Figure 3 by summing Equations

(14) and (18) and then multiplying with the signal wire length /.
L =1,(L;, + L)



- zw{ﬂJrﬂln{(rg ) +dg)B (19)

dr 2rmw 1T,

If another ground wire exists on the other side of the signal wire separated by the
distance dg> ( dg2 > d, ), the current flowing in the nearest G wire will decrease. We
modify Equations (14) and (15) to Equations (20) and (21) with the branch current of

0.57;, which is given from the Kirchhoff’s Current law as follows:

L = (1+0.5)><g’—7‘; (20)
I
B, :0.5><—‘2‘;’D; . @1

Then, re-deriving Equations (17) to (19), the new self-inductance formula for the case

when there are two ground wires can be obtained as follows:

Li = lw(Lz,n +Le'x
+d ) (r,+d
=M[0.375+1n((rg Y g)D. (22)
2r rr,

If there are n ground wires, we also simplify these cases to the two ground wires
system. We named the above formula AMAS (4nalytical Model Approximation of

Self-inductance).

3.2 Coupling Inductance
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Figure 5: Top view of the coplanar structure.



As in the previous subsection, we first consider single ground wire system. The top

view of the coplanar structure is shown in Figure 5. Now, we consider the xz-plane

where the three wires lie, as shown in Figure 5. The contributing[? vectors due to the

current flowing in G and s; wire have only a y-component. From Equation (9), we have

I
BG — IUO i (23)
27x
and
I
IUO i (24)

B =
Y 2705w, +d, +d +1.5w,—x)

The coupling inductance L;; is proportional to the overlapping area of S; and S;. The
overlapping area Sj,, is shown as the gray region in Figure 5. We can derive the flux
linkage per unit length from Equation (4). We have

PN
Aex_q)ex

= % LMP Bds,,

J-O.Swg +dgtw,
0.5w,

(B; +B, )dx

_ Lol | 05w, +d, +w)(d, +d, +1.5w,) 2s)
2z 0.5w,(d, +0.5w,) '

Therefore, the external inductance is

AI
L,=—= 26
I, (26)

1

and the internal inductance due to G wire is

Ll,’n _Ho _ (27)
8
Hence, the total coupling inductance of Figure 5 is
L,=L,

10



(1, {(O.Swg +d, +w,)(d, +d, +1.5ws)] o8

T x| 4 05w, (d, +0.5w,)

If another ground wire exists on the other side of the signal wire with distance dg,
(dg2 2 dg + ds + wy ), the current flowing in the nearest G wire will decrease. As in the
previous subsection, we modify Equations (23) and (27) to Equations (29) and (30)
with the branch current of 0.5/;:

B, =0.5x ol (29)
2mx

L =05 x o (30)
87

Re-deriving Equations (25), (26), and (28), the new coupling inductance formula for

the case when there are two ground wires can be obtained as follows:

L,=L,

(1, ‘{(O.Swg+dg+ws)0‘5(dg+ds+1.5ws)j
.(31)

T 27| 8 (0.5w,)°(d, +0.5w,)

If there are n ground wires, we also simplify these cases to the two ground wires
system as in Subsection 3.1. We named the above formula AMAC (4nalytical Model

Approximation of Coupling Inductance).

3.3 Modeling Short Wires and Small Coupling

Previous subsections are all based on the assumption that wires are sufficiently long,
namely, /,>>d,. When wire lengths are comparable to wire spaces, however, Equation
(9) cannot be used to model the magnetic flux density, since we cannot find a closed
path around the current-carrying wire such that the magnitude of B is constant over
the path. Besides, if two signal wires have no overlapping length between them, does
the coupling inductance exist? The answer is affirmative, although the coupling
inductance is very small. Therefore, if we use the equations derived in Subsections 3.1
and 3.2 for all cases of the coplanar structure, our approximations will cause a large
amount of errors in some corner cases. Based on the above fact, we should use more

sophisticated formulas to approximate the inductances for the situations, when

(1) The wire length is comparable to its distance to the nearest ground wire.

11



(2) The overlapping length is much smaller than the signal wire length.

If above two situations are encountered, we should rederive the magnetic flux
density vector induced from the wire before computing the inductance. In this
subsection, we introduce the Bioat-Savsrt law, Equation (32), to derive the formula of

magnetic flux density vector.

B=§ dB
N dl' xR
= (32)

—

where Cis the closed path of current 7, and R is the vector directed from the source to

the field point. If we have a line segment carrying current / along the z-axis in the

cylindrical coordinate shown in Figure 6.

dz'

r P(r, 0, z)

o

Figure 6: Top view of a carrying current wire.

Therefore,
R=a4r+a(z-z2" (33)
and

dl'xR=adz' x(a,r+a.(z—z2")

=a,rdz' . (34)

Using Equations (32) and (34), we can obtain

12



Bog ,uol'[lw rdz'

=4y 4y Y0 (I”2+(Z—Z')2)3/2' (35)

When the magnetic flux density vector is already known, we can then derive the
formula of coupling inductance. Next, we consider the two ground wires system shown

in Figure 7.
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Figure 7: Top view of the coplanar structure.

The internal inductance is

L = O.SXZX& ) (36)
81

From Equation (35), we know that the contributing B vectors due to the equal and

opposite currents in s; and G wires have only a y-component in the Cartesian coordinate.

Hence, the magnitude of the magnetic flux induced by the G wire of Figure 7 is

I !
B, =05
4r

J'lw xdz 37

0 (x2 +(Z_ZI)2)3/2 ’
and the flux linkage due to the G wire is

A, =D,

= J-s, Bds;,

13



0.5wy+d,+w;

i
- L , Bodzdx. (38)

0.5wg

For the simplification of our formulation, we reverse the structure and align s; with
the z-axis as shown in Figure 8.

lw 1 J

lw 2

Figure 8: Reversed placement of Figure 7.

Then the magnitude of the magnetic flux induced by the s; wire in Figure 8 is

I ¢L, xdz'
e e —— (39)
YA O (xT+(z—-2)7)
The flux linkage due to s; wire is
As, = (Ds,
=I B, ds,
s, S
0.5wy+d,+w, ol
= B, dzdx . (40)
0.5w, -1, S
Therefore, the total external inductance is
A
LGX = -
Ii
(A + As,.)
= 7 ) (41)

14



Hence, summing up Equations (36) and (41), we can compute the coupling inductance
by

Lij = Lin + Lex

= 0.51ﬂ+Lex, (42)
87

For the simplification of our equation, we do not expand the term L.,. We named the
above formula IAMAC (Improved Analytical Model Approximation of Coupling
Inductance).

Next, we derive the formula of the self-inductance for the situation when a signal
wire length is comparable to its distance to the nearest ground wire. We consider the
coplanar structure shown in Figure 3 to derive the formula. The self-inductance also
includes the internal and the external inductance. Therefore, in a two-ground wires
system, the internal inductance is

L, =1+0.5)x/, th_;; , (43)

Assume the loop area is S;. Since @ = ISB -ds , we have

= IS, Bds,

0.5wg+d, pl
= B.dzdx (44)

0.5w, -1,

and

= .[s, Bs,. ds ;

0.5w,+d, ¢l
= B, dzdx . (45)

0.5w; -1,

The formulae of Bg and B;; are the same as Equations (37) and (39). Then we obtain the
total self-inductance (by Equations (41), (43), (44), and (45)) as follows

Li = Lin + Lex

=1.5/, oy L,. (46)
Y4

15



Again, we do not expand the term L., for simplicity. We named the above formula

IAMAS (Improved Analytical Model Approximation of Self-inductance).

4. Experimental Results

We verify the accuracy of our formulae, AMAS (4nalytical Model Approximation of
Self-inductance), AMAC (Analytical Model Approximation of Coupling Inductance),
IAMAC (Improved Analytical Model Approximation of Coupling Inductance), and
TAMAS (Improved Analytical Model Approximation of Self-inductance), by comparing
with FastHenry. In Subsection 4.1, experiments of various ground wire structures are
conducted to find the applicable structures for our formulae. Subsection 4.2 verifies the
accuracy of our formulae by using different parameters. We show that our formulae are

also suitable for the bus structure in Subsection 4.3.

4.1 Ground Wire Structure

Figure 9: Cross-section view of the coplanar structure with multiple ground wires.

We discuss the effect of the number of ground wires on inductance in this subsection.
Consider the cross-section view of the coplanar structure shown in Figure 9 for the first
experiment. We represent the structure by GGs;s,GG. In our experiment, we set 4 =
2pm, wy = 0.8um, ds = 0.8pum, we = 2um, d, = 12pm. Also, we set dy> = dy + ds + wy =
18.4 um to make s, farther than s; to a nearest ground wire. The length of the G wire
was 4500 pum, the lengths of both s; and s, were /,, = 1000 um, and the overlapping
lengths of s; and s, were / = 1000 um. We experimented on the Gs;s,, Gs;5.G, Gs;s:GG,
Gs15:GGG, GGss2, GGGs 152, GGGGs sz, and GGs;s,GG structures and obtained the
results shown in Figure 10, Figure 11, and Figure 12. From Figure 10, Figure 11, and
Figure 12 we observe that our formulae are more suitable for the structures with two or
more G wires since the results are closer to those obtained by FastHenry. This is a
typical situation in a real design where there must be at least one ground and one power

grids in a circuit.

16
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Figure 10: Experimental results for different coplanar structures, where x=1 stands
for Gs;s;, x=2 stands for Gs;s,G, x=3 stands for Gs;s,GG, x=4 stands for
Gs5,GGG, x=5 stands for GGss;, x=6 stands for GGGs;s,, x=7 stands for
GGGGsys,, and x=8 stands for GGs;s,GG.

1.6
wire length = wire overlapping length = 100 um
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Figure 11: Experimental results for different coplanar structures, where x=1 stands
for Gs;s;, x=2 stands for Gs;s,G, x=3 stands for Gs;s,GG, x=4 stands for
Gs5,GGG, x=5 stands for GGss;, x=6 stands for GGGs;s,, x=7 stands for
GGGGsys,, and x=8 stands for GGs;s,GG.
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Figure 12: Experimental results for different coplanar structures, where x=1 stands
for Gsss,, x=2 stands for Gs;s,G, x=3 stands for Gs;s,GG, x=4 stands for
Gss,GGG, x=5 stands for GGs;s,, x=6 stands for GGGss,, x=7 stands for
GGGGsys,, and x=8 stands for GGs;s,GG.

4.2 Accuracy of AMAS, AMAC, IAMAS, and JAMAC

In this subsection, we conducted the following two experiments: (1) the accuracy of
AMAS and IAMAS for self-inductance extraction, and (2) accuracy of AMAC and
IAMAC for coupling-inductance extraction. In the first experiment, we tested the
accuracy of AMAS and IAMAS for self-inductance extraction in the Gs;G structure with
various /y, dg, Ws, We. The parameters, dg>, d,, h and the wire length of G wire, were
identical to the previous experiments of previous subsection. The experimental results
are given in Table 1. Identical values of parameters and conditions are applied to the
third experiments on the coupling inductance whose results are shown in Table 2.
Compared with FastHenry, the average errors of our modeling are within 10%, except
the two corner cases: (1) the wire length is comparable to its distance to the nearest
ground wire, and (2) the overlapping length is much smaller than the signal wire length.
The errors may exceed 10% in these cases. This phenomenon proves our assumption in
Subsection 3.3. For these corner cases, our improved formulae can achieve
significantly more accurate estimations than the original ones, as shown in Table 1 and
Table 2. In Figure 13 and Figure 14, the inductance values obtained by our modeling
and FastHenry are plotted as functions of overlapping and wire lengths, respectively.

The results show the accuracy of our work.
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Self-inductance (Unit: 107" H)

( Ly, dg, Wy, wg ) (Um) FastHenry Time (sec) AMAS Time (sec) Error (%) IAMAS Time (sec) Error (%)
(2000, 12,0.8,2) 18.70280 117.09 20.3658 0.11 8.892 20.3299 8.02 8.700
(1500, 12,0.8,2) 14.51540 120.80 15.2744 0.11 5.229 15.2385 6.97 4.982
(1000, 12,0.8,2) 9.99291 103.41 10.1829 0.11 1.901 10.1470 5.82 1.542
(500,12,0.8,2) 5.14302 106.79 5.0915 0.11 -1.003 5.0557 5.72 -1.698
(25,12,0.8,2) 0.22642 99.75 0.2546 0.05 12.436 0.2232 6.15 -1.427
(10,12,0.8,2) 0.07443 98.60 0.1018 0.06 36.806 0.0761 6.15 2.222
(1000, 12,0.8,4) 9.26282 111.57 9.3216 0.11 0.635 9.5280 5.66 2.863
(1000, 12,0.8,1) 10.59190 117.06 10.9551 0.11 3.429 10.8010 5.55 1.974
(1000, 12,1.6,2) 9.60097 110.11 8.8601 0.11 -7.716 8.8243 5.71 -8.090
(1000, 12,0.4,2) 10.24480 108.13 11.5367 0.11 12.610 11.5008 5.71 12.260
(1000, 24,0.8,2) 12.38490 99.46 12.1906 0.05 -1.569 12.1191 5.71 -2.146
(1000, 6,0.8,2) 7.73106 100.60 8.2411 0.05 6.597 8.2231 5.66 6.365
Average (absolute value) 107.78 0.09 8.235 6.07 4,522

Table 1: Experimental results of our modelings, AMAS and IJAMAS, and FastHenry for self-inductances. The lengths of ground wires are 4,500um.
We ran FastHenry on a SUN Ultra 60 model 1450 with dual CPUs and 2GB RAM and ran AMAS and JAMAS by using Mathematica Version

3.0 on a 566 MHz Cerelon PC with 128 MB RAM.



Unit: pm Coupling inductance (Unit: 10" H)

Signal . . . _

i Overlapping length| FastHenry | Time (sec) AMAC Time (sec)| Error (%)| IAMAC Time (sec) Error (%)
wire length

2000 2000 17.1868 141.67 17.3525 0.11 0.964 17.2998 6.10 0.657
1500 12.2176 141.98 13.0143 0.11 6.521 13.0140 15.82 6.518
1500 13.4125 124.95 13.0143 0.11 -2.969 12.9617 7.19 -3.361
1500 1100 9.4542 120.45 9.5439 0.10 0.949 9.5434 16.98 0.944
750 5.9326 125.98 6.5072 0.05 9.685 6.5071 4.94 9.683
1000 9.2767 114.34 8.6762 0.06 -6.473 8.6237 5.66 -7.039
1000 750 6.8253 116.70 6.5072 0.05 -4.661 6.5064 15.70 -4.672
500 4.3076 116.70 4.3381 0.05 0.709 4.3379 5.22 0.705
500 4.6593 110.60 4.3381 0.05 -6.894 4.2858 5.55 -8.016
500 400 3.7163 110.28 3.4705 0.05 -6.614 3.4684 17.09 -6.669
200 1.7031 110.00 1.7353 0.11 1.887 1.7352 9.12 1.884
50 0.4887 105.41 0.4338 0.11 -11.237 0.4321 4.94 -11.586
100 25 0.2422 106.55 0.2169 0.06 -10.435 0.2191 11.70 -9.523
5 0.0547 109.70 0.0434 0.05 -20.706 0.0561 12.03 2.553
Average (absolute value) 118.24 0.08 6.479 9.86 5.272

Table 2: Experimental results of our modelings, AMAC and IAMAC, and FastHenry for coupling inductances. Here, ws = ds = 0.8um for both signal
wires, both ground wire length = 4,500um, w, = 2um, d, = 12um. We ran FastHenry on a SUN Ultra 60 model 1450 with dual CPUs and 2GB
RAM and ran AMAC and JAMAC by using Mathematica Version 3.0 on a 566 MHz Cerelon PC with 128 MB RAM.
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Figure 13: Coupling inductance vs. signal wire overlapping length when both signal
wire length = 1,000um, and the other parameters are identical to

experiments in the previous subsection.
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Figure 14: Self-inductance vs. signal wire length when the other parameters are

identical to experiments in the previous subsection.
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4.3 Experiments of Bus Structures

In this subsection, we experiment on the bus structure to show that our model is also
suitable for the bus structure. In our experiment, the bus structure is 9-bit, all signal
wire lengths are 2,000 um, and the other parameters are the same as in the previous
subsection. Table 3 lists the results.

Inductance (107'° H)

Routing|  FastHenry AMAS&AMAC Error (%)
L, 19.4186 20.3658 4.878
Ls 20.6165 21.7243 5.373
Ls 21.4648 22.8311 6.365
Lis 13.4016 12.6199 -5.833
Lis 11.1896 10.3177 -7.792
Lss 14.4393 13.7834 -4.542

Average error (absolute value) 5.797

Table 3: Self and mutual inductance estimated from FastHenry and our formulae for
the bus structure (L; stands the self-inductance of wire s; ; L; stands the

mutual inductance between wire s; and s;)

From Table 3, we can observe that the average difference between our simulation
results and those obtained by FastHenry for the self and coupling inductance is about

5.8%. Therefore, our formulae are also suitable for the bus structure.

5. Conclusions

In this paper, we first introduced some basic electromagnetic concepts. Using these
basic concepts, we derived analytical formulae to efficiently approximate the self and
coupling inductance for wires of unequal lengths and dimensions. We first presented
efficient formulae, AMAS and AMAC, for general cases. Then we derived more
sophisticated formulae, JAMAS and JAMAC, for some corner cases to improve accuracy.
By comparing with FastHenry, experimental results have shown the accuracy of our
formulae. In particular, our modeling is extremely efficient, and thus can be

incorporated into a layout tool for inductance optimization.
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